NONLINEAR PROGRAMMING WITH SEMILOCALLY B-PREINVEX AND RELATED FUNCTIONS

Ioan M. STANCU-MINASIAN

The Romanian Academy, Institute of Mathematical Statistics and Applied Mathematics,
Calea 13 Septembrie nr.13, Ro-76117, Bucharest 5,Romania
E-mail: stancum@csm.ro

A nonlinear programming problem is considered where the functions involved are \(\eta \)-semidifferentiable. Fritz John type and Karush-Kuhn-Tucker type necessary optimality conditions are obtained. Moreover, a result relative to sufficiency of optimality conditions is given. Wolfe type and Mond-Weir type duality results are formulated in terms of \(\eta \)-semidifferentials. The duality results are given using the concepts of generalized semilocally b-preinvex functions. Our results generalize the results obtained by Preda, Stancu-Minasian and Batatorescu [2], Suneja and Gupta [5], Suneja et al. [6].

1. PRELIMINARIES

In this section, we introduce the notation and definitions which are used throughout the paper.

Let \(\mathbb{R}^n \) be the n-dimensional Euclidean space and \(\mathbb{R}_+^n \) its positive orthant, i.e. \(\mathbb{R}_+^n = \{ x \in \mathbb{R}^n, x = (x_j), x_j \geq 0, j=1,\ldots,n \} \).

For \(x,y \in \mathbb{R}^n \), by \(x \leq y \) we mean \(x_i \leq y_i \) for all \(i \), \(x \leq y \) means \(x_i \leq y_i \) for all \(i \) and \(x_j < y_j \) for at least one \(j, 1 \leq j \leq n \). By \(x < y \) we mean \(x_i < y_i \) for all \(i \), and by \(x \not\leq y \) we mean the negation of \(x \leq y \).

Throughout the paper all definitions, theorems, lemmas, corollaries, remarks are numbered consecutively in a single numeration system in each section.

Let \(0 \subseteq X^0 \subseteq \mathbb{R}^n \) be a set and \(\eta: 0 \times X^0 \rightarrow \mathbb{R}^n \) a vector function.

Definition 1.1. We say that \(0 \) is \(\eta \)-vex at \(x \in 0 \) if \(x + \lambda \eta(x, x) \in 0 \) for all \(x \in 0 \) and \(\lambda \in [0, 1] \).

We say that \(0 \) is \(\eta \)-vex if \(0 \) is \(\eta \)-vex at any \(x \in 0 \).

We remark that if \(\eta(x, \bar{x}) = x - \bar{x} \) for any \(x \in 0 \), then \(0 \) is \(\eta \)-vex at \(\bar{x} \in X^0 \) iff \(X^0 \) is a convex set at \(\bar{x} \).

Definition 1.2. [7] Let \(X^0 \subseteq \mathbb{R}^n \) be a nonempty set. A function \(f: X^0 \rightarrow \mathbb{R} \) is said to be preinvex on \(X^0 \) (with respect to \(\eta \)) if \(f \) is \(\eta \)-vex, for short) if there exists an \(n \)-dimensional vector function \(\eta: X^0 \times X^0 \rightarrow \mathbb{R}^n \) such that for all \(x, u \in X^0 \) and \(\lambda \in [0, 1] \) we have

\[
 f(u + \lambda \eta(x, u)) \leq \lambda f(x) + (1 - \lambda) f(u).
\]

Definition 1.3. We say that \(X^0 \subseteq \mathbb{R}^n \) is an \(\eta \)-locally starshaped set at \(\bar{x} \) (\(\bar{x} \in X^0 \)) if for any \(x \in X^0 \) there exists \(0 < a_\eta(x, \bar{x}) \leq 1 \) such that \(\bar{x} + \lambda \eta(x, \bar{x}) \in X^0 \) for any \(\lambda \in [0, a_\eta(x, \bar{x})] \).

We say that \(X^0 \) is \(\eta \)-locally starshaped if \(X^0 \) is \(\eta \)-locally starshaped at any \(\bar{x} \in X^0 \).

