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SHOKUROV’S BOUNDARY PROPERTY

Florin Ambro

Abstract

For a birational analogue of minimal elliptic surfaces f : X →
Y , the singularities of the fibers allow us to define a log structure
(Y,BY ) in codimension one on Y . Via base change, we have a log
structure (Y ′, BY ′) in codimension one on Y ′, for any birational
model Y ′ of Y . We show that these codimension one log structures
glue to a unique log structure, defined on some birational model
of Y (Shokurov’s BP Conjecture). As applications, we obtain
Inversion of Adjunction for the above mentioned fiber spaces, and
the invariance of Shokurov’s FGA-algebras under adjunction.

0. Introduction

Our aim is an extension to the category of log pairs of Kodaira’s
canonical bundle formula for elliptic surfaces [18]. We recall Kodaira’s
formula in a generalized form due to Ueno [23], Kawamata [12] and
Fujita [9]. Let f : X → Y be a fibration of non-singular proper varieties
whose general fibre is an elliptic curve, and assume that the J-invariant
function extends to a morphism J : Y → P1. Then,

KX +BX = f∗(KY +BY +MY ).

Here, KX ,KY are suitable canonical divisors on X and Y , respectively.
The moduli part MY is a Q-Weil divisor such that 12MY is a Cartier
divisor and OY (12MY ) � J∗OP1(1). The discriminant BY =

∑
P bPP

is supported by the codimension one points P of Y for which the geo-
metric fibre XP = X ×Y Spec(k(P )) is singular. In terms of Kodaira’s
classification of degenerate fibers ([17], Theorem 6.2), its coefficients are
(mIb is a multiple fibre of multiplicity m, and b ≥ 0)
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2 F. AMBRO

XP mIb I∗b II II∗ III III∗ IV IV∗

bP 1 −m−1 1/2 1/6 5/6 1/4 3/4 1/3 2/3

Finally, BX = E+ − E−, where E+, E− are effective Q-Weil divisors
on X such that E− supports no fibers over codimension one points of
Y , and codim(f(E+), Y ) ≥ 2.
Recall that a log pair (X,B) is a normal variety X endowed with a Q-
Weil divisor B such that the log canonical divisor K + B is Q-Cartier.
Here, K is the Weil divisor of zeros and poles of a top rational differential
form on X; it is called the canonical divisor of X and is unique up to
linear equivalence.

The term BX was invisible in Kodaira’s original formula, since f
was minimal and dim(Y ) = 1. However, Kawamata [14, 15] pointed
out that BY , which was originally computed in terms of the local mon-
odromies around the classified degenerate fibers, is uniquely determined
by the log pair (X,BX): 1 − bP is the largest real number t such that
the log pair (X,BX + tf∗(P )) has log canonical singularities over the
generic point of P . In particular, the moduli part is also determined by
the log pair (X,BX ) and the above adjunction formula.

The objects we are interested in are lc-trivial fibrations f : (X,B) →
Y . They consist of a contraction f : X → Y of proper normal varieties
and a log pair structure (X,B) such that the log canonical divisor K+B
is Q-linearly trivial over Y . More precisely:

(1) the log pair (X,B) has at most Kawamata log terminal singular-
ities over the generic point of Y ;

(2) rank f∗OX(�A(X,B)�) = 1;
(3) there exist a positive integer r, a rational function ϕ on X and a

Q-Cartier divisor D on Y such that

K +B +
1
r
(ϕ) = f∗D.

This type of fibrations appear naturally in higher codimensional adjunc-
tion [14, 15, 1] and in the study of parabolic fiber spaces [6, 5]. We refer
the reader to Remark 2.2 for examples where the technical assumption
(2) is satisfied, and to Section 1 for the definition of Shokurov’s discrep-
ancy b-divisor A(X,B). See also Example 2.3 for the classification of
the generic fibre in case f has relative dimension one.

Kawamata’s formula defines the discriminant BY of (X,B) on Y ,
and the moduli part is the unique Q-Weil divisor MY on Y satisfying
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the adjunction formula

K +B +
1
r
(ϕ) = f∗(KY +BY +MY ).

The following properties are desirable for applications.
• Inversion of Adjunction: (Y,BY ) is a log pair having the same

type of singularities as (X,B).
• Semi-ampleness: MY is semi-ample, that is, there exists a posi-

tive integer m such that mMY is a Cartier divisor and the linear
system |mMY | is base point free.

• Boundedness: the minimal value of m is bounded in terms of
the log pair structure induced on the geometric general fibre
(X,B) ×Y Spec(k(Y )).

If Y is a curve, Inversion of Adjunction holds by the very definition of
BY , and Semi-ampleness can be reduced to a result of Fujita [8].

Theorem 0.1. Let f : (X,B) → Y be an lc-trivial fibration such that
dim(Y ) = 1. Then, the moduli Q-divisor MY is semi-ample.

If Y has dimension at least two, Prokhorov found an example where
Inversion of Adjunction fails. The reason is that the linear system
|mMY | might have base points in codimension at least two, for every
large and divisible integer m. Thus, we expect that the desired proper-
ties hold only after a suitable birational base change: if f ′ : X ′ → Y ′ is
a fiber space induced via a birational base change σ : Y ′ → Y , we have
an induced lc-trivial fibration f ′ : (X ′, BX′) → Y ′, where BX′ is defined
by µ∗(K +B) = KX′ +BX′ :

(X,B)

f

��

(X ′, BX′)
µ��

f ′

��
Y Y ′σ��

We denote by BY ′ and MY ′ the discriminant and moduli part of the
lc-trivial fibration f ′ : (X ′, BX′) → Y ′, respectively. Our main result is
the stabilization of the induced structure on Y , after a suitable blow-up:

Theorem 0.2. Let f : (X,B) → Y be an lc-trivial fibration. Then,
there exists a proper birational morphism Y ′ → Y such that

(i) KY ′+BY ′ is a Q-Cartier divisor, and ν∗(KY ′+BY ′) = KY ′′+BY ′′

for every proper birational morphism ν : Y ′′ → Y ′.
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(ii) MY ′ is a nef Q-Cartier divisor and ν∗(MY ′) = MY ′′ for every
proper birational morphism ν : Y ′′ → Y ′.

The first part is the positive answer to Shokurov’s BP Conjecture [22],
p. 92. Prokhorov and Shokurov [20] proved (i), by a different method,
in a special case when X is a 3-fold and Y is a surface (they also obtain
an explicit description of Y ′). Modulo the first part, (ii) is a result
of Kawamata [15]. Furthermore, Theorems 0.1 and Theorem 0.2(ii)
generalize similar results of Fujino [5] for parabolic fiber spaces. We
have three applications:

(A) Inversion of Adjunction holds for the induced lc-trivial fibration
f ′′ : (X ′′, BX′′) → Y ′′, for every birational model Y ′′ which dominates
Y ′ (Theorem 3.1).

(B) Shokurov has reduced the existence of flips to the finite generated-
ness of certain (FGA) algebras which are asymptotically saturated with
respect to a Fano variety ([22], Conjecture 4.39). We obtain a descent
property for asymptotic saturation of algebras (Proposition 6.3). In
particular, FGA algebras are invariant under restriction to exceptional
log canonical centers (Theorem 6.5).

