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ON MINIMAL LOG DISCREPANCIES

Florin Ambro

Abstract. We propose a stronger form of the boundedness of minimal log dis-
crepancies conjectured by V.V. Shokurov. This stronger form holds up to dimen-
sion 3 and for toric varieties, and is equivalent to the lower semi-continuity of
minimal log discrepancies.

0. Introduction

A log variety (X, B) is a normal variety X equipped with an effective R-
divisor B such that K + B is R-Cartier, where K is the canonical divisor of X.
For any Grothendieck point η ∈ X, one defines the minimal log discrepancy of
(X, B) at η, denoted a(η;B) [Sh88]. This is an invariant of the singularity of
X at η, and is either −∞, or a real number. For instance, a(η;B) = codim η if
B = 0 and X is nonsingular at η. The main result of this paper is the following:

Theorem 0.1. Let (X, B) be a log variety. Assume that either X is a toric
variety and B is an invariant R-divisor, or dimX ≤ 3. If η, ξ ∈ X are two
Grothendieck points such that η ∈ ξ̄, then

a(η;B) ≤ a(ξ; B) + codim(η, ξ).

This motivates us to propose the following:

Conjecture 0.2. Let (X, B) be a log variety. If η, ξ ∈ X are two Grothendieck
points such that η ∈ ξ̄, then a(η;B) ≤ a(ξ;B) + codim(η, ξ).

We also introduce new invariants of log pairs, the mld-spectrum and the mld-
stratification; we show that the former is a finite set and the latter is constructible
(Theorem 2.3). Consequently, we obtain an equivalence between Conjecture 0.2
and Conjecture 2.4, on the lower semi-continuity of minimal log discrepancies.
Roughly, the latter states that minimal log discrepancies can only decrease in
special points (for instance, if (X, 0) is the germ of a surface Du Val singularity,
then the minimal log discrepancy at every closed point of X is 2, except at 0,
where it drops to 1).

The particular case ξ = ηX of Conjecture 0.2 is the boundedness of minimal
log discrepancies conjectured by V.V.Shokurov [Sh88], that is a(η;B) ≤ codim η
for every Grothendieck point η in X. It is known in fact that boundedness holds
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in the cases covered by Theorem 0.1 (cf., [Rd80, Mrk96, Ka93, Br97]), but we
hope that our equivalent conjectures 0.2 and 2.4 will shed light on its general
case.
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1. Preliminary

A variety is a reduced irreducible scheme of finite type over a fixed field
k, of characteristic 0. We denote by ηX the generic point of a variety X. A
Grothendieck point η ∈ X is called proper if η �= ηX . A neighborhood of η in X
is an open subset U ⊆ X such that η ∈ U . An extraction is a proper birational
morphism of normal varieties.

A log pair (X, B) is a normal variety X equipped with an R-Weil divisor B
such that K + B is R-Cartier. (X, B) is called a log variety if moreover, B is
effective. A log pair (X, B) has log nonsingular support if X is nonsingular and
Supp(B) is a divisor with normal crossings [KMM, 0-2-9]. A log resolution of
a log pair (X, B) is an extraction µ : X̃ → X such that X̃ is nonsingular and
Supp(µ−1(B)) ∪ Exc(µ) is a divisor with normal crossings.

If (X, B) is a log pair and µ : X̃ → X is an extraction, the log codiscrepancy

divisor of (X, B) on X̃ is the unique divisor B̃ on X̃ such that µ∗(K+B) = KX̃ +
B̃ and B̃ = µ−1B on X̃\Exc(µ). The identity B̃ =

∑
E⊂X̃(1 − a(E;X, B))E

associates to each prime divisor E of X̃ a real number a(E;X, B), called the log
discrepancy of E with respect to (X, B). The invariant a(E; X, B) depends only
on the valuation defined by E on the field of rational functions of X, with center
cX(E) = µ(E). For simplicity, we write a(E;B) for a(E;X, B).