Recommended by Marius IOSIFESCU
member of the Romanian Academy
Definition 1.4. Let $f: X^0 \to \mathbb{R}$ be a function, where $X^0 \subseteq \mathbb{R}^n$ is an η-locally starshaped set at $\bar{x} \in X^0$, with the corresponding maximum positive number $a_\eta(x, \bar{x})$ satisfying the required conditions. We say that f is:

(i) semilocally b-preinvex (slb-preinvex) at \bar{x} if for any $x \in X^0$, there exist a positive number $d_\eta(x, \bar{x}) \leq a_\eta(x, \bar{x})$ and a function $b: X^0 \times X^0 \times [0,1] \to \mathbb{R}_+$ such that $f(\bar{x} + \lambda \eta(x, \bar{x})) \geq \lambda b(x, \bar{x}, \lambda)f(x) + (1 - \lambda b(x, \bar{x}, \lambda))f(\bar{x})$ for $0 < \lambda < d_\eta(x, \bar{x})$, $\lambda b(x, \bar{x}, \lambda) \leq 1$.

If f is semilocally b-preinvex at each $\bar{x} \in X^0$ for the same b, then f is said to be semilocally b-preinvex on X^0.

(ii) semilocally quasi b-preinvex (slbq-preinvex) at \bar{x} if for any $x \in X^0$, there exist a positive number $d_\eta(x, \bar{x}) \leq a_\eta(x, \bar{x})$ and a function $b: X^0 \times X^0 \times [0,1] \to \mathbb{R}_+$ such that

\[
\begin{align*}
0 < \lambda < d_\eta(x, \bar{x}) & \implies b(x, \bar{x}, \lambda)f(\bar{x} + \lambda \eta(x, \bar{x})) \leq b(x, \bar{x}, \lambda)f(\bar{x}) \\
\lambda b(x, \bar{x}, \lambda) & \leq 1
\end{align*}
\]

If f is semilocally quasi b-preinvex at each $\bar{x} \in X^0$ for the same b, then f is said to be semilocally quasi b-preinvex on X^0.

Definition 1.5. [2],[3] Let $f: X^0 \to \mathbb{R}$ be a function, where $X^0 \subseteq \mathbb{R}^n$ is an η-locally starshaped set at $\bar{x} \in X^0$. We say that f is η-semidifferentiable at \bar{x} if $(df)^+ (\bar{x}, \eta(x, \bar{x}))$ exists for each $x \in X^0$, where

\[
(df)^+ (\bar{x}, \eta(x, \bar{x})) = \lim_{\lambda \to 0^+} \frac{1}{\lambda} [f(\bar{x} + \lambda \eta(x, \bar{x})) - f(\bar{x})]
\]

(the right derivative at \bar{x} along the direction $\eta(x, \bar{x})$).

If f is η-semidifferentiable at any $\bar{x} \in X^0$, then f is said to be η-semidifferentiable on X^0.

Note that semidifferentiable functions correspond to $\eta(x, \bar{x}) = x - \bar{x}$.

Some properties possessed by the semidifferentiable functions are given by Kaul and Lyall [1].

Definition 1.6. Let $f: X^0 \to \mathbb{R}$ be an η-semidifferentiable function on $X^0 \subseteq \mathbb{R}^n$. We say that f is semilocally pseudo b-preinvex (slp-preinvex) at $\bar{x} \in X^0$ if

\[
(df)^+ (\bar{x}, \eta(x, \bar{x})) \geq 0 \implies b(x, \bar{x}, \lambda)f(x) \geq b(x, \bar{x}, \lambda)f(\bar{x}).
\]

If f is semilocally pseudo b-preinvex at each $\bar{x} \in X^0$ for the same b, then f is said to be semilocally pseudo b-preinvex on X^0.

Definition 1.7. Let $f: X^0 \to \mathbb{R}$ be an η-semidifferentiable function on $X^0 \subseteq \mathbb{R}^n$. We say that f is semilocally explicitly b-preinvex (sleb-preinvex) at $\bar{x} \in X^0$ if for each $x \in X^0$, $x \neq \bar{x}$, we have

\[
\overline{b} (x, \bar{x}) [f(x) - f(\bar{x})] > (df)^+ (\bar{x}, \eta(x, \bar{x}))
\]

where

\[
\overline{b} (x, \bar{x}) = \lim_{\lambda \to 0^+} b(x, \bar{x}, \lambda).
\]

Definition 1.8. Let $f: X^0 \to \mathbb{R}$ be an η-semidifferentiable function on $X^0 \subseteq \mathbb{R}^n$. We say that f is semilocally strongly pseudo b-preinvex (slspb-preinvex) at $\bar{x} \in X^0$ if
Nonlinear programming with semilocally B-preinvex and related functions

\[b(x, \bar{x})(df)^+(\bar{x}, \eta(x, \bar{x})) \geq 0 \Rightarrow f(x) \geq f(\bar{x}) \]

where \(b(x, \bar{x}) \) is defined by (1.1).

