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SUPERSONIC FLOW  PAST A GRID OF THIN PROFILES
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In the framework of  the small perturbation theory, we study the supersonic flow past a grid of small
profiles. We calculate the lift and moment coefficients for an arbitrary profile from the grid. As a
particular case we derive the aerodynamic coefficients for a  profile in a wind tunnel.
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1. INTRODUCTION

In the present paper we use the small perturbations theory to study the supersonic flow past a grid of
thin profiles. Our aim is to calculate the aerodynamic coefficients of a certain profile belonging to the grid.
Unlike the case of a single profile, one has to take into account the reflections of the bow shock waves from
the other profiles (in the particular geometry we have in view, the shock waves emerging from the leading
edge of the profile are reflected only by the profile itself and by the profiles situated under and above the
profile taken into consideration).

A similar phenomenon of reflection of the bow shock waves occurs in the case of a supersonic flow
past a profile in a wind tunnel [1], [2]. It is well known that employing the method of images, one may
investigate the flow past a profile in a wind tunnel by studying the flow past a particular grid of profiles. Our
results generalize the results obtained in the case of the flow in a wind tunnel.

2. STATEMENT OF THE PROBLEM

We consider that a uniform supersonic flow having at infinity upstream velocity Ui, pressure p∞  and
density  ρ∞  is  perturbed by the presence of a grid of thin profiles. Taking the length of the profiles 0L , the
unperturbed velocity Ui, and the unperturbed density ρ∞ , respectively, as characteristic length, velocity and
density, we have the following relations between the dimensional quantities 1 1 1 1 1, , , ,x y U V p  and the
dimensionless ones , , , ,x y u v p :

2
1 1 0 1 1 1( , ) ( , ), (1 ), , .x y L x y U U u V Uv p p U pρ∞ ∞= = + = = + (2.1)

Obviously, ( , )u v  is the dimensionless perturbation velocity and p is the dimensionless perturbation
pressure. From (2.1) and the Euler and continuity equations, neglecting the products of the perturbation
quantities, we obtain the linearized dimensionless system

2 0,u v pM
x y x

∂ ∂ ∂+ + =
∂ ∂ ∂

(2.2)
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0,u p
x x

∂ ∂+ =
∂ ∂

(2.3)

0,v p
x y

∂ ∂+ =
∂ ∂

(2.4)

lim ( , , ) 0.x u v p→∞ = (2.5)

where  
pM γ
ρ

∞

∞

=  is the Mach number (γ  is the isentropic constant).

     System (2.2) – (2.4) is equivalent to the system

0
0 ,
0

x y

u u
v v
p p

     
     + =     
          

A B

with
2

2

1 0 1 0 1 0
1 0 1 , 0 0 0 , 1.
0 1 0 0 0 1

k
k M

 +  
   = = = −   

     

A B

The eigenvalues of the matrix

2

1

2

10 0

0 0 1
10 0

k

k

−

 − 
 

=  
 
   

A B

are 
1 10, , .I II IIIk k

λ λ λ= = = −

Hence the characteristics of  system (2.2) – (2.4) are

0

1

2

d 0 ,( )
d
d 1 ,( )
d
d 1 .( )
d

y y C I
x
y x ky C II
x k
y x ky C III
x k

= ⇒ =

= ⇒ − =

= − ⇒ + =

The Riemann invariants (i.e. the functions  which are constant along the characteristics),

( , ) ( ), ( , ) ( ), ( , ) ( ),I I II II III IIIf x y f y f x y f x ky f x y f x ky= = − = +

are solutions of the systems of the first order partial differential equations
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( )( )1

0
0 , , , .
0

i

T i
i

i

f
u
f i I II III
v
f
p

λ−

 ∂
 ∂   

∂   − = =   ∂     ∂ 
 ∂ 

A B I

For 0Iλ = , we have

2 2

0 0 0 0
1 10 0 ,

00 1 0

I

I

I

f
u
f

k k v
f
p

 ∂
   ∂     ∂    − =     ∂      ∂  
 ∂ 

whence

0, 0.I I If f f
v u p

∂ ∂ ∂= − =
∂ ∂ ∂

(2.6)