(C) Kawamata–Shokurov’s Adjunction Conjecture [1] follows from
inversion of adjunction and semi-ampleness (for exceptional lc centers).
Adjunction to lc centers of codimension two is due to Kawamata [14].
As a corollary of Theorem 0.1, adjunction to 1-dimensional exceptional
lc centres holds as well.

Besides Theorem 0.1, the semi-ampleness of the moduli part is known
in the following cases (denote the general fibre by F and let BF = B|F ):

(i) dim(F ) = 1 and BF is effective (Kawamata [14]).
(ii) F is an abelian variety and BF = 0, or F is a surface of Kodaira

dimension zero and −BF is effective (Ueno [24], Fujino [5]).
The proofs of Theorems 0.1 and 0.2 are based on techniques developed

for the proof of Iitaka’s Addition Conjecture, especially [12] (see [19]
for an excellent survey). Some of the applications in (B) are explained
conjecturally in [22].

1. Preliminary

A variety is a reduced and irreducible scheme of finite type, defined
over an algebraically closed field of characteristic zero. An open subset
U of a variety X is called big if X \U ⊂ X has codimension at least two.
A contraction is a proper morphism f : X → Y such that OY = f∗OX .
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Let π : X → S be a proper morphism from a normal variety X, and
let L ∈ {Z,Q,R}.
1.1. Divisors. An L-Weil divisor is an element of Z1(X) ⊗Z L. The
round up (down) divisor �D� (	D
) is defined componentwise. Two R-
Weil divisors D1,D2 are L- linearly equivalent, denoted D1 ∼L D2, if
there exist qi ∈ L and rational functions ϕi ∈ k(X)× such that D1 −
D2 =

∑
i qi(ϕi). An R-Weil divisor D is called

(i) L-Cartier if D ∼L 0 in a neighborhood of each point of X.
(ii) Relatively nef if D is R-Cartier and D · C ≥ 0 for every proper

curve C contracted by π.
(iii) Relatively free if D is a Cartier divisor and the natural map

π∗π∗OX(D) → OX(D)

is surjective.
(iv) Relatively ample if π is a projective morphism and the numerical

class of D belongs to the real cone generated by relatively ample
Cartier divisors.

(v) Relatively semi-ample if there exists a contraction Φ: X → Y/S
and a relatively ample R-divisor H on Y such that D ∼R Φ∗H.
If D is rational, this is equivalent to mD being relatively free for
sufficiently large and divisible positive integers m.

(vi) Relatively big if there exists C > 0 such that rankπ∗OX(mD) ≥
Cmd for m sufficiently large and divisible, where d is the dimen-
sion of the generic fibre of π.

A divisorD has simple normal crossings if it is reduced and its compo-
nents are non-singular divisors intersecting transversely, in the smooth
ambient space X.
1.2. B-divisors. (V.V. Shokurov [21, 22]) An L-b-divisor D of X is
a family {DX′}X′ of L-Weil divisors indexed by all birational models
X ′ of X, such that µ∗(DX′′) = DX′ if µ : X ′′ → X ′ is a birational
contraction.

Equivalently, D =
∑

E multE(D)E is an L-valued function on the set
of all geometric valuations of the field of rational functions k(X), having
finite support on some (hence any) birational model of X.

Example 1.1.
(1) Let ω be a top rational differential form of X. The associated

family of divisors K = {(ω)X′}X′ is called the canonical b-divisor
of X.
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(2) A rational function ϕ∈k(X)× defines a b-divisor (ϕ)={(ϕ)X′}X′ .
(3) An R-Cartier divisor D on a birational model X ′ of X defines

an R-b-divisor D such that (D)X′′ = µ∗D for every birational
contraction µ : X ′′ → X ′.

(4) For an R-b-divisor D, the round up (down) b-divisor �D� (	D
)
is defined componentwise.

An R-b-divisor D is called L-b-Cartier if there exists a birational
model X ′ of X such that DX′ is L-Cartier and D = DX′ . In this case,
we say that D descends to X ′. The relative Iitaka dimension κ(X/S,D)
of a L-Cartier b-divisor D is defined as the relative Kodaira dimension
of DX′ , where X ′/S is a model where D descends.

An R-b-divisor D is b-nef/S (b-free/S, b-semi-ample/S, b-big/S) if
there exists a birational contraction X ′ → X such that D = DX′ , and
DX′ is nef (free, semi-ample, big) relative to the induced morphism
X ′ → S.

To any R-b-divisor D of X, there is an associated b-divisorial sheaf
OX(D). If U ⊂ X is an open subset, then Γ(U,OX (D)) is the set of
rational functions ϕ ∈ k(X) (including 0) such that multE((ϕ)+D) ≥ 0
for every geometric valuation E with cX(E) ∩ U = ∅. Here, cX(E) is
the center on X of the geometric valuation E.

1.3. Log pairs. A log pair (X,B) is a normal variety X endowed with
a Q-Weil divisor B such that K + B is Q-Cartier. A log variety is a
log pair (X,B) such that B is effective. A relative log pair (variety)
(X/S,B) consists of a proper morphism π : X → S and a log pair
(variety) structure (X,B). The discrepancy b-divisor of a log pair (X,B)
is the Q-b-divisor of X defined by the following formula:

A(X,B) = K −K +B.

A birational map of log pairs f : (X,B) ��� (X ′, BX′) is called (log)
crepant if A(X,B) = A(X ′, BX′). For a geometric valuation E of k(X),
the log discrepancy of E with respect to (X,B) is

a(E;X,B) := 1 + multE(A(X,B)).

The minimal log discrepancy of (X,B) in a proper closed subsetW ⊂ X,
is

a(W ;X,B) := inf
cX(E)⊆W

a(E;X,B).

The log pair (X,B) has log canonical (Kawamata log terminal) singu-
larities if a(E;X,B) ≥ 0 (a(E;X,B) > 0) for every valuation E. The
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non-klt locus LCS(X,B) (non-log canonical locus (X,B)−∞) is the union
of all centers cX(E) of geometric valuations E with a(E;X,B) ≤ 0
(a(E;X,B) < 0). An lc place is a geometric valuation E such that
a(E;X,B) = 0 and cX(E) ⊆ (X,B)−∞, and its center cX(E) on X is
called an lc center. An lc centre C is exceptional if there exists a unique
lc place E with cX(E) = C. We also denote

A∗(X,B) = A(X,B) +
∑

a(E;X,B)=0

E.

A relative generalized log Fano variety is a relative log variety (X/S,B)
such that −(K +B) is ample/S.

2. The discriminant and moduli b-divisors

Definition 2.1. An lc-trivial fibration f : (X,B) → Y consists of
contraction of normal varieties f : X → Y and a log pair (X,B), satis-
fying the following properties:

(1) (X,B) has Kawamata log terminal singularities over the generic
point of Y ;

(2) rank f∗OX(�A(X,B)�) = 1;
(3) There exists a positive integer r, a rational function ϕ ∈ k(X)×

and a Q-Cartier divisor D on Y such that

K +B +
1
r
(ϕ) = f∗D.