If \(f \) is slsb-preinvex at each \(\bar{x} \in X^0 \) for the same \(b \), then \(f \) is said to be slsb-preinvex on \(X^0 \).

For \(b(x, \bar{x}, \lambda) = 1 \) these definitions reduce to those of semilocally preinvex, semilocally quasi-preinvex, semilocally pseudo-preinvex considered by Preda, Stancu-Minasian and Batatorescu [2].

Theorem 1.9. Let \(f : X^0 \to \mathbb{R} \) be an \(\eta \)-semidifferentiable function on an \(\eta \)-locally starshaped set \(X^0 \).

\(b(x, \bar{x}) \)

1. **a)** The function \(f \) is slb-preinvex at \(x \in X^0 \) if and only if \((df)^+(\bar{x}, \eta(x, \bar{x})) \) exists and \(b(x, \bar{x})(f(x) - f(\bar{x})) \geq (df)^+(\bar{x}, \eta(x, \bar{x})) \).

2. **b)** If \(f \) is slqb-preinvex, then \(f(x) \leq f(\bar{x}) \Rightarrow b(x, \bar{x})(df)^+(\bar{x}, \eta(x, \bar{x})) \leq 0 \), where \(b(x, \bar{x}) = \lim_{\lambda \to 0^+} b(x, \bar{x}, \lambda) \) and \(\lambda \) \(b(x, \bar{x}, \lambda) \leq 1 \).

2. SUFFICIENT OPTIMALITY CRITERIA

Consider the nonlinear programming problem

\[\begin{align*}
\text{(NP)} & \quad \text{Minimize } f(x) \\
& \quad \text{subject to: } g(x) \leq 0, \ x \in X^0
\end{align*} \]

where \(X^0 \subseteq \mathbb{R}^n \) is a nonempty \(\eta \)-locally starshaped set and \(f : X^0 \to \mathbb{R}, \ g : X^0 \to \mathbb{R}^m \) are \(\eta \)-semidifferentiable functions.

Let \(X = \{ x \in X^0 : g(x) \leq 0 \} \) be the set of all feasible solutions to (NP).

Let \(N_\varepsilon(\bar{x}) = \{ x \in \mathbb{R}^n : \| x - \bar{x} \| < \varepsilon \} \)

Definition 2.1. (a) \(\bar{x} \) is said to be a local minimum solution to problem (NP) if \(\bar{x} \in X \) and there exists \(\varepsilon > 0 \) such that \(x \in N_\varepsilon(\bar{x}) \cap X \Rightarrow f(x) \geq f(\bar{x}) \).

(b) \(\bar{x} \) is said to be the minimum solution to problem (NP) if \(\bar{x} \in X \) and \(f(\bar{x}) = \min_{x \in X} f(x) \).

The next theorem gives a sufficient optimality criterion.

Theorem 2.2. Let \(\bar{x} \in X^0 \) and let \(f \) be slb\(_1\)-preinvex at \(\bar{x} \) and \(g \) be slb\(_2\)-preinvex at \(\bar{x} \). If there exists \(\bar{u} \in \mathbb{R}^m \) such that \((\bar{x}, \bar{u}) \) satisfies the conditions

\[(df)^+(\bar{x}, \eta(x, \bar{x})) + \bar{u}^T(g(\bar{x}))^+(\bar{x}, \eta(x, \bar{x})) \geq 0, \forall x \in X, \]

\[\bar{u}^T g(\bar{x}) = 0, \]

\[g(\bar{x}) \leq 0, \]

\[\bar{u} \geq 0, \]

with \(b_1(x, \bar{x}) = \lim_{\lambda \to 0^+} b_1(x, \bar{x}, \lambda) > 0 \), then \(\bar{x} \) is an optimal solution to problem (NP).

