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Abstract. We prove a precise inversion of adjunction formula for the log variety (Cd+1, X),
where X is a non-degenerate hypersurface. As a corollary, the minimal log discrepancies
of non-degenerate normal hypersurface singularities are bounded by dimension.

0. Introduction

A log variety (X, B) is a normal variety X endowed with an effective R-Weil
divisor B such that KX + B is R-Cartier. For each point P ∈ X, the minimal log
discrepancy a(P ; X, B) is an invariant of the singularity of the log variety (X, B)

at P . In connection to the termination of flips in the Minimal Model Program,
V.V. Shokurov conjectured certain spectral properties of minimal log discrepan-
cies, in particular that they are bounded by the dimension of the variety [11]. This
is known to hold if dim X ≤ 3, or if X is a toric variety and B is an invariant
divisor [10, 9, 6, 3, 1]. Our main result adds to this list the case of non-degenerate
hypersurface singularities:

Main Theorem. Let 0 ∈ X ⊂ C
d+1 be the germ of a normal, non-degenerate

hypersurface singularity. Then

(i) a(0; X) = a(0; C
d+1, X).

(ii) a(0; X) ≤ d , and equality holds if and only if X is nonsingular.

The first statement is a precise inversion of adjunction for the log variety
(Cd+1, X). Inversion of adjunction [12] has been used by V.V. Shokurov in his
construction of 3-fold flips, and is conjectured to hold for any log variety (see
[7, 8]). The effective upper bound is an immediate corollary.

The proof of the above theorem is based on the special properties of non-
degenerate hypersurface singularities. To each hypersurface singularity, one can
associate a Newton fan � and a piecewise linear function ϕ on the lattice points
of |�|, measuring the singularities of the pair (Cd+1, X) in toric valuations. Under
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the non-degenerate assumption, the minimal log discrepancies of X and (Cd+1, X)

are determined by ϕ, and Inversion of Adjunction is the property that ϕ attains its
minimum inside some proper cone of the Newton fan (Proposition 2.1).

1. Preliminary

1-A. Log pairs, log discrepancies

Let (X, B) be a normal variety X endowed with an effective R-Weil divisor B such
that K + B is R-Cartier, where K is a canonical divisor of X. For a resolution
of singularities µ: X̃ → X with exceptional locus Exc(µ), there exists a unique
divisor B̃ on Y such that µ∗(KX + B) = K

X̃
+ B̃ and B̃ = B on X̃ \ Exc(µ). The

identity B̃ = ∑
E⊂X̃

(1 − a(E; X, B))E associates to each prime divisor E of X̃

a real number a(E; X, B), called the log discrepancy of E with respect to (X, B).
The invariant a(E; X, B) depends only on the valuation defined by E on the field
of rational functions of X, with center cX(E) = µ(E). We drop B from notation,
in case it is zero.

We say that µ is a log resolution of (X, B) if µ−1(Supp(B)) ∪ Exc(µ) is a
divisor with simple normal crossings. The minimal log discrepancy of a log pair
(X, B) at a point P ∈ X is

a(P ; X, B) = inf
cX(E)=P

a(E; X, B),

where the infimum is taken after all prime divisors on resolutions of X, having P

as a center on X [11]. The log pair (X, B) has only log canonical singularities if
a(E; X, B) ≥ 0 for every valuation E of X.

Minimal log discrepancies are computed as follows: let (X̃, B̃) be a log resolu-
tion such thatµ−1(P ) is a divisor. Let∪iEi be the divisor with normal crossings sup-
porting Exc(µ) and B̃. If mincX(Ei)=P a(Ei; X, B) < 0 then a(P ; X, B) = −∞.
Otherwise, a(P ; X, B) = mincX(Ei)=P a(Ei; B) is a non-negative real number and
(X, B) has only log canonical singularities in a neighborhood of P .

1-B. The Newton polyhedron

To any hypersurface singularity

X: (f = 0) ⊂ C
d+1

one can associate a fan, which is a subdivision of the standard fan [2]. We recall
below this construction, and we also fix the notation (see [4] for standard toric
notation and terminology). Fixing coordinates, we identify C

d+1 with the toric
variety TN(σ), where σ is the standard simplicial cone generated by {e0, . . . , ed}.
The standard fan consists of the cones σI generated by {ei; i ∈ I }, for every subset
I of {0, . . . , d}. The dual cone σ∨ of σ is generated by the dual basis {e∗

0, . . . , e∗
d}.