Remark 2.2. The property rank f∗OX(�A(X,B)�) = 1 holds in the
following examples:

(a) f is birational to the Iitaka fibration of a functional algebra L
which is asymptotically A(X,B)-saturated (Lemma 6.2);

(b) The log pair (F,BF ) has Kawamata log terminal singularities and
BF is effective (F is a general fiber of f and BF = B|F );

(c) Let W be the normalization of an exceptional log canonical centre
of a log variety (X,B), and let h : E →W be the unique lc place
over W . By adjunction, there exists a Q-divisor BE such that
h : (E,BE) → W is an lc-trivial fibration (see [3]).

Example 2.3. Assume that the geometric generic fibre F = Xη̄ of
an lc-trivial fibration has dimension one. Then, the induced log pair
structure (F,BF ) is classified as follows (g is the genus of the curve F ):

(i) g = 0 and BF =
∑l

i=1 biPi, with bi ∈ Q ∩ [0, 1) and
∑

i bi = 2.
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(ii) g = 1, BF = −b1P1 +
∑l

i=2 biPi is a torsion Q-divisor, where
0 ≤ bi ≤ 1.

(iii) g = 2 and BF = −P1 − P2, where P1, P2 are (possibly equal)
points of F such that P1 + P2 ∼Q KF and dim |P1 + P2| = 0.

Define BY =
∑

P⊂Y bPP , where the sum runs after all prime divisors
of Y , and

1 − bP = sup{t ∈ R;∃ U � ηP , (X,B + tf∗(P )) lc sing/U}.
The coefficients bP are well defined, since (X,B) has at most log canon-
ical singularities over the general point of Y , and each prime divisor is
Cartier in a neighborhood of its general point. It is easy to see that the
sum has finite support, so BY is a well defined Q-Weil divisor on Y .
By (3), there exists a unique Q-Weil divisor MY such that the following
adjunction formula holds:

K +B +
1
r
(ϕ) = f∗(KY +BY +MY ).

Definition 2.4 ([1]). The Q-Weil divisors BY and MY are called the
discriminant and moduli part of the lc-trivial fibration f : (X,B) → Y .
Note that KY +BY +MY is Q-Cartier.

Remark 2.5. The above adjunction formula gives a one-to-one cor-
respondence between the choices of MY and rational functions with
Q-coefficients (1/r)ϕ such that KF + BF + (1/r)(ϕ|F ) = 0, where F is
the general fibre of f .

If MY and M ′
Y correspond to (1/r)ϕ and (1/r)ϕ′, respectively, then

there exists a rational function θ ∈ k(Y )× such that ϕ′ = ϕf∗θ and
rM ′

Y = (θ) + rMY . The smallest possible value of r is the positive
integer b(F,BF ), uniquely defined by

{m ∈ N;m(KF +BF ) ∼ 0} = b(F,BF )N.

Thus, we may assume r = b(F,BF ), up to a Q-linear equivalence of MY .

According to the following lemma, BY and MY are independent of
the choice of a crepant model of (X,B) over Y .

Lemma 2.6. Let σ : X ��� X ′ be a birational map defined over
Y , and let f ′ : X ′ → Y be the induced morphism. Then, there ex-
ists a unique Q-Weil divisor BX′ such that σ : (X,B) ��� (X ′, BX′) is
a crepant birational map. Moreover, (X,B) and (X ′, BX′) induce the
same discriminant on Y .
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Proof. There exists a common normal birational model of X and X ′
which makes the following diagram commute

X ′′
µ

����
��

��
�� µ′

���
��

��
��

�

X
σ ��

f ���
��

��
��

� X ′

f ′
����

��
��

��

Y

Let KX′′ +BX′′ = µ∗(K +B) be the log pullback. Since KX′′ +BX′′ +
1
r (ϕ) = µ′∗(f ′∗D) and µ′ is birational, we have KX′′ +BX′′ = µ′∗(KX′ +
BX′), where BX′ := µ′∗(BX′′). Therefore, there exists a crepant log
structure on X ′. The uniqueness of BX′ is clear.

Finally, note that µ∗(K+B+ tf∗(P )) = KX′′ +BX′′ + t(f ◦µ)∗(P ) =
µ′∗(KX′ +BX′ + tf ′∗(P )). Therefore, the thresholds 1− bP induced by
K +B and KX′ +BX′ coincide. q.e.d.

Let σ : Y ′ → Y be a birational contraction from a normal variety Y ′. Let
X ′ be a resolution of the main component of X ×Y Y

′ which dominates
Y ′. The induced morphism µ : X ′ → X is birational, and let (X ′, BX′)
be the crepant log structure on X ′, i.e., µ∗(K +B) = KX′ +BX′

(X,B)

f

��

(X ′, BX′)
µ��

f ′

��
Y Y ′

σ
��

We say that the lc-trivial fibration f ′ : (X ′, BX′) → Y ′ is induced by
base change. Let BY ′ be the discriminant of KX′ + BX′ on Y ′. Since
the definition of the discriminant is divisorial and σ is an isomorphism
over codimension one points of Y , we have BY = σ∗(BY ′). This means
that there exists a unique Q-b-divisor B of Y such that BY ′ is the
discriminant on Y ′ of the induced fibre space f ′ : (X ′, BX′) → Y ′, for
every birational model Y ′ of Y . We call B the discriminant Q-b-divisor
induced by (X,B) on the birational class of Y . Accordingly, there exists
a unique Q-b-divisor M of Y such that

KX′ +BX′ +
1
r
(ϕ) = f∗(KY ′ + BY ′ + MY ′)
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for every lc-trivial fibration f ′ : (X ′, BX′) → Y ′ induced by base change
on a birational model Y ′ of Y . We call M the moduli Q-b-divisor of
Y , induced by the lc-trivial fibration f : (X,B) → Y . We restate The-
orem 0.2 in terms of b-divisors.

Theorem 2.7. Let f : (X,B) → Y be a lc-trivial fibration, and let
π : Y → S be a proper morphism. Let B and M be the induced discrim-
inant and moduli Q-b-divisors of Y . Then,

(1) K + B is Q-b-Cartier,
(2) M is b-nef/S.

We expect Theorem 2.7 to hold if we allow R-boundaries and R-
linear equivalence instead of Q-boundaries and Q-linear equivalence in
Definition 2.1, or if (X,B) has log canonical singularities over the generic
point of Y . In the latter case, the assumption rank f∗OX(�A(X,B)�) =
1 should be replaced by rank f∗OX(�A∗(X,B)�) = 1.

3. Inversion of Adjunction

Let f : (X,B) → Y be an lc-trivial fibration. The Q-b-divisor of Y

Adiv := −B

is called the divisorial discrepancy b-divisor ([22], p. 92). Theorem 2.7
(1) is equivalent to the following property: there exists a birational
model Y ′ of Y such that Adiv = A(Y ′′,BY ′′) for every birational model
Y ′′ which dominates Y ′. As a corollary, Inversion of Adjunction holds
for the induced morphism of log pairs f : (X,B) → (Y,BY ), after a
sufficiently high birational base change:

Theorem 3.1 (Inversion of Adjunction). Let f : (X,B) → Y be an
lc-trivial fibration such that Adiv = A(Y,BY ). Then, there exists a
positive integer N such that

1
N
a(f−1(Z);X,B) ≤ a(Z;Y,BY ) ≤ a(f−1(Z);X,B)

for every closed subset Z ⊂ Y , where a(Z;Y,BY ) and a(f−1(Z);X,B)
are the minimal log discrepancies of (Y,BY ) in Z, and (X,B) in f−1(Z)
respectively.