Corollary 2.3. Let \(\bar{x} \in X^0 \) and let \(f \) be slb\(_1\)-preinvex at \(\bar{x} \) and \(g \) be slb\(_2\)-preinvex at \(\bar{x} \). If there exists \(\bar{u}_0 \in \mathbb{R} \) and \(\bar{u} \in \mathbb{R}^m \) such that \((\bar{x}, \bar{u}_0, \bar{u}) \) satisfy (2.2) and (2.3) of Theorem 2.2., and the conditions
\[
\overline{u}_0 (df)^+ (\overline{x}, \eta(x, \overline{x})) + \overline{u}_0^T (dg)^+ (\overline{x}, \eta(x, \overline{x})) \geq 0, \quad \forall x \in X
\]

\[
(\overline{u}_0, \overline{u}_0^T) \geq 0, \quad (\overline{u}_0, \overline{u}) \neq 0
\]

with \(\overline{b}_i (x, \overline{x}) = \lim_{\lambda \to 0^+} b_i (x, \overline{x}, \lambda) \), then \(\overline{x} \) is an optimal solution to problem (NP).

Remark 2.4. In the statement of Corollary 2.3, it suffices to assume only the \(\text{slb}_2 \)-preinvexity of \(g_i (I = \{i \mid g_i (\overline{x}) = 0\}) \), instead of \(g_i (i = 1, \ldots, m) \) at \(\overline{x} \).

Theorem 2.5. Let \(\overline{x} \in X^0 \), \(f \) be \(\text{slspb}-\)preinvex and \(g_i \) be \(\eta \)-semidifferentiable and \(\text{slqb}-\)preinvex at \(\overline{x} \). If there exists \(\overline{u} \in \mathbb{R}^m \) such that \((\overline{x}, \overline{u}) \) satisfy conditions (2.1) - (2.4) of Theorem 2.2, then \(\overline{x} \) is an optimal solution to Problem (NP).

Theorem 2.6. Let \(\overline{x} \in X^0 \). We assume that there exists \(\overline{u} \in \mathbb{R}^m \) such that at \(\overline{x} \), \(f \) is \(\text{slspb}-\)preinvex, the numerical function \(\overline{u}_i \), \(g_i \) is \(\eta \)-semidifferentiable and \(\text{slqb}-\)preinvex and such that \((\overline{x}, \overline{u}) \) satisfies conditions (2.1) - (2.4) of Theorem 2.2. Then \(\overline{x} \) is an optimal solution to Problem (NP).

Theorem 2.7. Let \(\overline{x} \in X^0 \). We assume that there exists \(\overline{u} \in \mathbb{R}^m \) such that \((\overline{x}, \overline{u}) \) satisfies conditions (2.1) - (2.4) of Theorem 2.2 and the numerical function \(f + \overline{u}_i g_i \) is \(\text{slspb}-\)preinvex at \(\overline{x} \). Then \(\overline{x} \) is an optimal solution to Problem (NP).

3. NECESSARY OPTIMALITY CRITERIA

Definition 3.1. We say that \(g \) satisfies the generalized Slater's constraint qualification (GSQ) at \(\overline{x} \in X \), if \(g_i \) is \(\text{slp}-\)preinvex at \(\overline{x} \) and there exists \(\hat{x} \in X \) such that \(g_i (\hat{x}) < 0 \).

Lemma 3.2. Let \(\overline{x} \in X \) be a local minimum solution to (NP). We assume that \(g_i \) is continuous at \(\overline{x} \) for any \(i \in J \), and that \(f_i \), \(g_i \) are \(\eta \)-semidifferentiable at \(\overline{x} \). Then the system

\[
\begin{align*}
(df)^+ (\overline{x}, \eta(x, \overline{x})) &< 0 \\
(dg_i)^+ (\overline{x}, \eta(x, \overline{x})) &< 0
\end{align*}
\]

has no solution \(x \in X^0 \).

Theorem 3.3. (Fritz John type necessary optimality criteria) Let us suppose that \(g_i \) is continuous at \(\overline{x} \) for \(i \in J \). Assume also that \((df)^+ (\overline{x}, \eta(x, \overline{x})) \) and \((dg_i)^+ (\overline{x}, \eta(x, \overline{x})) \) are preinvex functions of \(x \) on \(X^0 \), which is an \(\eta \)-locally starshaped set at \(\overline{x} \). If \(\overline{x} \) is a local minimum solution to Problem (NP), then there exist \(\overline{u}_0 \in \mathbb{R} \), \(\overline{u} \in \mathbb{R}^m \) such that

\[
\overline{u}_0 (df)^+ (\overline{x}, \eta(x, \overline{x})) + \overline{u}_0^T (dg)^+ (\overline{x}, \eta(x, \overline{x})) \geq 0 \text{ for all } x \in X^0,
\]

\[
(\overline{u}_0, \overline{u}) \neq 0, \quad (\overline{u}_0, \overline{u}) \geq 0.
\]

