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ON MINIMAL LOG DISCREPANCIES

FLORIN AMBRO

ABSTRACT. We propose a stronger form of the boundedness of minimal log dis-
crepancies conjectured by V.V. Shokurov. This stronger form holds up to dimen-
sion 3 and for toric varieties, and is equivalent to the lower semi-continuity of
minimal log discrepancies.

0. Introduction

A log variety (X, B) is a normal variety X equipped with an effective R-
divisor B such that K + B is R-Cartier, where K is the canonical divisor of X.
For any Grothendieck point n € X, one defines the minimal log discrepancy of
(X, B) at n, denoted a(n; B) [Sh88]. This is an invariant of the singularity of
X at n, and is either —oo, or a real number. For instance, a(n; B) = codim 7 if
B =0 and X is nonsingular at 7. The main result of this paper is the following:

Theorem 0.1. Let (X, B) be a log variety. Assume that either X is a toric
variety and B is an invariant R-divisor, or dim X < 3. If n,§ € X are two
Grothendieck points such that n € &, then

a(n; B) < a(&; B) + codim(n, £).
This motivates us to propose the following:

Conjecture 0.2. Let (X, B) be a log variety. If n,§ € X are two Grothendieck
points such that n € £, then a(n; B) < a(&; B) + codim(n, §).

We also introduce new invariants of log pairs, the mld-spectrum and the mld-
stratification; we show that the former is a finite set and the latter is constructible
(Theorem 2.3). Consequently, we obtain an equivalence between Conjecture 0.2
and Conjecture 2.4, on the lower semi-continuity of minimal log discrepancies.
Roughly, the latter states that minimal log discrepancies can only decrease in
special points (for instance, if (X, 0) is the germ of a surface Du Val singularity,
then the minimal log discrepancy at every closed point of X is 2, except at 0,
where it drops to 1).

The particular case & = nx of Conjecture 0.2 is the boundedness of minimal
log discrepancies conjectured by V.V.Shokurov [Sh88], that is a(n; B) < codimn
for every Grothendieck point n in X. It is known in fact that boundedness holds
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in the cases covered by Theorem 0.1 (cf., [Rd80, Mrk96, Ka93, Br97]), but we
hope that our equivalent conjectures 0.2 and 2.4 will shed light on its general
case.
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1. Preliminary

A wariety is a reduced irreducible scheme of finite type over a fixed field
k, of characteristic 0. We denote by nx the generic point of a variety X. A
Grothendieck point n € X is called proper if n # nx. A neighborhood of 7 in X
is an open subset U C X such that n € U. An extraction is a proper birational
morphism of normal varieties.

A log pair (X, B) is a normal variety X equipped with an R-Weil divisor B
such that K + B is R-Cartier. (X, B) is called a log variety if moreover, B is
effective. A log pair (X, B) has log nonsingular support if X is nonsingular and
Supp(B) is a divisor with normal crossings [KMM, 0-2-9]. A log resolution of
a log pair (X, B) is an extraction z : X — X such that X is nonsingular and
Supp(u~1(B)) U Exc(p) is a divisor with normal crossings.

If (X, B) is a log pair and p : X — X is an extraction, the log codiscrepancy
divisor of (X, B) on X is the unique divisor B on X such that y*(K+B) = K ¢ +
B and B = ;!B on X\ Exc(y). The identity B = Yepcx(l—a(E; X, B))E

associates to each prime divisor E of X a real number a(FE; X, B), called the log
discrepancy of E with respect to (X, B). The invariant a(F; X, B) depends only
on the valuation defined by F on the field of rational functions of X, with center
cx (E) = p(E). For simplicity, we write a(E; B) for a(E; X, B).

Definition 1.1. [Sh88] The minimal log discrepancy of a log pair (X, B) at a
proper Grothendieck point 7 € X is defined as
a(n; X, B) = inf a(E; X, B),
cx (E)=n
where the infimum is taken after all prime divisors on extractions of X having
n as a center on X. We set by definition a(nx; X, B) = 0.

The log pair (X, B) has only log canonical (Kawamata log terminal) singular-
ities if a(n; B) > 0 (a(n; B) > 0) for every proper point n € X. (X, B) has only
canonical (terminal) singularities if a(n; B) > 1 (a(n; B) > 1) for every point
n € X of codimension at least 2.