Since a solution of system (2.6) is If u p= + , we have

( , ) ( , ) ( ).Iu x y p x y f y+ = (2.7)

For 
1

II k
λ =  we have

2 2

1 0 0
0

1 1 1 0 ,
010 1

II

II

II

f
k u

f
k k k v

f
k p

 ∂ −    ∂    
∂    − − =     ∂      ∂  −   ∂   

whence

0, 0.II II IIf f fk
u p p

∂ ∂ ∂= − =
∂ ∂ ∂

(2.8)

Since a solution of system (2.8) is ( )1
2IIf v kp= + , we have

( , ) ( , ) 2 ( )IIv x y kp x y f x ky+ = − (2.9)

For 
1

III k
λ = −  we have
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2 2

1 0 0
0

1 1 1 0 ,
010 1

III

III

III

f
k u

f
k k k v

f
k p

 ∂ 
   ∂    

∂    − =     ∂      ∂     ∂   

whence

0, 0.III III IIIf f fk
u p p

∂ ∂ ∂= + =
∂ ∂ ∂

(2.10)

Since a solution of system (2.10) is 
1 ( )
2IIIf v kp= − , we have

( , ) ( , ) 2 ( ).IIIv x y kp x y f x ky− = + (2.11)

It follows from (2.9) and (2.11) that

( , ) ( ) ( ),II IIIv x y f x ky f x ky= − + + (2.12)

( ) ( )1( , ) .II IIIp x y f x ky f x ky
k

= − − +   (2.13)

Since the boundary of the flow domain is not smooth, the discontinuities of the pressure and velocity
(appearing from the slipping condition in the points, including the edges, where the direction of the tangent
at the boundary is not continuous) will propagate along the characteristics which will be  shock waves. These
shock waves can also be reflected by the profiles. The jump conditions across the shock waves are

[ ] [ ] ( )[ ]2 1 0,x y xu n v n k p n+ + + = (2.14)

[ ] [ ]( ) 0,xu p n+ = (2.15)

[ ] [ ] 0.x yv n p n+ = (2.16)

We obtain these jump conditions from the Rankine – Hugoniot jump conditions

[ ] [ ]( ) 0,x yn n+ =u f u

which we impose on the weak solutions of the system

( )
x y

∂ ∂+ =
∂ ∂
u f u 0 (2.17)

across the lines of discontinuity ([3], page 16).   In equations (2.14) – (2.16), [ ] [ ],u v and [ ]p  represent the

jump of ,u v  and p  across the shock wave and ( , )x yn n=n is the unit normal at the shock waves. We notice
that the jump conditions (2.14) – (2.16) may be also obtained by linearizing the Rankine – Hugoniot jump
conditions for the nonlinear Euler equations ([1], page 289).

   In the sequel we shall demonstrate that the Riemann invariants corresponding to a characteristic from
a certain family do not change when  crossing a characteristic (from another family) which is a shock wave.
For the characteristics 0y C=  from family (I), the unit normal is
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( , ) (1,0).x yn n= =n (2.18)

For the characteristics 1x ky C− =  from family (II), the unit normal is

2 2

1( , ) , .
1 1

x y
kn n

k k

 −= =  
+ + 

n (2.19)

For the characteristics 2x ky C+ =  from family (III) the unit normal is

2 2

1( , ) , .
1 1

x y
kn n

k k

 
= =  

+ + 
n (2.20)

It follows from (2.7) and (2.15) that [ ] 0=xI nf  across the characteristics from families (II) and (III). It
follows then from (2.19) and (2.20) that

[ ] 0If = (2.21)

across the characteristics from these families. Let us prove that [ ] 0IIf =  on the characteristics from family
(III). It follows from (2.7), (2.14) and (2.21) that

[ ] [ ]2 0y xv n k p n+ = (2.22)

From (2.20) and (2.22) we obtain

[ ] [ ] 0,v k p+ = (2.23)

whence, taking into account (2.9),

[ ] 0IIf =  across 2 0x ky C+ − = . (2.24)

Similarly we prove that

[ ] 0IIIf =  across 1 0x ky C− − = . (2.25)

From (2.14), (2.15), (2.16) and (2.18) we deduce that [ ] [ ] 0v p= =  across the characteristics from family
(I), whence

[ ] [ ] 0II IIIf f= =  across 0 0.y C− =

Hence along the characteristics, the corresponding Riemann invariants may change only at the points
where the characteristics intersect the profiles from the grid.