Theorem 3.4. (Kuhn-Tucker type necessary optimality criteria) Let \(\overline{x} \in X \) be a local minimum solution to Problem (NP) and let \(g_i \) be continuous at \(\overline{x} \) for \(i \in J \). Assume also that \((df)^+ (\overline{x}, \eta(x, \overline{x})) \) and \((dg_i)^+ (\overline{x}, \eta(x, \overline{x})) \) be preinvex functions of \(x \) on \(X^0 \) - an \(\eta \)-locally starshaped set at \(\overline{x} \). If \(g \) satisfies GSQ at \(\overline{x} \), then there exists \(\overline{u} \in \mathbb{R}^m \) such that

\[
(df)^+ (\overline{x}, \eta(x, \overline{x})) + \overline{u}_0^T (dg)^+ (\overline{x}, \eta(x, \overline{x})) \geq 0 \text{ for all } x \in X^0,
\]

\[
\overline{u}_0^T g(\overline{x}) = 0, \quad g(\overline{x}) \leq 0, \quad \overline{u} \geq 0.
\]
4. WOLFE DUALITY

Relative to the Problem (NP) we consider the Wolfe dual

\[
\begin{align*}
\text{(WD)} & \quad \text{Maximize} & & \Psi(u,y) = f(u) + y^T g(u) \\
& & \text{subject to} & (df)^+(u,\eta(x,u)) + y^T (dg)^+(u,\eta(x,u)) \geq 0, \text{ for all } x \in X, \\
& & & y \geq 0, u \in X^0, y \in \mathbb{R}^m,
\end{align*}
\]

where \(X^0 \) is a nonempty \(\eta \)-locally starshaped set at any \(x \in X^0 \).

Let \(W \) denote the set of all feasible solutions to Problem (WD).

Theorem 4.1. (Weak Duality) Let \(\bar{x} \in X \) and \((\bar{u}, \bar{y}) \in W \). If \(f \) and \(g \) are \(\eta \)-preinvex on \(X^0 \), with \(\bar{b}(\bar{x}, \bar{u}) = \lim_{\lambda \to 0^+} b(\bar{x}, \bar{u}, \lambda) > 0 \), then \(f(\bar{x}) \geq \Psi(\bar{u}, \bar{y}) \).

Corollary 4.2. Let \(\bar{x} \in X \) and \((\bar{u}, \bar{y}) \in W \) such that \(f(\bar{x}) = \Psi(\bar{u}, \bar{y}) \). If the hypotheses of Theorem 4.1 are satisfied, then \(\bar{x} \) and \((\bar{u}, \bar{y}) \) are the optimal solutions to (NP) and (WD) respectively.

Theorem 4.3. (Direct Duality) Let \(\bar{x} \in X \) be an optimal solution to (NP), \(f \) and \(g \) be \(\eta \)-semidifferentiable at \(\bar{x} \) and

1. \((df)^+(\bar{x},\eta(x,\bar{x})) \) and \(y^T (dg)^+(\bar{x},\eta(x,\bar{x})) \) are preinvex functions of \(x \) on \(X^0 \), an \(\eta \)-locally starshaped set at \(\bar{x} \);
2. \(g_i \) (\(i \in J \)) are continuous at \(\bar{x} \);
3. \(g \) satisfies the generalized Slater’s constraint qualification at \(\bar{x} \).

Then there exists \(\bar{y} \in \mathbb{R}^m \) such that \((\bar{x}, \bar{y}) \in W \) and \(f(\bar{x}) = \Psi(\bar{u}, \bar{y}) \).

Moreover, if the functions \(f \) and \(g \) are \(\eta \)-preinvex on \(X^0 \) and \(\bar{b}(x,u) > 0 \) for all \((u, y) \in W \), then \(\bar{x} \) is an optimal solution to (NP) and \((\bar{x}, \bar{y})\) is an optimal solution to (WD).