In particular, (Y,BY ) has Kawamata log terminal (log canonical )
singularities in a neighborhood of a point y ∈ Y if and only if (X,B) has
Kawamata log terminal (log canonical ) singularities in a neighborhood
of f−1(y).
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Proof. The assumption Adiv =A(Y,BY ) means that the Base Change
Conjecture ([1], Section 3) holds for f : (X,B) → Y . The claim is proved
in [1], Proposition 3.4, but with N depending on Z. The possible values
for minimal log discrepancies of a fixed log pair are finite ([2], Theorem
2.3), hence a maximal value N = maxZ⊂Y N(Z) exists. q.e.d.

Lemma 3.2. Let f : (X,B) → Y be an lc-trivial fibration such that
Adiv = A(Y,BY ). Assume, moreover, that X,Y are non-singular va-
rieties, and the divisors B,BY have simple normal crossings support.
Then, f∗OX(�−B�) = OY (�−BY �).

Proof. By the simple normal crossings assumption, OX(�A(X,B)�) =
OX(�−B�). Since (X,B) has Kawamata log terminal singularities over
the generic point of Y , we have a natural inclusion

OY |V ⊆ f∗OX(�−B�)|V
for some open subset V ⊂ Y . Since rank f∗OX(�A(X,B)�) = 1, the
above inclusion is an equality, after possibly shrinking V . Thus, we
may identify f∗OX(�−B�) with a subsheaf of the constant sheaf k(Y ).
We first show that f∗OX(�−B�) ⊆ OY (�−BY �). Let ϕ be a rational
function of Y such that (f∗ϕ)+ �−B� ≥ 0, and let P be a prime divisor
of Y . We may replace X by some resolution, so that there exists a prime
divisor Q of X with f(Q) = P and

1 − multP (BY ) =
1 − multQ(B)

mQ/P
,

where mQ/P is the multiplicity of f∗(P ) at Q. By assumption, we have
multQ(f∗ϕ) + 1 − multQ(B) > 0. But multQ(f∗ϕ) = mQ/P · multP (ϕ).
Hence, multP (ϕ) + 1 − multP (BY ) > 0. Therefore, (ϕ) + �−BY � is
effective at P .

Conversely, assume (ϕ) + �−BY � is effective, and fix a prime divisor
Q of X. There exists a birational base change

(X,B)

f

��

(X ′, BX′)
µ��

f ′

��
Y Y ′

σ
��

such that P := f(Q) is a prime divisor of Y ′. We have σ∗(KY + BY ) =
KY ′ + BY ′ by Adiv = A(Y,BY ). Furthermore, the simple normal
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crossings assumption implies σ∗OY ′(�−BY ′�) = OY (�−BY �). There-
fore, (ϕ) + �−BY ′� ≥ 0, and hence, multP (ϕ) + 1 − multP (BY ′) > 0.
Since

1 − multP (BY ) ≤ 1 − multQ(BX′)
mQ/P

,

we infer multQ(f∗ϕ)+1−multQ(BX′) > 0, i.e., (f∗ϕ)+�−B� is effective
at Q. q.e.d.

Remark 3.3. Let f : (X,B) → Y be an lc-trivial fibration. Let L be
a Q-Cartier divisor on Y , and set B′ = B+f∗L. Then, f : (X,B′) → Y
is an lc-trivial fibration, with moduli Q-b-divisor M′ = M, and discrim-
inant Q-b-divisor B′ = B + L.

4. Covering tricks and base change

Theorem 4.1 ([10]). Let X be a non-singular quasi-projective vari-
ety endowed with a divisor D with simple normal crossings singularities,
and let N be a positive integer. Then, there exists a finite Galois cov-
ering τ : X̃ → X satisfying the following conditions:

(1) X̃ is a non-singular quasi-projective variety, and there exists a
simple normal crossings divisor ΣX such that τ is étale over X \
ΣX , and τ−1(ΣX) is a divisor with simple normal crossings;

(2) The ramification indices of τ over the prime components of D are
divisible by N .

Sketch of proof. We may assume that X is projective (by Hironaka’s
resolution of singularities, we can compactify as a complement of simple
normal crossings divisor in a projective variety, construct the cover, and
then restrict back to the original variety). Let A be a very ample divisor
such that NA − Di is very ample for each component Di of D. Let
n = dim(X). There exists H(i)

1 , . . . ,H
(i)
n ∈ |NA−Di| for every Di, such

that ΣX := D+
∑

i,j H
(i)
j is a divisor with simple normal crossings. Let

X = ∪Uα be an affine cover, and let Di + H
(i)
j = (ϕ(i)

jα) on Uα. The

field extension L := k(X)[ N

√
ϕ

(i)
jα; i, j] is independent of the choice of α.

Let X̃ be the normalization on X in L. Then X̃ is non-singular and τ
is a Kummer cover which is étale outside ΣX , and τ−1(ΣX) has simple
normal crossings. q.e.d.
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Remark 4.2. In the above notations, assume that � : Y → X is a
surjective morphism from a non-singular quasi-projective variety Y such
that �−1(D) has simple normal crossings. Then, we may assume that
τ : X̃ → X fits into a commutative diagram

X̃

τ

��

Ỹ
g��

ν

��
X Y

���

satisfying the following properties:

(1) ν is a finite covering and g is a projective morphism;
(2) Ỹ is non-singular quasi-projective;
(3) there exists a simple normal crossings divisor ΣY such that ν

is étale over Y \ ΣY , ν−1(ΣY ) has simple normal crossings, and
�−1(ΣX) ⊆ ΣY .

Proof. In the proof of Theorem 4.1, we may choose the divisors H(i)
j

so that �−1(D+
∑

i,j H
(i)
j ) is a divisor with simple normal crossings on

Y . Let τ1 : Ȳ → Y be the normalization of the main component of the
pull back of τ to Y .

X̃

τ

��

Ȳ��

τ1

��

Ỹ��

��
X Y

��� Y1
π��

Then τ1 is a finite cover whose ramification locus is contained in the
simple normal crossings divisor �−1(ΣX). Let N ′ be the least common
multiple of its ramification indices, and construct by Theorem 4.1 a
finite cover π : Y1 → Y with respect to �−1(ΣX) and N ′. Let Ỹ /Y1 be
the normalization of the main component of the pull back of τ1 to Y1.
The induced map ν : Ỹ → Y is a finite cover. By construction, Ỹ /Y1 is
étale, hence, Ỹ is non-singular. There exists a simple normal crossings
divisor ΣY containing �−1(ΣX) such that π is étale over Y \ ΣY and
π−1(ΣY ) has simple normal crossings. Therefore, ν−1(ΣY ) has simple
normal crossings. q.e.d.
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Theorem 4.3 (Semi-stable reduction in codimension one [16, 25]).
Let f : X → Y be a surjective morphism of non-singular varieties. As-
sume ΣX ,ΣY are simple normal crossings divisors on X and Y respec-
tively, such that f−1(ΣY ) ⊆ ΣX and f is smooth over Y \ ΣY . Then,
there exists a positive integer N such that the following hold:

Let π : Y ′ → Y be a finite covering from a non-singular variety Y ′
such that ΣY ′ := π−1(ΣY ) has simple normal crossings and N divides
the ramification indices of π over the prime components of ΣY ′ . Then,
there exists a commutative diagram

X

f

��

X ×Y Y ′��

��

X ′p��

f ′
������������

Y Y ′
π

��

with the following properties:
(a) X ′ is non-singular and ΣX′ := π′−1(ΣX) has simple normal cross-

ings, where π′ : X ′ → X is the induced projective morphism;
(b) p is a projective morphism which is an isomorphism above Y ′ \

ΣY ′ . In particular, f ′ is smooth over Y ′ \ ΣY ′ ;
(c) f ′ is semi-stable in codimension one: the fibers over (generic)

codimension one points of Y ′ have simple normal crossings sin-
gularities.