In this basis, σ∨
I = {m ∈ σ∨; mi = 0 ∀i /∈ I }. The relative interior relint(σ ) of a
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cone σ is its topological interior in the R-vector space spanned by σ . A covector
a ∈ σ \ 0 is primitive if a ∈ N ∩ σ and there exists no covector a′ ∈ N such that
a = ka′ for some integer k ≥ 2.

The Newton polyhedron of f , denoted �+, is the convex hull of

∪m∈Supp(f )(m + σ∨) ⊂ MR.

The Newton diagram � is the union of compact faces of �+. The supporting function
l� : σ → [0, ∞) is defined as follows

l�(a) = min
m∈�+

(a, m).

The trace of a covector a ∈ σ is tr(a) = {m ∈ �+; (a, m) = l�(a)}. The faces of
�+ are the traces of covectors a ∈ σ . Compact faces are the traces of covectors
a ∈ relint(σ ), while non-compact faces are γ + σ∨

I , where γ is a compact face.
Two covectors a, a′ ∈ σ are said to be equivalent if they have the same trace.

The closures of equivalence classes are closed cones forming the Newton fan �f =
��(f ), which is a subdivision of the standard fan. Each cone of the Newton fan can
be represented as

σγ,I := {a ∈ σI ; (a, m) = l�(a) ∀m ∈ γ }, σγ,I ∩ relint(σI ) 
= ∅
where γ is a compact face of � and I is a subset of {0, . . . , d}. We drop I from
notation if I = ∅. The cones containing σγ,I are {στ,J ; τ ≺ γ, J ⊂ I }. We say that
a cone of �f is proper if it is not maximal dimensional. Note that the supporting
function l� is linear on each cone of the Newton fan: l�(a) = (a, m), for a ∈ σγ

and m ∈ γ .

Definition 1.1. The power series f = ∑
m cmxm is non-degenerate (with respect

to its Newton polyhedron) if the hypersurfaces





∑

m∈γ

cmxm = 0





⊂ (C \ 0)d+1

are non-singular for every compact face γ of �.

The key feature of hypersurface singularities defined by non-degenerate series
is the existence of toric log resolutions:

Lemma 1.2. [2, 8.9] Let X ⊂ C
d+1 be a hypersurface given by a non-degenerate

series f . Let � be a simple subdivision of the Newton fan ��(f ), which contains the
primitive covector 1 = (1, · · · , 1) in its skeleton. Then the induced birational mor-
phism µ: TN(�) → C

d+1 is a log resolution of (Cd+1, X) over a neighborhood of
0, and µ−1(0) is a divisor.

Due to this lemma, certain properties of the singularities of X can be read off
the Newton polyhedron. For instance, X has log canonical singularities if and only
if the vector 1 = (1, . . . , 1) belongs to the Newton polyhedron �+. This certainly
fails to be true for arbitrary hypersurface singularities (see [5]).
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Example 1.3. Let X ⊂ C
3 be the surface singularity with equation

f = xp + yq + zr − αxyz,

where p, q, r ≥ 2 and α ∈ C. Then f is non-degenerate with respect to its Newton
polyhedron, with the following exceptions:

(1) f = x2 + y3 + z6 − αxyz, and α6 = 432.
(2) f = x2 + y4 + z4 − αxyz, and α4 = 64.
(3) f = x3 + y3 + z3 − αxyz, and α3 = 27.

Nonetheless, the singularities defined by (1), (2), (3) are log canonical (the strict
transform of X on any toric resolution as in Lemma 1.2 has normal crossings, but
not simple normal crossings, singularities). In fact, X has log canonical singularities
if and only 1

p
+ 1

q
+ 1

r
≥ 1.