Theorem 4.4. (Strict Converse Duality) Let \(\bar{x} \in X \) be an optimal solution to (NP), \(f \) and \(g \) be \(\eta \)-semidifferentiable at \(\bar{x} \) and:

1. \((df)^+(\bar{x},\eta(x,\bar{x})) \) and \(y^T (dg)^+(\bar{x},\eta(x,\bar{x})) \) are preinvex functions of \(x \) on \(X^0 \), an \(\eta \)-locally starshaped set at \(\bar{x} \);
2. \(g_i \) (\(i \in J \)) are continuous at \(\bar{x} \);
3. \(g \) satisfies the generalized Slater’s constraint qualification at \(\bar{x} \);
4. \(g \) is \(\mathrm{slb} \)-preinvex on \(X^0 \).

If \((x^*, y^*) \) is an optimal solution of (WD), \(f \) is \(\mathrm{slb} \)-preinvex on \(X^0 \) and \(\bar{b}(\bar{x}, \bar{x}^*) > 0 \), then \(x^* = \bar{x} \), i.e. \(x^* \) is an optimal solution to (NP) and \(f(\bar{x}) = \Psi(x^*, y^*) \).

Remark 4.5. If \(\eta(x, u) = x - u \) we obtain the Wolfe dual considered by Suneja and Gupta [5].

5. MOND-WEIR DUALITY

For problem (NP) we consider a general Mond-Weir dual problem

\[
\begin{align*}
\text{(MWD)} & \quad \text{Maximize} & & f(u) \\
& & \text{subject to} & (df)^+(u,\eta(x,u)) + y^T (dg)^+(u,\eta(x,u)) \geq 0, \quad \forall x \in X,
\end{align*}
\]
\[y^T g(u) \geq 0, \]
\[y \geq 0, u \in X^0, y \in \mathbb{R}^m. \]

Let \(W_1 \) denote the set of all feasible solutions to Problem (MWD). We assume that \(X^0 \) is a nonempty \(\eta \)-locally starshaped set.

Theorem 5.1. (Weak Duality) If \(x \in X, (u, y) \in W_1, f \) is slspb-preinvex and \(y^T g \) is slqb-preinvex on \(X^0 \), then \(f(x) \geq f(u) \).

Corollary 5.2. Let \(\bar{x} \in X \) and \((\bar{u}, \bar{y}) \in W_1 \) such that \(f(\bar{x}) = f(\bar{u}) \). If the hypotheses of Theorem 5.1 hold, then \(\bar{x} \) and \((\bar{u}, \bar{y}) \) are the optimal solutions to (NP) and (MWD) respectively.

Theorem 5.3. (Direct Duality) Let \(\bar{x} \in X \) be an optimal solution to (NP), let \(f \) and \(g \) be \(\eta \)-semidifferentiable at \(\bar{x} \), and assume that

- \(i_1 \) \((df)^+(\bar{x}, \eta(x, \bar{x})) \) and \(y^T (dg)^+(\bar{x}, \eta(x, \bar{x})) \) are preinvex functions of \(x \) on \(X^0 \), an \(\eta \)-locally starshaped set at \(\bar{x} \);
- \(i_2 \) \(g_i (i \in J) \) are continuous at \(\bar{x} \);
- \(i_3 \) \(g \) satisfies the generalized Slater’s constraint qualification at \(\bar{x} \).

Then there exists \(\bar{y} \in \mathbb{R}^m \) such that \((\bar{x}, \bar{y}) \in W_1 \) and \(f(\bar{x}) = \Psi(\bar{x}, \bar{y}) \).

Moreover, if the hypotheses of Theorem 5.1 are satisfied, then \(\bar{x} \) and \((\bar{x}, \bar{y}) \) are respectively optimal solutions to (NP) and (MWD).

Theorem 5.4. (Converse Duality) Let \((\bar{u}, \bar{y}) \in W_1 \). If \(f \) is slspb-preinvex and \(\bar{y}^T g \) is slqb-preinvex and there exists \(\bar{x} \in X \) such that \(f(\bar{x}) = f(\bar{u}) \), then \(\bar{x} \) solves the primal problem.

Remark 5.5. If \(\eta(x, u) = x - u \) we obtain the Mond-Weir dual considered by Suneja and Gupta [5].

Remark 5.6. Since the class of semilocally b-preinvex functions includes the class of semilocally b-convex, the class of semilocally preinvex functions and the class of b-preinvex functions, our results generalize those of Preda, Stancu-Minasian and Batatorescu [2], Suneja and Gupta [5] and Suneja et al. [6]. The proofs of all theorems will appear in [4].

REFERENCES

Received November 10, 2002