Sketch of proof. Let f∗(ΣX) =
∑
niEi, and let N be the least common

multiple of the ni’s corresponding to components Ei which dominate
some component of ΣY . Consider a finite base change Y ′ → Y as above.
Over the generic point of each prime component Q of ΣY ′ , X ×Y Y ′
admits a resolution with the desired properties [16]. Therefore, there
exists a closed subscheme B ⊂ X ×Y Y ′, supported over ΣY ′ , and a
closed subset Z ⊂ ΣY ′ with codim(Z, Y ′) ≥ 2, such that the blow-up
of X ×Y Y ′ in B has the desired properties over Y ′ \ Z. Then, we may
take X ′ to be any resolution of the blow-up, which is an isomorphism
outside its singular locus, and such that (a) holds. q.e.d.

Theorem 4.4 ([7, 10]). Let f : X → Y be a projective morphism of
non-singular algebraic varieties. Assume f is semi-stable in codimen-
sion one, and there exists a simple normal crossings divisor ΣY such
that f is smooth over Y \ ΣY . Then, the following properties hold:

(1) f∗ωX/Y is a locally free sheaf on Y ;
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(2) f∗ωX/Y is semi-positive: let ν : C → Y be a proper morphism
from a non-singular projective curve C, and let L be an invertible
quotient of ν∗(f∗ωX/Y ). Then, deg(L) ≥ 0;

(3) Let � : Y ′ → Y be a projective morphism from a non-singular
variety Y ′ such that �−1(ΣY ) is a simple normal crossings divisor.
Let X ′ → (X ×Y Y ′)main be a resolution of the component of
X ×Y Y

′ which dominates Y ′, and let h : X ′ → Y ′ be the induced
fibre space:

X

f

��

X ′��

f ′
��

Y Y ′���

Then, there exists a natural isomorphism �∗(f∗ωX/Y ) ∼→f ′∗ωX′/Y ′

which extends the base change isomorphism over Y \ ΣY .

Sketch of proof. By the Lefschetz principle and flat base change, we may
assume k = C. Let Y0 = Y \ΣY ,X0 = f−1(Y0), and let d = dim(X/Y ).
The locally free sheaf H0 := Rdf∗QX0 ⊗QY0

OY0 is endowed with the
integrable Gauss–Manin connection and is the underlying space of a
variation of Hodge structure of weight d on Y0, with F dH0 = f∗ωX0/Y0

.
Since f is semi-stable in codimension one, H0 has unipotent local mon-
odromies around the components of ΣY . Let H be the canonical ex-
tension [4] of H0. By Schmid’s asymptotic behaviour of variations of
Hodge structure, the natural inclusion

f∗ωX/Y → j∗(F dH0) ∩H
is an isomorphism and f∗ωX/Y is locally free [10]. The semi-positivity
follows from unipotence and Griffiths’ semi-positivity of the curvature
of the last piece of a variation of Hodge structure [7, 10].

For base change, the sheaf f ′∗ωX′/Y ′ is independent of birational
changes in X ′ over Y ′. Thus, we may assume that X ′ → X ×Y Y ′ is
an isomorphism above Y ′ \ ΣY ′ , where ΣY ′ = �−1(ΣY ). Let H ′

0 be the
variation of Hodge structure on Y ′ \ΣY ′ induced by f ′, and let H ′ be its
canonical extension to Y ′. Since H0 has unipotent local monodromies
around the components of ΣY , the canonical extension is compatible
with base change [12]:

H ′ ∼→�∗H.
This isomorphism preserves the extensions of the Hodge filtration, hence
it induces an isomorphism �∗(f∗ωX/Y ) ∼→f ′∗ωX′/Y ′ . q.e.d.
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Theorem 4.5 ([8, 11]). Let f : X → Y be a contraction from a
non-singular projective variety X to a projective curve Y , and let E
be a quotient locally free sheaf of f∗ωX/Y . If deg(det(E)) = 0, then
det(E)⊗m � OY for some positive integer m.

Sketch of proof. By [8], E is a local system which is a direct summand
of f∗ωX/Y . Since E|Y0 is a local subsystem of the variation of Hodge
structure H0, det(E|Y0)

⊗m � OY0 for some positive integer m [4]. By
flatness, det(E)⊗m � OY . q.e.d.

5. An auxiliary relative 0-log pair

We prove Theorems 0.1 and 2.7 in this section. The following finite
base change formula ([1], Theorem 3.2) is essential:

Lemma 5.1. Consider a commutative diagram of normal varieties

(X,B)

f

��

(X ′, BX′)ν��

f ′

��
Y Y ′

τ
��

with the following properties:

(1) (X,B) is a log pair with log canonical singularities over the generic
point of Y ;

(2) τ is a finite morphism, ν is generically finite, and f, f ′ are proper
surjective;

(3) ν∗(K +B) = KX′ +BX′.

Let BY and BY ′ be the discriminants of K + B and KX′ + BX′ on
Y and Y ′ respectively. Then, τ∗(KY + BY ) = KY ′ + BY ′ (pull back of
Q-Weil divisors under a finite morphism).

The category of lc-trivial fibrations is closed under generically finite
base changes. In order to normalize the discriminant BY and the moduli
part MY , we have to replace the generic fibre of X/Y by a generically
finite cover. The property rank f∗OX(�A(X,B)�) = 1 is not invariant
under this operation. Thus, we will consider an auxiliary fibre space
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(cf. [12, 19]). Throughout this section, we consider the following set-
up:

(X,B)

f

��

X̃
π��

f̃

�����������
(V,BV )d��

h
�������������������

Y

where f : (X,B) → Y is an lc-trivial fibration, b = b(F,BF ) and

K +B +
1
b
(ϕ) = f∗(KY +BY +MY )

π : X̃ → X is the normalization of X in k(X)( b
√
ϕ) and d : V ��� X̃ is

a proper birational map from a non-singular variety V . The induced
rational map g : V ��� X is generically finite, so there exists a unique
log structure (V,BV ) such that g : (V,BV ) ��� (X,B) is crepant. We
assume the following properties hold:

(i) X,V, Y are non-singular quasi-projective varieties endowed with
simple normal crossings divisors ΣX ,ΣV ,ΣY on X, V and Y ,
respectively;

(ii) f and h are projective morphisms;
(iii) f and h are smooth over Y \ ΣY , and Σh

X/Y and Σh
V /Y have

relative simple normal crossings over Y \ ΣY ;
(iv) f−1(ΣY ) ⊆ ΣX , f(Σv

X) ⊆ ΣY and h−1(ΣY ) ⊆ ΣV , h(Σv
V ) ⊆ ΣY ;

(v) B, BV and BY ,MY are supported by ΣX , ΣV and ΣY , respec-
tively.