Definition 1.1. [Sh88] The minimal log discrepancy of a log pair (X, B) at a
proper Grothendieck point η ∈ X is defined as

a(η;X, B) = inf
cX(E)=η

a(E;X, B),

where the infimum is taken after all prime divisors on extractions of X having
η as a center on X. We set by definition a(ηX ;X, B) = 0.

The log pair (X, B) has only log canonical (Kawamata log terminal) singular-
ities if a(η;B) ≥ 0 (a(η;B) > 0) for every proper point η ∈ X. (X, B) has only
canonical (terminal) singularities if a(η;B) ≥ 1 (a(η;B) > 1) for every point
η ∈ X of codimension at least 2.

Minimal log discrepancies on a log pair (X, B) are computed as follows (cf.,
[Ko92, 17.1.1]). If codim η = 1, then a(η;B) = 1− bη, where bη is the coefficient
of B in η̄. Assume now codim η ≥ 2, and let (X̃, B̃) be a log resolution with a
normal crossings divisor

∑
i Ei supporting the divisors µ−1(η̄) and B̃. If (X, B)
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has only log canonical singularities in some neighborhood of η, then a(η; B) =
mincX(Ei)=η a(Ei;B) ∈ R≥0. Otherwise, a(η;B) = −∞.

Example 1.2. Under the same assumptions, a(η; B) = −∞ if η ∈ E is a proper
point of a prime divisor E with a(ηE ;B) < 0.

Example 1.3. Assume that (X, B) is a log pair with log nonsingular support,
having only log canonical singularities at η ∈ X. Then a(η; B) is attained on
the exceptional divisor of the blow-up of X in η, that is

a(η;B) = codim η − multη B.

Lemma 1.4. [Sh91] Assume (X, B) is a log variety, and X is nonsingular at
η. Then a(η;B) ≤ codim η. Moreover, a(η;B) ≥ codim η − 1 iff multη B ≤ 1
and a(η;B) = codim η − multη B.

2. The mld stratification

Proposition 2.1. Assume W ⊂ X is a closed irreducible subvariety and (X, B)
is a log pair with only log canonical singularities at ηW . Then there exists an
open subset U of X such that U ∩ W �= ∅ and

a(x;B) = a(ηW ;B) + dimW

for every closed point x ∈ W ∩ U .

Proof. Shrinking X near W , we may assume there exists a log resolution µ :
(X̃, B̃) → (X, B) with a normal crossings divisor ∪i∈IEi on X̃ supporting B̃ =∑

i(1 − ai)Ei such that the following are satisfied:
i) µ−1(W ) =

⋃
i∈IW

Ei for some subset IW ⊆ I;
ii) W ⊆ µ(C) for each strata C of ∪i∈IEi;

iii) codim(C ∩ µ−1(x), C) = dimW for every strata C of ∪i∈IEi dominating
W , and every closed point x ∈ W .

iv) (X, B) has only log canonical singularities and dimW > 0.
Note that a(ηW ;B) = mini∈IW

ai. Fix x ∈ W . Let η ∈ µ−1(x). By iii),
a(η; B̃) =

∑
η∈Ei

ai + dimW + codim(η, C ∩ µ−1(x)), where C is the minimal
strata of ∪i∈IEi containing η. Since all the ai’s are non-negative, a(η; B̃) ≥
a(ηW ;B) + dimW . Taking infimum after all η’s as above, we obtain a(x;B) ≥
a(ηW ;B) + dimW.

Finally, let k ∈ IW be an index such that a(ηW ;B) = ak. Let η be the
generic point of an irreducible component of Ek ∩ µ−1(x) of maximal dimen-
sion: codim η = dimW + 1. By iii) again, Ek is the minimal strata of ∪i∈IEi

containing η. Therefore a(η; B̃) = ak + codim η − 1 = a(ηW ;B) + dimW , and
a(x;B) ≤ a(ηW ;B) + dimW.