3. CALCULUS OF THE PRESSURE FIELD

  The equations of the upper, respectively lower surface of an arbitrary airfoil belonging to the grid are

[ ]( ), 0,1 ,n ny a h x x+= + ∈ (3.1)

[ ]( ), 0,1 ,n ny a h x x−= + ∈ (3.2)
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respectivey, where ( ) 1, '( ) 1.n
n n

dhh x h x
dx

±
± ±<< = <<

  We suppose that 1n na a +> . In the sequel we are going to prove that in the domain 1n na y a+ ≤ ≤ we
have

( )( )
2

1
0

( ) '

m

III n n n
j

f x ky h jk a aξ

 
  

−
+

=

+ = − 2 −∑ ( )( )
1

2

1 1
1

' ( 1)

m

n n n
j

h j k a aξ

+ 
  

+
+ +

=

− − 2 − −∑ (3.3)

for 1 1( ) ( 1) ( )n n n nmk a a m k a aξ+ +− < < + − , nx ky kaξ+ = + , ( )0,1 .ξ ∈

( )( )
1

2

1 1
1

( ) ' ( 1)

m

II n n n
j

f x ky h j k a aξ

+ 
  

+
+ +

=

− = − 2 − − −∑ ( )( )
2

1
1

'

m

n n n
j

h jk a aξ

 
  

−
+

=

− 2 −∑ , (3.4)

for 1 1( ) ( 1) ( )n n n nmk a a m k a aξ+ +− < < + − , ( ), 0,1 .nx ky kaξ ξ− = − ∈

( )( )
1

2

1
1

( ) ' ( 1)

m

III n n n
j

f x ky h j k a aξ

+ 
  

−
+

=

+ = − 2 − −∑ ( )( )
2

1 1
1

'

m

n n n
j

h jk a aξ

 
  

+
+ +

=

− − 2 −∑ , (3.5)

for 1 1( ) ( 1) ( )n n n nmk a a m k a aξ+ +− < < + − , ( )1, 0,1 .nx ky kaξ ξ++ = + ∈

( )( )
2

1 1
0

( ) '

m

II n n n
j

f x ky h jk a aξ

 
  

+
+ +

=

− = − 2 −∑ ( )( )
1

2

1
1

' ( 1)

m

n n n
j

h j k a aξ

+ 
  

−
+

=

− − 2 − −∑ , (3.6)

for 1 1( ) ( 1) ( )n n n nmk a a m k a aξ+ +− < < + − , ( )1, 0,1 .nx ky kaξ ξ+− = − ∈

We shall first prove (3.3) – (3.6) for 0.m =  For ( )10 n nk a aξ +< < −  the characteristics

nx ky kaξ− = −  and 1nx ky kaξ ++ = +  may be prolonged to infinity upstream without intersecting the grid
of profiles. Hence from condition (2.5), follows

( ) ( )limII x IIf x ky f x ky→−∞− = −    for  ( )1,0n n nx ky ka k a aξ ξ +− = − < < − , (3.7)

( ) ( )limIII x IIIf x ky f x ky→−∞+ = +    for  ( )1,0n n nx ky ka k a aξ ξ ++ = + < < − . (3.8)

From the linearized slipping condition

( ) ( ), 0 'n nv a hξ ξ±± = (3.9)

and from relations (2.12), (3.7) and (3.18) we obtain

( ) '( )III nf x ky h ξ−+ =    for  ( )1,0n n nx ky ka k a aξ ξ ++ = + < < − , (3.10)

( ) 1 '( )II nf x ky h ξ+
+− =   for ( )1,0n n nx ky ka k a aξ ξ +− = − < < − . (3.11)