Minimal log discrepancies on a log pair (X, B) are computed as follows (cf.,
(K092, 17.1.1]). If codimn = 1, then a(n; B) = 1 —b;,, where by, is the coefficient
of B in 7. Assume now codimn > 2, and let (X B) be a log resolut1on with a
normal crossings divisor >, E; supporting the divisors x~!(77) and B. If (X, B)
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has only log canonical singularities in some neighborhood of 7, then a(n; B) =
min., (g,)—y a(Es; B) € Rxg. Otherwise, a(n; B) = —oc.

Example 1.2. Under the same assumptions, a(n; B) = —oo if n € E is a proper
point of a prime divisor E with a(ng; B) < 0.

Example 1.3. Assume that (X, B) is a log pair with log nonsingular support,
having only log canonical singularities at n € X. Then a(n; B) is attained on
the exceptional divisor of the blow-up of X in 7, that is

a(n; B) = codimn — mult,, B.

Lemma 1.4. [Sh9l] Assume (X, B) is a log variety, and X is nonsingular at
n. Then a(n; B) < codimn. Moreover, a(n; B) > codimn — 1 iff mult, B <1
and a(n; B) = codimn — mult,, B.

2. The mld stratification

Proposition 2.1. Assume W C X is a closed irreducible subvariety and (X, B)
s a log pair with only log canonical singularities at nyw . Then there exists an
open subset U of X such that UNW # 0 and

a(x; B) = a(nw; B) + dim W
for every closed point x € WNU.

Proof. Shrinking X near W, we may assume there exists a log resolution u :
(X, B) — (X, B) with a normal crossings divisor U;c;E; on X supporting B =
>.;(1 —a;)E; such that the following are satisfied:

i) w (W) =Uey, Ei for some subset Iy C I
i1) W C u(C) for each strata C of U;ecr E;
iii) codim(C N p~1(x),C) = dim W for every strata C of U;crF; dominating

W, and every closed point z € W.

iv) (X, B) has only log canonical singularities and dim W > 0.
Note that a(nw; B) = miner, a;. Fix x € W. Let n € pu~(z). By iii),
a(n; B) = > ner, @i + dim W + codim(n, C' N p~t(z)), where C is the minimal
strata of U;crE; containing 7. Since all the a;’s are non-negative, a(n; B) >
a(nw; B) + dim W. Taking infimum after all n’s as above, we obtain a(z; B) >
a(nw; B) + dim W.

Finally, let k£ € Iy be an index such that a(nw;B) = ax. Let n be the
generic point of an irreducible component of Ej N p~!(z) of maximal dimen-
sion: codimn = dim W + 1. By iii) again, F} is the minimal strata of U;c; F;
containing 7. Therefore a(n; B) = aj + codimn — 1 = a(nw; B) + dim W, and
a(xz; B) < a(nw; B) + dim W. O

Q

Definition 2.2. Let (X, B) be a log pair. The mld-spectrum of (X, B) is defined
as the set MId(X, B) := {a(n; B);n € X} C {—oc0} UR. We denote by a° the
map X — MId(X; B) (z — a(z;B)), defined on the closed points of X. The
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partition of X into the fibers of the map a® is called the mlid-stratification of
(X, B).

Theorem 2.3. Given a log pair (X, B), the mld-spectrum MI1d(X, B) is a finite
set, and the mld-stratification is constructible, i.e., all the fibers of the map a°
are constructible sets.

Proof. Suffices to prove that a°|y takes a finite number of values and its fibers
are constructible subsets, for every closed subset W C X. There is nothing to
prove if dimW = 0, so let dim W > 0. Let Wy be an irreducible components of
W. From Example 1.2 and Proposition 2.1, there exists an open subset Uy C X
such that UyNWy # 0, a°|u,nw, is constant, and Uy does not intersect the other
irreducible components of W. Since W = (W \ Up) U (Wy N Up), we are done by
Noetherian induction. O

Conjecture 2.4. [Am99] For any log variety (X, B), the function a° is lower
semi-continuous. That is, every closed point x € X has a neighborhood x € U C

X such that a(x; B) = inf ey a(2’; B).
Proposition 2.5. The two conjectures 2.4 and 0.2 are equivalent.

Proof. Assume Conjecture 0.2 is valid, and let x € X be a closed point. By
Theorem 2.3, we may shrink X such that x € C for every irreducible component
C' of the fibers of the map a°. For 2’ € X, there exists a C such that 2’ € C.
Since x € C, we infer that a(z; B) < a(nc; B)+dimne. But a(ne; B)+dimne =
a(z’; B), so we are done.