Definition 2.2. Let (X, B) be a log pair. The mld-spectrum of (X, B) is defined
as the set Mld(X, B) := {a(η;B); η ∈ X} ⊂ {−∞} ∪ R. We denote by ao the
map X → Mld(X;B) (x �→ a(x;B)), defined on the closed points of X. The
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partition of X into the fibers of the map ao is called the mld-stratification of
(X, B).

Theorem 2.3. Given a log pair (X, B), the mld-spectrum Mld(X, B) is a finite
set, and the mld-stratification is constructible, i.e., all the fibers of the map ao

are constructible sets.

Proof. Suffices to prove that ao|W takes a finite number of values and its fibers
are constructible subsets, for every closed subset W ⊆ X. There is nothing to
prove if dimW = 0, so let dimW > 0. Let W0 be an irreducible components of
W . From Example 1.2 and Proposition 2.1, there exists an open subset U0 ⊂ X
such that U0∩W0 �= ∅, ao|U0∩W0 is constant, and U0 does not intersect the other
irreducible components of W . Since W = (W \U0)� (W0 ∩U0), we are done by
Noetherian induction.

Conjecture 2.4. [Am99] For any log variety (X, B), the function ao is lower
semi-continuous. That is, every closed point x ∈ X has a neighborhood x ∈ U ⊆
X such that a(x;B) = infx′∈U a(x′;B).

Proposition 2.5. The two conjectures 2.4 and 0.2 are equivalent.

Proof. Assume Conjecture 0.2 is valid, and let x ∈ X be a closed point. By
Theorem 2.3, we may shrink X such that x ∈ C̄ for every irreducible component
C of the fibers of the map ao. For x′ ∈ X, there exists a C such that x′ ∈ C.
Since x ∈ C̄, we infer that a(x;B) ≤ a(ηC ;B)+dim ηC . But a(ηC ; B)+dim ηC =
a(x′;B), so we are done.

Assume Conjecture 2.4 is valid. According to Proposition 2.1, we may assume
that η = {x} is a closed point and x ∈ ξ̄. Let Ux be a neighborhood of x such that
a(x;B) ≤ a(x′;B) for all x′ ∈ Ux. Then Ux∩ξ̄ ⊂ ξ̄ is an open dense subset. From
Proposition 2.1, there exists some x′ ∈ Ux∩ξ̄ such that a(x′;B) = a(ξ;B)+dim ξ.
Therefore a(x;B) ≤ a(ξ;B) + dim ξ.

Remark 2.6. (V.V. Shokurov) Conjecture 2.4 is equivalent to the following
lower semi-continuity in Grothendieck points: if (X, B) is a log variety, every
Grothendieck point η ∈ X has a neighborhood U such that a(ξ;B) ≥ a(η;B)
for every Grothendieck point ξ ∈ U with dim ξ ≤ dim η.

Remark 2.7. If (X, BX) and (Y, BY ) are two log pairs, we denote by (X ×
Y, BX×Y ) the product log pair, i.e., the usual product with canonical Weil divisor
KX×Y = KX × Y + X ×KY and pseudoboundary BX×Y = BX × Y + X ×BY .
Then a(η × ξ;BX×Y ) = a(η;BX) + a(ξ;BY ) for Grothendieck points η and ξ
on X and Y respectively. In particular, Mld(X × Y, BX×Y ) = Mld(X, BX) +
Mld(Y, BY ).
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3. Conjecture 0.2 up to codimension 3

We denote by Hc the Conjecture 0.2 with the extra assumption codim η = c.
Since minimal log discrepancies are preserved by passing to generic hyperplane
sections, once Hc is valid for c < d, Hd is equivalent to the following particular
case: if x is a closed point on the log variety (X, B) of dimension d, and C is a
curve passing through x, then a(x;B) ≤ a(ηC ;B) + 1.
We fix x, and shrink X to neighborhoods of x without further notice. We
may assume a(x;B) > 1, which implies that (X, B) has only log canonical
singularities (note that (X, B) might not be Kawamata log terminal).