Hence relations (3.3) – (3.6) are checked for m=0. Next  we shall prove that if  relations (3.3) – (3.6)
are valid for 1 1( ) ( 1) ( )n n n nmk a a m k a aξ+ +− < < + − , ( )0,1ξ ∈ , then they also remain valid for

1 1( 1) ( ) ( 2) ( )n n n nm k a a m k a aξ+ ++ − < < + − , ( )0,1ξ ∈ . We have 1( )n nmk a a +− < 1( )n nk a aξ +− − <

1( 1) ( )n nm k a a +< + −  and taking into account the induction  hypothesis  and  relations (3.6), (3.3) we obtain



7 Supersonic flow past thin profiles

( )1 1( ) ( )II n II n n nf ka f k a a kaξ ξ + +− = − − − =

= ( )
2

1 1
0

' (2 1) ( )

m

n n n
j

h j k a aξ

 
  

+
+ +

=

− + − −∑    ( )
1

2

1 1
1

' 2 ( )

m

n n n
j

h jk a aξ

+ 
  

−
+ +

=

− −∑ =

                              ( )
2

2

1 1
1

' (2 1) ( )

m

n n n
j

h j k a aξ

+ 
  

+
+ +

=

= − − − −∑ ( )
1

2

1
1

' 2 ( )

m

n n n
j

h jk a aξ

+ 
  

−
+

=

− −∑ ,

(3.12)

( ) ( )( ) =+−−=+ ++ nnnIIInIII kaaakfkaf 11 ξξ

( )
2

1 1
0

' (2 1) ( )

m

n n n
j

h j k a aξ

 
  

−
+ +

=

= − + −∑ ( )
1

2

1
1

' 2 ( )

m

n n n
j

h jk a aξ

+ 
  

+
+

=

− − − =∑

( )
2

2

1 1
0

' (2 1) ( )

m

n n n
j

h j k a aξ

+ 
  

−
+ +

=

= − − − −∑ ( )
1

2

1
1

' 2 ( )

m

n n n
j

h jk a aξ

+ 
  

+
+

=

− −∑

(3.13)

From the slipping condition (3.9) and from (2.12) we easily obtain

( ), 0 '( ) ( ) ( )n n III n II nv a h f ka f kaξ ξ ξ ξ−− = = + + − =

= ( )III nf kaξ + + ( )1 1( )II n n nf k a a kaξ + +− − − .
(3.14)

( )1 1, 0 '( )n nv a hξ ξ+
+ ++ = = 1 1( ) ( )III n II nf ka f kaξ ξ+ ++ + − =

1( )II nf kaξ += − ( )( ).1 nnnIII kaaakf +−−+ +ξ .
(3.15)

From (3.12), (3.13), (3.14) and (3.15) we get
( ) '( ) ( )III n n II nf ka h f kaξ ξ ξ−+ = − − =

                              

1
2

1
0

'( 2 ( ))

m

n n n
j

h jk a aξ

+ 
  

−
+

=

= − − −∑
2

2

1 1
1

'( (2 1) ( )).

m

n n n
j

h j k a aξ

+ 
  

+
+ +

=

− − −∑
(3.16)

1 1 1( ) '( ) ( )II n n III nf ka h f kaξ ξ ξ+
+ + +− = − + =

                               

1
2

1
0

'( 2 ( ))

m

n n n
j

h jk a aξ

+ 
  

+
+

=

= − − −∑
2

2

1 1
1

'( (2 1) ( )).

m

n n n
j

h j k a aξ

+ 
  

−
+ +

=

− − −∑
(3.17)

So, we proved by induction the validity of relations (3.3) – (3.6) for every m, provided 0 1ξ< < . From
(2.13), (3.3) and (3.4) we deduce that on the lower surface of the nth profile we have

( ) ( ), , 0n np a p aξ ξ− = − =

=

1
2

1 1
1

2 '( (2 1) ( ))

m

n n n
j

h j k a a
k

ξ

+ 
  

+
+ +

=

− − − −∑ ( )
2

1
1

2 1'( 2 ( )) '

m

n n n n
j

h jk a a h
k k

ξ ξ

 
  