In this context, the properties (1) and (2) in the definition of the lc-
trivial fibration f : (X,B) → Y are equivalent to

(vi) �−BF � is an effective divisor and dimk H
0(F, �−BF �) = 1.

Lemma 5.2. The following properties hold for the above set-up:
(1) The extension k(V )/k(X) is Galois and its Galois group G is

cyclic of order b. There exists ψ ∈ k(V )× such that ψb = ϕ and a
generator of G acts by ψ �→ ζψ, where ζ ∈ k is a fixed primitive
bth-root of unity;

(2) The relative log pair h : (V,BV ) → Y satisfies all properties of an
lc-trivial fibration, except that rank f∗OX(�A(V,BV )�) might be
bigger than one;

(3) Both f : (X,B) → Y and h : (V,BV ) → Y induce the same dis-
criminant and moduli part on Y ;
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(4) The group G acts naturally on h∗OV (KV/Y ). The eigensheaf cor-
responding to the eigenvalue ζ is L := f∗OX(�−B + f∗BY +
f∗MY �) · ψ.

(5) Assume that h : V → Y is semi-stable in codimension one. Then
MY is an integral divisor, L is semi-positive and L = OY (MY )·ψ.

Proof.
(2) We have KV + BV + (ψ) = h∗(KY + BY + MY ), and clearly

(V,BV ) has Kawamata log terminal singularities over the generic point
of Y . The generic fibre H of h is a non-singular birational model of
the normalization of k(F ) in k(F )( b

√
ϕ|F ). Since b is minimal with

b(KF + BF ) ∼ 0, H is connected. Therefore, OY = h∗OV , i.e., h is a
contraction.

(3) It follows from (2) and Lemma 5.1. Note that the assumption
rank f∗OX(�A(V,BV )�) = 1 is not required in the definition of the
discriminant and moduli part.

(4) The group G acts on f̃∗ωX̃/Y , with eigensheaf decomposition

f̃∗ωX̃/Y =
b−1⊕
i=0

f∗OX(�(1 − i)KX/Y − iB + if∗BY + if∗MY �) · ψi

Since B−f∗(BY +MY ) is supported by the simple normal crossings di-
visor ΣX , X̃ has rational singularities. In particular, h∗ωV/Y = f̃∗ωX̃/Y

is independent of the choice of V .

(5) By the semi-stable assumption, there exists a big open subset
Y † ⊆ Y such that (−BV + h∗BY )|h−1(Y †) is effective and supports no
fibres of h. Since (ψ|H) + KH = −BH ≥ 0, ψ is a rational section of
h∗OV (KV/Y ). Furthermore, ψ �→ ζψ implies that ψ is a rational section
of L. Therefore, L ⊆ k(Y )ψ, since L has rank one by (vi) and (4). We
have (h∗a · ψ) +KV/Y = h∗((a) +MY ) + (−BV + h∗BY ).

Since −BV +h∗BY is effective over Y †, we infer that OY (MY )ψ|Y † ⊆
h∗OV (KV/Y )|Y † . Therefore, OY (MY )ψ|Y † ⊆ L|Y † . Conversely, let h∗a ·
ψ be a section of L. Then, h∗a · ψ is a section of h∗OV (KV/Y ), i.e.,
(h∗a · ψ) + KV/Y ≥ 0. Since −BV + h∗BY contains no fibres over
codimension one points of Y , this implies (a) +MY ≥ 0. In particular,
L ⊆ OY (MY )ψ. Therefore, OY (MY )ψ|Y † = L|Y † . Since Y † ⊆ Y is
a big open subset, this implies L∗∗ = OY (MY )ψ. By Theorem 4.4,
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h∗OV (KV/Y ) is locally free and semi-positive. Its direct summand L is
locally free and semi-positive as well, hence the conclusion.

Finally, for each prime divisor P of Y there exists a prime divisor
Q of X such that h(Q) = P and multQ(−BV + h∗BY ) = 0. We infer
from (2) that multQ h∗(MY ) = 1. But multQ h∗(P ) = 1, hence MY is
an integral Weil divisor. q.e.d.

Remark 5.3. Let γ : Y ′ → Y be a generically finite morphism from
a non-singular quasi-projective variety Y ′. Assume there exists a sim-
ple normal crossings divisor ΣY ′ which contains γ−1(ΣY ) and the locus
where γ is not étale. By base change, there exists a commutative dia-
gram

V
g

		

��

V ′ν��

��

g′




X

f ���
��

��
��

� X ′

f ′
���

��
��

��
�

σ��

Y Y ′γ��

such that (V ′, BV ′) ��� (X ′, BX′) → Y ′ satisfies the same proper-
ties (i)–(v). Here, BX′ , BV ′ are induced by crepant pull back, ΣX′ ⊇
σ−1(ΣX),ΣV ′ ⊇ ν−1(ΣV ) and ϕ′ = σ∗ϕ ∈ k(X ′)×. We say that the set-
up (V ′, BV ′) ��� (X ′, BX′) → Y ′ is induced by (V,BV ) → (X,B) → Y
via the base change γ : Y ′ → Y .

Proposition 5.4. There exists a finite Galois cover τ : Y ′ → Y from
a non-singular variety Y ′ which admits a simple normal crossings di-
visor supporting τ−1(ΣY ) and the locus where τ is not étale, and such
that h′ : V ′ → Y ′ is semi-stable in codimension one for some set-up
(V ′, BV ′) ��� (X ′, BX′) → Y ′ induced by base change.

Proof. Let N be the positive integer associated to V → Y by Theo-
rem 4.3. By Theorem 4.1, there exists a finite Galois cover τ : Y ′ → Y
such that τ∗(ΣY ) is divisible by N and there exists a simple normal
crossings divisor ΣY ′ containing τ−1(ΣY ) and the locus where τ is not
étale. By Theorem 4.3, there exists an induced set-up (V ′, BV ′) ���
(X ′, BX′) → Y ′ induced by base change, so that h′ : V ′ → Y ′ is semi-
stable in codimension one. q.e.d.
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Proposition 5.5. Let γ : Y ′ → Y be a generically finite projective
morphism from a non-singular variety Y ′. Assume there exists a simple
normal crossings divisor ΣY ′ on Y ′ which contains γ−1(ΣY ), and the
locus where γ is not étale. Let MY ′ be the moduli part of the induced
set-up (V ′, BV ′) ��� (X ′, BX′) → Y ′. Then, γ∗(MY ) = MY ′ .

Proof.
Step 1: Assume that V/Y and V ′/Y ′ are semi-stable in codimension

one. In particular, MY and MY ′ are integral divisors. Since h is semi-
stable in codimension one, Theorem 4.4 implies

h′∗OV ′(KV ′/Y ′) ∼→γ∗(h∗OV (KV/Y )).