2. The log discrepancy function

Let Shed(σ∨) be the unit polyhedron {∑d
i=0 tie

∗
i ; 0 ≤ ti ≤ 1}. For δ ∈ Shed(σ∨),

the log discrepancy function is defined as

ϕ = ϕδ : N ∩ σ → R, ϕ(a) = (a, δ) − l�(a)

The function ϕ measures the singularities of the log variety
(

C
d+1, X +

d∑

i=0

(1 − δi)Hi

)

where Hi : (xi = 0) are the coordinate hyperplanes. Indeed, for a primitive covec-
tor a ∈ σ ∩ N , let Ea be the exceptional divisor of the a-weighted blow up. Then
ϕ(a) is the log discrepancy of Ea with respect to the the log variety (Cd+1, X +∑d

i=0(1−δi)Hi). The original log variety (Cd+1, X) corresponds to the case when
all components of δ are 1, but this slightly more general context is useful for the
proof of our main theorem.

We assume until the end of this section that ϕ is non-negative, which is equiv-
alent to δ ∈ �+ ∩ Shed(σ∨). In particular, ϕ has a minimum.

Proposition 2.1. The restriction ϕ: N ∩ relint(σ ) → R attains its minimum inside
some proper cone of �f .

We first remark some basic properties of ϕ:

– ϕ(ca) = c · ϕ(a) for c > 0.
– ϕ(a+a′) ≤ ϕ(a)+ϕ(a′). Moreover, equality holds if and only if tr(a)∩ tr(a′) 
=

∅.
– The zero locus Z(ϕ) := {a ∈ σ ; ϕ(a) = 0} is a cone σγ,I of �� . Indeed, one

can write (not uniquely) δ = ∑
i λim

i + r , where {mi} are the vertices of a
compact face γ of �, λi > 0 ∀i,

∑
i λi = 1, and r ∈ σ∨. Then Z(ϕ) = σγ ∩ r⊥.

Note that δ ∈ relint(γ + σ∨
I ).
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– The function ϕ can attain its minimum value only on cones containing Z(ϕ).
Indeed, there exists e ∈ σγ,I = Z(ϕ) such that tr�(e) = γ . If a ∈ σ \ ∪m∈γ σm,
i.e. tr�(a) ∩ γ = ∅, then ϕ(a + e) < ϕ(a) + ϕ(e) = ϕ(a). Therefore ϕ cannot
attain the minimum value at a.

The following lemma gives an algorithm for finding minimizing lattice points
for the log discrepancy function:

Lemma 2.2. Let a ∈ σ ∩N such that tr�(a)∩ tr�(ej ) = ∅. Then ϕ(a+ej ) ≤ ϕ(a),
and equality holds if and only if δj = 1 and one of the following holds:

a) There exists a vertex m of � such that a, a + ej ∈ σm, and mj = 1. Note that
min ϕ|σm is attained on ∪m′

j =0σmm′ in this case.

b) m′
j = 0 and (a, m′) = (a, m) + 1 for every m ∈ tr�(a) and m′ ∈ tr�(a + ej ).

In particular, ej ∈ σm′ .

Proof. Let m ∈ tr�(a), m′ ∈ tr�(a + ej ). Then

ϕ(a + ej ) − ϕ(a) = −(a, m′ − m) + δj − m′
j .

a) If there exists m ∈ tr�(a)∩ tr�(a+ej ), then ϕ(a+ej )−ϕ(a) = δj −mj . Since
ej /∈ σm, mj ≥ 1, and there exists m′ with m′

j < mj . Thus ϕ(a + ej ) ≤ ϕ(a),
and equality holds if and only if δj = mj = 1.

b) Assume tr�(a)∩ tr�(a+ej ) = ∅. Then ϕ(a+ej )−ϕ(a) ≤ −1+δj −m′
j ≤ 0,

and equality holds if and only if δj = 1, m′
j = 0, and (a, m′ − m) = 1 for all

m ∈ tr�(a), m′ ∈ tr�(a + ej ). ��

Proof of Proposition 2.1. Assume first that I = ∅. That is δ ∈ �, and Z(ϕ) = σγ

intersects relint(σ ). If dim γ > 0 then the minimum is attained only in the proper
cone σγ . If dim γ = 0, ϕ is identically zero on the maximal cone σγ .

Assume I 
= ∅. We may assume δi < 1 for all i ∈ I . This is sufficient, since
the desired property of ϕ = ϕδ is closed with respect to δ belonging to the convex
polyhedron �+ ∩Shed(σ∨). Assume by contradiction that minimum is not attained
on proper cones. Let m be a vertex of γ such that ϕ attains its minimum inside the
maximal cone σm. Since δi < 1 for all i ∈ I , we obtain ei ∈ σm for all i ∈ I by
Lemma 2.2. In fact, we obtain mi = 0 for all i ∈ I since ϕ is non-negative and
δi < 1. By Lemma 2.2 again, ϕ attains minimum inside σm′ for some m′ 
= m.