Assume Conjecture 2.4 is valid. According to Proposition 2.1, we may assume
that n = {x} is a closed point and = € . Let U, be a neighborhood of  such that
a(x; B) < a(z'; B) for all ' € U,. Then U,N¢ C € is an open dense subset. From
Proposition 2.1, there exists some 2’ € U,NE such that a(z’; B) = a(¢; B)+dim €.
Therefore a(z; B) < a(§; B) + dim €. O

Remark 2.6. (V.V. Shokurov) Conjecture 2.4 is equivalent to the following
lower semi-continuity in Grothendieck points: if (X, B) is a log variety, every
Grothendieck point 7 € X has a neighborhood U such that a(&; B) > a(n; B)
for every Grothendieck point £ € U with dim & < dim#.

Remark 2.7. If (X, Bx) and (Y, By) are two log pairs, we denote by (X X
Y, Bx xy) the product log pair, i.e., the usual product with canonical Weil divisor
Kx«y = Kx XY 4+ X x Ky and pseudoboundary Bxxy = Bx XY + X X By.
Then a(n x & Bxxy) = a(n; Bx) + a(&; By) for Grothendieck points n and &
on X and Y respectively. In particular, Mld(X x Y, Bxxy) = MId(X, Bx) +
MId(Y, By).
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3. Conjecture 0.2 up to codimension 3

We denote by H,. the Conjecture 0.2 with the extra assumption codimn = c.
Since minimal log discrepancies are preserved by passing to generic hyperplane
sections, once H. is valid for ¢ < d, Hy is equivalent to the following particular
case: if z is a closed point on the log variety (X, B) of dimension d, and C'is a
curve passing through x, then a(x; B) < a(nc; B) + 1.

We fix z, and shrink X to neighborhoods of x without further notice. We
may assume a(z; B) > 1, which implies that (X, B) has only log canonical
singularities (note that (X, B) might not be Kawamata log terminal).

Theorem 3.1. H. is valid for c=1,2,3.

Proof. Hy, can be easily checked on curves. For Hs, let £ € C C X be as
above, with dim X = 2. Since a(x; B) > 1, X is nonsingular at = and a(xz; B) =
2 —mult, B. In particular, a(z; B) — (a(nc; B) + 1) = multe B — mult, B < 0.

For Hs, let € C C X be as above, with dimX = 3. Assume first
a(nc; B) < 1. From the Log Minimal Model Program (cf., [Ka92]), there exists
a crepant extraction p : (X,B) — (X, B) such that B is effective and there
exists a prime divisor F on X with u(E) = C and a(ng; B) = a(nc; B). Let
n be the generic point of a curve in the fiber of u|g : E — C over x. By Ha,
a(z; B) < a(n; B) < a(ng; B) + 1.

Let now a(nc; B) > 1. We may assume that a(x; B) > 2. By Lemmas 3.2
and 1.4, X is nonsingular at both z and n¢ and a(x; B) — (a(ne; B) + 1) =
multe B — mult, B < 0. O

Lemma 3.2. Let x be a closed point on a log variety (X, B) of dimension 3.
Then X is nonsingular point at z if a(x; B) > 2.

Proof. We first show that X has Q-factorial singularities. Indeed, from the Log
Minimal Model Program we can find a Q-factorialization p : (X, B) — (X, B),
where (X, B) is a log variety again. Since a(x;B) = min, e, —1(z) a(n; B), we
infer from H; and Hy that dim p~!(z) = 0. Zariski’s Main Theorem (cf., [Ha77,
Exercises 11.3.22, I11.11.2]) implies that p is an isomorphism over a neighborhood
of x, hence X is Q-factorial.

From the proof of Theorem 3.1, a(nc; B) > 1 for every curve passing through
x. By Ha, (X, B) and X have only terminal singularities. If x is a singular point
of X, then it is an isolated terminal singularity, hence a(z; B) < a(x;0) = 141 <
2, where r is the index of Kx at x [Rd80, Mrk96, Ka93]. Contradiction! O

The following characterization of ¢cDV singularities is folklore. We include a
sketch of its proof for completeness:

Proposition 3.3. Assume (X, B) is a log variety of dimension 3 and let x € X
be a closed point. Then a(x; B) = 2 iff exactly one of the following holds:

i) X is nonsingular at x and mult, B = 1.
ii) = ¢ Supp(B) and X has a ¢cDV singularity at x (cf., [Rd80]).
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Sketch of proof. By Lemma 1.4 we may assume that x is a singular point of X.
By lower semi-continuity, (X, B) has only canonical singularities. Assume first
that B is R-Cartier. By Lemma 3.2, B = 0 near z. According to [Rd80, 2.2],
suffices to show that Kx is a Cartier divisor. If X has terminal singularities at
x, then Kx is Cartier by [Rd80, Mrk96, Ka93]. Otherwise, let y: X — X be
an extraction such that u*Ky = K¢ and X has terminal singularities ([Rd83,
0.6]). The terminal subcase implies that K ¢ is Cartier near u~'(z), thus K is
Cartier by the Contraction Theorem.

Assume now that B is not R-Cartier. Let p : (X,B) — (X, B) be a small
extraction such that X is Q-factorial. Then p~!(x) is a union of curves, none
of them included in the support of B. In particular, —K ¢ is p-nef, but not
p-trivial. However, X admits no flipping contraction: its difficulty [Sh86] is 0
since it has only terminal Gorenstein singularities. Contradiction! O

4. Toric minimal log discrepancies

We refer the reader to [Fu93] for definitions and basic notations of toric ge-
ometry. Let X = Tyemb(A) be a toroidal embedding, and let {B;}!_; be the
Tn-invariant divisors of X, corresponding to the primitive vectors {v;}I_; on
the 1-dimensional faces of A. Let B = ) .(1 — a;)B; be an invariant R-divisor
such that K + B is R-Cartier. Equivalently, there exists a linear form ¢ € Mg
such that ¢(v;) = a; for every i. We may assume the log variety (X, B) has only
log canonical singularities, i.e., 0 < a; < 1 for every i.

Under the above assumptions, we have the following formula for the minimal
log discrepancies of (X, B) at the generic points of the orbits (cf., [Br97]):

g := a(Norb(0); B) = inf{p(v);v € rel int(c) NN}, o0 € A.

Here, rel int(o) denotes the relative interior of o C Ro, and orb(c) is the Tiy-
orbit corresponding to the cone o € A. Conjecture 2.4 for toric varieties follows
from the following:

Theorem 4.1. In the above notations, let X =| | . orb(c) be the partition of
X into Tn-orbits.

i) Fach strata in the mld-stratification is a union of orbits. In other words,
a(z; B) = a, + codim(o) for every cone o € A and every closed point
x € orb(o).

1) a, +codim(o) < ar +codim(7) for all cones 7,0 € A such that T is a face
of o (i.e. orb(o) is in the closure of orb(7)).

Proof. i) : The equality holds for the generic closed point = € orb(o) from Propo-
sition 2.1. This extends to all the points in orb(o) since Ty acts transitively on
orbits and leaves the boundary fixed.

i) : Let 7 be a proper face of o and let a, = ¢(v) for some v € rel int(7) N N.
There exist primitive vectors v;,, ... ,v;, (¢ = codim(7, o)) on the 1-dimensional
faces of ¢ such that w = v +v;, +---+v;, € rel int(o). Therefore a, < p(w) =
o) +aiy + -+ a;, <ar+ codim(r,o). O
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V.V. Shokurov also conjectured the following nonsingularity criterion [Sh88|:
if (X, B) is a log variety and a(n; B) > codimn — 1, then X is nonsingular at
n. If X is a toric variety and B is an invariant R-divisor, this holds due to the
following;:

Proposition 4.2. Let 0 C Nr be a strongly rational polyhedral cone generated
by the primitive vectors vy, ... ,v, € N. Assume ¢ € Mg is a linear form such
that 0 < @(v;) <1 for every i, and let

Yo = inf{p(v);v € rel int(c) N N}.
If po > dimo — 1 then o is a nonsingular cone.

Sketch of proof. We use induction on n = dimeo. By lower semi-continuity, ¢
has the same property when restricted to any proper face of . In particular,
every proper face of ¢ is nonsingular.

If o is simplicial, i.e., r = n, ¢, < 2 unless o is a nonsingular cone (cf.,

2
[Br97]). If o is not simplicial, one may assume r = n + 1. This implies v, 11 =
v1+ ...+ Vs — Vsy1 — ... — Vg, Wwhere s > 1 and s + 1 < k < n. Therefore

Vo <1+ ...+Vs+ U1+ ...+ ) <s+n—k<n-—1. Contradiction! [
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