Theorem 3.1. Hc is valid for c = 1, 2, 3.

Proof. H1 can be easily checked on curves. For H2, let x ∈ C ⊂ X be as
above, with dimX = 2. Since a(x;B) > 1, X is nonsingular at x and a(x; B) =
2 − multx B. In particular, a(x;B) − (a(ηC ;B) + 1) = multC B − multx B ≤ 0.

For H3, let x ∈ C ⊂ X be as above, with dimX = 3. Assume first
a(ηC ;B) ≤ 1. From the Log Minimal Model Program (cf., [Ka92]), there exists
a crepant extraction µ : (X̃, B̃) → (X, B) such that B̃ is effective and there
exists a prime divisor E on X̃ with µ(E) = C and a(ηE ; B̃) = a(ηC ;B). Let
η be the generic point of a curve in the fiber of µ|E : E → C over x. By H2,
a(x;B) ≤ a(η; B̃) ≤ a(ηE ; B̃) + 1.

Let now a(ηC ;B) > 1. We may assume that a(x; B) > 2. By Lemmas 3.2
and 1.4, X is nonsingular at both x and ηC and a(x; B) − (a(ηC ;B) + 1) =
multC B − multx B ≤ 0.

Lemma 3.2. Let x be a closed point on a log variety (X, B) of dimension 3.
Then X is nonsingular point at x if a(x; B) > 2.

Proof. We first show that X has Q-factorial singularities. Indeed, from the Log
Minimal Model Program we can find a Q-factorialization µ : (X̃, B̃) → (X, B),
where (X̃, B̃) is a log variety again. Since a(x;B) = minη∈µ−1(x) a(η; B̃), we
infer from H1 and H2 that dimµ−1(x) = 0. Zariski’s Main Theorem (cf., [Ha77,
Exercises II.3.22, III.11.2]) implies that µ is an isomorphism over a neighborhood
of x, hence X is Q-factorial.

From the proof of Theorem 3.1, a(ηC ;B) > 1 for every curve passing through
x. By H2, (X, B) and X have only terminal singularities. If x is a singular point
of X, then it is an isolated terminal singularity, hence a(x; B) ≤ a(x; 0) = 1+ 1

r ≤
2, where r is the index of KX at x [Rd80, Mrk96, Ka93]. Contradiction!

The following characterization of cDV singularities is folklore. We include a
sketch of its proof for completeness:

Proposition 3.3. Assume (X, B) is a log variety of dimension 3 and let x ∈ X
be a closed point. Then a(x;B) = 2 iff exactly one of the following holds:

i) X is nonsingular at x and multx B = 1.
ii) x /∈ Supp(B) and X has a cDV singularity at x (cf., [Rd80]).
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Sketch of proof. By Lemma 1.4 we may assume that x is a singular point of X.
By lower semi-continuity, (X, B) has only canonical singularities. Assume first
that B is R-Cartier. By Lemma 3.2, B = 0 near x. According to [Rd80, 2.2],
suffices to show that KX is a Cartier divisor. If X has terminal singularities at
x, then KX is Cartier by [Rd80, Mrk96, Ka93]. Otherwise, let µ : X̃ → X be
an extraction such that µ∗KX = KX̃ and X̃ has terminal singularities ([Rd83,
0.6]). The terminal subcase implies that KX̃ is Cartier near µ−1(x), thus KX is
Cartier by the Contraction Theorem.

Assume now that B is not R-Cartier. Let µ : (X̃, B̃) → (X, B) be a small
extraction such that X̃ is Q-factorial. Then µ−1(x) is a union of curves, none
of them included in the support of B̃. In particular, −KX̃ is µ-nef, but not
µ-trivial. However, X̃ admits no flipping contraction: its difficulty [Sh86] is 0
since it has only terminal Gorenstein singularities. Contradiction!