This isomorphism is natural, hence compatible with the action of the
Galois group G. We have an induced isomorphism of eigensheaves cor-
responding to ζ: γ∗OY (MY ) � OY ′(MY ′). Therefore, γ∗MY −MY ′ is
linearly trivial, and is exceptional over Y . Thus, γ∗MY = MY ′ .

Step 2: By Theorems 4.3 and 4.1, we can construct a commutative
diagram

Ȳ

τ

��

Ȳ ′

τ ′
��

γ′
��

Y Y ′γ��

as in Remark 4.2, so that V̄ /Ȳ is semi-stable in codimension one for an
induced set-up (V̄ , BV̄ ) ��� (X̄,BX̄) → Ȳ .

By Theorems 4.3 and 4.1, we replace Ȳ ′ by a finite covering so
that V̄ ′/Ȳ ′ is semi-stable in codimension one for an induced set-up
(V̄ ′, BV̄ ′) ��� (X̄ ′, BX̄′) → Ȳ ′. By Step 1, we have MȲ ′ = γ′∗(MȲ ).
Since τ and τ ′ are finite coverings, Lemma 5.1 implies τ∗(MY ) = MȲ

and τ ′∗(MY ′) = MȲ ′ . Therefore, τ ′∗(MY ′−γ∗(MY )) = 0, which implies
MY ′ = γ∗(MY ). q.e.d.

Proof of Theorem 2.7. Let f : (X,B) → Y be an lc-trivial fibration with
b = b(F,BF ) and

K +B +
1
b
(ϕ) = f∗(KY +BY +MY ).

We replace X by a resolution, so that X is non-singular, quasi-project-
ive, and B − f∗(BY + MY ) is supported by a simple normal cross-
ings divisor ΣX . Let V be a resolution of the normalization of X in
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k(X)(ϕ1/b) such that BV has simple normal crossings support. We
may assume that f, h are projective morphisms, after a birational base
change. Then, there exists a closed subvariety Σf � Y such that
(V,BV ) ��� (X,B) → Y satisfies the assumptions of the set-up in the
beginning of this section, except that Σf may not be the support of a
simple normal crossings divisor. Let σ : Y ′ → Y be an embedded reso-
lution so that ΣY ′ := σ−1(Σf ) is a divisor with simple normal crossings.
There exists an induced set-up (V ′, BV ′) ��� (X ′, B′) → Y ′.

We claim that σ∗(MY ′) = MY ′′ and σ∗(KY ′ + BY ′) = KY ′′ + BY ′′

for every birational contraction σ : Y ′′ → Y ′. By Hironaka’s resolution
of singularities, there exists a diagram of birational morphisms

Y ′′

σ

��

Y ′′′��

σ′
��		

		
		

		

Y ′

such that Y ′′′ is a non-singular quasi-projective variety admitting a sim-
ple normal crossings divisor which supports σ′−1(ΣY ′) and the excep-
tional locus of Y ′′′/Y ′. By Proposition 5.5, σ′∗(MY ′) = MY ′′′ and con-
sequently, σ′∗(KY ′ + BY ′) = KY ′′′ + BY ′′′ . Since Y ′′′/Y ′′ is a birational
morphism, the claim follows.

Let τ : Ȳ ′→Y ′ be a covering given by Proposition 5.4. By Lemma 5.2,
MȲ ′ is a Cartier divisor and OȲ ′(MȲ ′) is a semi-positive invertible
sheaf. In particular, MȲ ′ is nef/S, but τ∗(MY ′) = MȲ ′ according to
Lemma 5.1. Hence, MY ′ is nef/S. q.e.d.

Proof of Theorem 0.1. By the Lefschetz principle, we may assume k =
C. After a finite base change (Lemma 5.1), we may assume that the
induced root fiber space h : V → Y is semi-stable. By construction, the
invertible sheaf L := OY (MY ) ⊂ h∗ωV/Y is a direct summand.

We know that MY is a nef Cartier divisor on the curve Y . If deg(MY )
> 0, then MY is ample, in particular, semi-ample. If deg(MY ) = 0,
Theorem 4.5 implies L⊗m � OY . Therefore, MY is semi-ample. q.e.d.

6. Asymptotically saturated algebras

We first recall some terminology from [22]. Let π : X → S be a proper
morphism. A normal functional algebra of X/S is an OS-algebra of the
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form

L = RX/S(M•) =
∞⊕
i=0

π∗OX(Mi),

where {Mi} is a sequence of b-free/S b-divisors of X such that Mi +
Mj ≤ Mi+j for every i and j. The sequence of Q-b-divisors Di = 1

i Mi

is called the characteristic sequence of L. The algebra L is bounded
if there exists an R-b-divisor D of X such that Di ≤ D for every i.
The OS -algebra L is finitely generated if and only if the characteristic
sequence D• is constant up to a truncation ([22], Theorem 4.28). For
an R-b-divisor A, the algebra L is asymptotically A-saturated, if there
exists a positive integer I such that

π∗OX(�A + jDi�) ⊆ π∗OX(Mj) for I|i, j.
The Kodaira dimension of L is κ(L) := maxi κ(X/S,Mi). We say

that L is a big algebra if κ(L) = dim(X/S).

Definition 6.1. Let L be a normal functional algebra of X/S. There
exists a unique rational map with connected fibers f : X ��� Y/S and
a big normal functional algebra L′ of Y/S, such that f∗ : k(Y ) → k(X)
induces a quasi-isomorphism of OS-algebras

f∗ : L′ → L.
We say that (f,L′) is the Iitaka fibration of L.

Proof. (cf. [22], Lemma 6.22) Let L = RX/S(M•). Since Mi +Mj ≤
Mi+j and the Mi’s are b-free, there exists I ∈ N and a rational map
f : X ��� Y/S which is the Iitaka contraction of Mi for every i divisible
by I. Up to a quasi-isomorphism, we may assume that the b-free b-
divisors Mi are effective. Since f has connected fibers, there exists a
convex sequence M′• such that Mi = f∗(M′

i) for every I|i. In particular,
L is quasi-isomorphic to the big algebra L′ := RY/S(M′•). q.e.d.

Lemma 6.2. Let (f : X ��� Y/S,L′) be the Iitaka fibration of a
normal functional algebra L. If L is asymptotically A-saturated, then
rank f ′∗OX′(�A�) ≤ 1, where f ′ : X ′ → Y is a regular representative of
the rational map f .

Proof. We may assume that f ′ = f and L = RX/S(f∗M′•), where
L′ = RY/S(M′•) is the induced big algebra. By assumption, there exists
i such that Di is b-big/S. After passing to higher models, we may
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assume that Di descends to Y . There exists a birational contraction
µ : Y → Z/S and an ample/S Q-divisor H on Z such that (Di)Y ∼Q

µ∗H. For j sufficiently large and divisible, the OZ -sheaf

µ∗(f∗OX(�A + jf∗Di�)) = µ∗f∗OX(�A�) ⊗OZ(jH)

is π-generated. Therefore, f∗OX(�A+jf∗Di�) is generically π-generated.
Asymptotic saturation implies that f∗OX(�A+ jf∗Di�) is contained in
the b-divisorial sheaf OY (Mj) on an open subset of Y . The latter has
rank one, and hence, f∗OX(�A�) has rank at most one. q.e.d.