Let m ∈ γ with mi = 0 ∀i ∈ I . Then the minimum of ϕ on σm ∩ relint(σ ) is
attained on σγ,I +∑

i∈I ei . Indeed, for a ∈ σm we have

ϕ(a) =
∑

i∈I

δiai + ϕ(ā) ≥
∑

i∈I

δi ,

where āi = ai for i /∈ I and āi = 0 for i ∈ I . Ifm, m′ ∈ γ withmi = m′
i = 0 ∀i ∈ I

then σγ,I +∑
i∈I ei ⊂ σmm′ and we are done. ��
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3. Inversion of adjunction

Lemma 3.3. Let X: (f = 0) ⊂ C
d+1 be a hypersurface which does not contain any

of the coordinate hyperplanes Hi . Let � be a simple subdivision of ��(f ), and let
µ: TN(�) → C

d+1 be the associated resolution. Let Ea be a µ-exceptional divisor
centered at the origin, corresponding to a primitive covector a ∈ relint(σ ) ∩ N . If
Ea does not intersect the proper transform of X, then a belongs to a unique cone
of ��(f ).

Proof. TN(�) is covered by the open sets Uτ � C
d+1 corresponding to the maxi-

mal dimensional cones of �. Let τ ∈ � be a maximal cone such that Ea ∩Uτ 
= ∅.
The restriction µ : Uτ → C

d+1 can be identified with

µτ : C
d+1 → C

d+1, xi = y
a0
i

0 · · · yad
i

d

where (a0, . . . , ad) is the ordered skeleton of τ . We may assume a = a0. Denote
by X′ the proper transform of X in TN(�). We have

µ∗
τ (f ) =

∑

m ∈ Supp(f )

cm

d∏

j=0

y
(aj ,m)
j =




d∏

j=0

y
l(aj )
j



 fτ (y0, . . . , yd),

where fτ = 0 is the equation of X′ ∩ Uτ . The divisor Ea has equation y0 = 0
in Uτ , thus Ea ∩ X′ ∩ Uτ = ∅ if and only if fτ ≡ C mod y0 for some non-zero
constant C. Equivalently, minm∈Supp(f )(a

0, m) is attained in exactly one point.
Since a ∈ relint(σ ), this implies that the trace of a is a vertex of �, i.e. a belongs
to the interior of some maximal cone of �� . ��
Proof of Main Theorem. (i): We may assume that X does not contain any of the
coordinate hyperplanes. By Lemma 1.2, we obtain

a(0; X) ≥ a(0; C
d+1, X) = inf ϕ|relint(σ )∩N

where ϕ corresponds to δ = 1. Assume that a(0; C
d+1, X) = −∞. Then ϕ takes

negative values. In particular, there exists a primitive covector a ∈ relint(σ ) ∩ N

contained in a proper cone of �f such that ϕ(a) < 0. Let � be a simple subdivision
of the fan �� , such that a and 1 belong to its skeleton, and let µ: TN(�) → C

d+1 be
the induced log resolution. By Lemma 3.3, the exceptional divisor Ea intersects the
proper transform X′ of X, and Lemma 1.2 implies that a(0; X) ≤ a(Ea ∩X′; X) =
ϕ(a) < 0. Therefore a(0; X) = a(0; C

d+1, X).
Assume that a(0; C

d+1, X) ≥ 0. In particular, ϕ is non-negative. By Proposi-
tion 2.1, there exists a primitive covector a ∈ relint(σ ) ∩ N contained in a proper
cone of �f such that ϕ(a) = min ϕ|relint(σ )∩N . The same argument as above

implies that a(0; X) ≤ ϕ(a), hence a(0; X) = a(0; C
d+1, X).

(ii): If E is the exceptional divisor of the blow up of C
d+1 at 0, then

a(E; C
d+1, X) = d − (mult0(f ) − 1). By (i), a(0; X) = a(0; C

d+1, X) ≤ d.
It is clear that equality holds if and only if X is non-singular at 0. ��
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ancies and Inversion of Adjunction” (math.AG/0209392).