4. Toric minimal log discrepancies

We refer the reader to [Fu93] for definitions and basic notations of toric ge-
ometry. Let X = TNemb(∆) be a toroidal embedding, and let {Bi}r

i=1 be the
TN -invariant divisors of X, corresponding to the primitive vectors {vi}r

i=1 on
the 1-dimensional faces of ∆. Let B =

∑
i(1 − ai)Bi be an invariant R-divisor

such that K + B is R-Cartier. Equivalently, there exists a linear form ϕ ∈ MR

such that ϕ(vi) = ai for every i. We may assume the log variety (X, B) has only
log canonical singularities, i.e., 0 ≤ ai ≤ 1 for every i.

Under the above assumptions, we have the following formula for the minimal
log discrepancies of (X, B) at the generic points of the orbits (cf., [Br97]):

aσ := a(ηorb(σ);B) = inf{ϕ(v); v ∈ rel int(σ) ∩ N}, σ ∈ ∆.

Here, rel int(σ) denotes the relative interior of σ ⊂ Rσ, and orb(σ) is the TN -
orbit corresponding to the cone σ ∈ ∆. Conjecture 2.4 for toric varieties follows
from the following:

Theorem 4.1. In the above notations, let X =
⊔

σ∈∆ orb(σ) be the partition of
X into TN -orbits.

i) Each strata in the mld-stratification is a union of orbits. In other words,
a(x;B) = aσ + codim(σ) for every cone σ ∈ ∆ and every closed point
x ∈ orb(σ).

ii) aσ +codim(σ) ≤ aτ +codim(τ) for all cones τ, σ ∈ ∆ such that τ is a face
of σ (i.e. orb(σ) is in the closure of orb(τ)).

Proof. i) : The equality holds for the generic closed point x ∈ orb(σ) from Propo-
sition 2.1. This extends to all the points in orb(σ) since TN acts transitively on
orbits and leaves the boundary fixed.

ii) : Let τ be a proper face of σ and let aτ = ϕ(v) for some v ∈ rel int(τ)∩N .
There exist primitive vectors vi1 , . . . , vic (c = codim(τ, σ)) on the 1-dimensional
faces of σ such that w = v + vi1 + · · · + vic ∈ rel int(σ). Therefore aσ ≤ ϕ(w) =
ϕ(v) + ai1 + · · · + aic

≤ aτ + codim(τ, σ).
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V.V. Shokurov also conjectured the following nonsingularity criterion [Sh88]:
if (X, B) is a log variety and a(η;B) > codim η − 1, then X is nonsingular at
η. If X is a toric variety and B is an invariant R-divisor, this holds due to the
following:

Proposition 4.2. Let σ ⊂ NR be a strongly rational polyhedral cone generated
by the primitive vectors v1, . . . , vr ∈ N . Assume ϕ ∈ MR is a linear form such
that 0 ≤ ϕ(vi) ≤ 1 for every i, and let

ϕσ := inf{ϕ(v); v ∈ rel int(σ) ∩ N}.
If ϕσ > dimσ − 1 then σ is a nonsingular cone.

Sketch of proof. We use induction on n = dimσ. By lower semi-continuity, ϕ
has the same property when restricted to any proper face of σ. In particular,
every proper face of σ is nonsingular.

If σ is simplicial, i.e., r = n, ϕσ ≤ n
2 unless σ is a nonsingular cone (cf.,

[Br97]). If σ is not simplicial, one may assume r = n + 1. This implies vn+1 =
v1 + . . . + vs − vs+1 − . . . − vk, where s ≥ 1 and s + 1 ≤ k ≤ n. Therefore
ϕσ ≤ ϕ(v1 + . . . + vs + vk+1 + . . . + vn) ≤ s + n− k ≤ n− 1. Contradiction!
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