Proposition 6.3 (cf. [22], Proposition 4.50). Consider a commuta-
tive diagram

(X,B)

π

















f �� Y

σ
		��

��
��

��

S

and a normal functional algebra L = RX/S(M•) with the following prop-
erties:

(a) f : (X,B) → Y is an lc-trivial fibration;
(b) L is bounded and asymptotically A(X,B)-saturated;
(c) There exist b-divisors M′

i of Y such that Mi = f∗(M′
i) for all i.

Then, L′ := RY/S(M′•) is a normal bounded functional algebra of
Y/S, which is asymptotically Adiv -saturated. Moreover, the natural
map f∗ : L′ → L is an isomorphism of OS-algebras.

Proof. It is clear that L′ is a functional algebra of Y/S, and f∗ : L′ →
L is an isomorphism of OS-algebras. The algebra is normal since each
M′

i is b-free. Let D′
i = 1

i M
′
i be the characteristic sequence of L′.

We first check that L′ is bounded. After passing to higher models, we
may assume that there exists an effective Cartier divisor E on X such
that f∗D′

i = Di ≤ E. Let E′ be the divisorial support of f(Supp(Ev)) ⊂
Y . For each i, we can find a birational model X ′/Y ′ of X/Y , fitting in
the commutative diagram

X

f

��

X ′

f ′
��

h��

Y Y ′��
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such that D′
i and Di descend on Y ′ and X ′, respectively. In particular,

f ′∗((D′
i)Y ′) ≤ h∗E. Since D′

i is effective and Y ′/Y is an isomorphism
over a big open subset of Y , we conclude that (D′

i)Y is supported by
E′. This holds for every i, and hence, D′• is bounded.

It remains to check asymptotic Adiv -saturation. Fix two positive
integers i, j which are divisible by I. By Theorem 2.7, we may assume
the following properties hold (after a birational base change):

(i) X,Y are non-singular;
(ii) D′

i,D
′
j descend to Y (in particular Di,Dj descend to X). Denote

D′
i = (D′

i)Y and D′
j = (D′

j)Y ;
(iii) Supp(B)∪Supp(f∗D′

i) and Supp(BY )∪Supp(D′
i) are simple nor-

mal crossings divisors on X and Y , respectively;
(iv) Adiv = A(Y,BY ).

Under these assumptions, the asymptotic saturation for i, j means

π∗OX(�−B + jf∗D′
i�) ⊆ π∗OX(jf∗D′

j).

By Lemma 3.2 and Remark 3.3, we have

f∗OX(�−B + jf∗D′
i�) = OY (�−BY + jD′

i�).
Since π∗OX(jf∗D′

j) = σ∗OY (M′
j), we infer

σ∗OY (�−BY + jD′
i�) ⊆ σ∗OY (jD′

j).

Therefore, σ∗OY (�Adiv + jD′
i�) ⊆ σ∗OY ′(M′

j), by (i)–(iv) again. q.e.d.

Example 6.4 (Reduction to big algebras). Let (X/S,B) be a relative
log pair, and let L be a normal bounded functional algebra with Iitaka
fibration (f : X ��� Y/S,L′), satisfying the following properties:

(i) KX′ + BX′ ∼Q f ′∗D, where f ′ : X ′ → Y is a regular model of
the rational map f and BX′ is a crepant boundary (A(X,B) =
A(X ′, BX′));

(ii) (X ′, BX′) has klt singularities over the generic point of Y ;
(iii) L is asymptotically A(X,B)-saturated.

By Lemma 6.2, f ′ : (X ′, BX′) → Y is an lc-trivial fibration. Let B,M
be the induced boundary and moduli Q-b-divisors of Y , respectively.
By Theorem 2.7 and Proposition 6.3, we may replace Y by a higher
birational model so that the following properties hold:

(a) Adiv = A(Y,BY );
(b) KX′ +BX′ ∼Q f ′∗(KY + BY + MY );
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(c) L′ is normal, bounded and asymptotically A(Y,BY )-saturated;

The above example is a first step towards a reduction of 0LP algebras
([22], Remark 4.40) to the big case. To complete the reduction, we need
to know that the moduli b-divisor M is b-semi-ample. However, the b-
nef property of the moduli b-divisor is enough for some applications
to the Fano case. We show that the restriction of an FGA algebra to
an exceptional log canonical centre is again an FGA algebra (cf. [22],
Proposition 4.50 for lc centers of codimension one)

Theorem 6.5. Let (X/S,B) be a relative generalized Fano log vari-
ety, let ν : W → X be the normalization of an exceptional lc centre of
(X,B) and let L = RX/S(M•) be a normal bounded functional algebra
of X/S such that the following hold:

(i) L is asymptotically (A(X, B) + E)-saturated, where E is the
unique lc place over W ;

(ii) There exists an open subset U ⊆ X such that U ∩ ν(W ) = ∅,
Di|U = D|U ∀i for some Q-Cartier divisor D on X;

(ii∗) U contains (X,B)−∞ ∩ ν(W ) and C ∩ ν(W ), for every lc centre
C = ν(W ) of (X,B).

Then, there exists a well defined restricted algebra L �
�
W of W/S, with

the following properties:
(1) L �

�
W = RW/S(M′

i) is a normal, bounded functional algebra.
(2) L �

�
W is A(W,BW )-saturated, where (W/S,BW ) is a relative gen-

eralized Fano log variety;
(3) LCS(W,BW ) ⊂ U ′ := U |W and D′

i|U ′ = D|U ′ for every i;
(4) The OS-algebras L �

�
W and L �

�
E are quasi-isomorphic.

Proof. Let H be an ample/S Q-divisor on X such that −(K+B+H)
is ample/S. As in [3], Theorem 4.9, we construct an effective Q-divisor
BW on W such that (W/S,BW ) is a relative generalized Fano log variety
with (K + B +H)|W ∼Q KW + BW and LCS(W,BW ) is contained in
the union of (X,B)−∞ and all lc centres of (X,B) different than ν(W ).
In particular, LCS(W,BW ) ⊂ U ′. Consider the induced diagram

(E,BE) ⊂ (X ′, BX′)
↓ ↓
W → (X,B)

By adjunction and Kawamata–Viehweg vanishing, L �
�
E is asymptoti-

cally A(E,BE)-saturated ([22], Proposition 4.50). By (ii), there exist
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b-free/S b-divisors M′
i of W such that Mi �

�
E = h∗(M′

i) for every i. By
construction, (E,BE) →W/S is an lc-trivial fibration for which Propo-
sition 6.3 applies. Therefore, L �

�
W := RW/S(M′

i) is quasi-isomorphic to
L �

�
E , it is normal, bounded and asymptotically Adiv -saturated. From

the construction of BW (choosing W ′ high enough so that Adiv =
A(W ′,BW ′), in the proof of [3], Theorem 4.9), we have A(W,BW ) ≤
Adiv . Therefore, L �

� W
is asymptotically A(W,BW )-saturated.

Finally, Di|U = D|U implies D′
i|U ′ = D|U ′ . q.e.d.
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