− −
+

=

− − −∑ ,

(3.18)
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 for 1 1( ) ( 1) ( )n n n nmk a a m k a aξ+ +− < < + − , ( )0,1ξ ∈ .
Putting in relations (3.5) and (3.6) 1−n  instead of n, we deduce that on the upper surface of the nth

profile we have
( ) ( ) =+=+ 0,, nn apap ξξ

                 ( ) ( ) ( )( )∑




 +

=
−

−
−

+ +−−−−=
2

1

1
11 12'2'1

m

j
nnnn aakjh

k
h

k
ξξ ( )( )

2

1
1

2 ' 2 .

m

n n n
j

h jk a a
k

ξ

 
  

+
−

=

− −∑
(3.19)

4. CALCULUS OF THE AERODYNAMIC COEFFICIENTS

The aerodynamic coefficients of the n-th airfoil are the lift and the moment coefficients

( ) ( )1( )

0
, , dn

L n nC p a p aξ ξ ξ− += −  ∫ (4.1)

( ) ( )1( )

0
, , dn

M n nC p a p aξ ξ ξ ξ− += −  ∫ (4.2)

Taking for example 1
11 ( )
2n nk a a +≥ − ≥ , 1

11 ( )
2n nk a a−≥ − ≥  we have

1( )

0

1 '( ) '( ) dn
L n nC h h

k
ξ ξ ξ+ − = − + + ∫ 11 ( )

10

2 '( )dn nk a a

nh
k

ξ ξ+− − +
+∫ 11 ( )

10

2 '( )dn nk a a

nh
k

ξ ξ−− − +
++ ∫ (4.3)

1( )

0

1 '( ) '( ) dn
M n nC h h

k
ξ ξ ξ ξ+ − = − + + ∫ 11 ( )

1 10

2 ( ( )) '( )dn nk a a

n n nk a a h
k

ξ ξ ξ+− − +
+ ++ − +∫

11 ( )

1 10

2 ( ( )) '( )dn nk a a

n n nk a a h
k

ξ ξ ξ−− − −
− −+ + −∫

(4.4)

In the case of the grid of flat plates we have

[ ]( ) ( ) , 0,1 ,n nh hξ ξ εξ ξ+ −= = − ∈ (4.5)

and the corresponding coefficients are

( )
1 1

2 ( ( ) 1),n
L n nC k a a

k
ε

− += − − (4.6)

( )2( ) 2 2
1 1( ( ) 1)n

M n n n nC k a a k a a
k
ε

+ −= − + − − (4.7)

5. WIND TUNNEL AND GROUND EFFECTS FOR A SINGLE PROFILE

We consider the profile whose equations are

[ ]( ), 0,1y h x x+= ∈ (5.1)

for the upper surface and
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[ ]( ), 0,1y h x x−= ∈ . (5.2)

for the lower surface.
The profile is situated inside a wind tunnel which has two straight walls

, , , 0, 0
2 2
a by y x a b= − = ∈ > >R (5.3)

It is well known that using the method of images one can obtain the velocity and pressure fields in the

domain 
2 2
a by− < <  if one investigates the flow past a grid of profiles adequately chosen instead of the flow

past the profile in the wind tunnel. The ”-1” profile will be the symmetric of the “0” profile with respect to

the straight line 
2
by =  while the “1” profile will be the symmetric of the “0” profile with respect to the

straight line 
2
ay = − . Hence we have

1 1 1, ( ) ( ), ( ) ( )a b h x h x h x h x+ −
− − − − += = − = − , (5.4)

0 0 00, ( ) ( ), ( ) ( ),a h x h x h x h x+ −
+ −= = = (5.5)

1 1 1, ( ) ( ), ( ) ( )a a h x h x h x h x+ −
− += − = − = − . (5.6)

From (3.18), (3,19), (5.4), (5.5) and (5.6) we get

( , 0)p ξ − = [ ]1 '( ) 2 '( ) ... 2 '(h h ka h mka
k

ξ ξ ξ− − −− + − + + − , [ ]( , ( 1) ) 0,1x mka m ka∈ + ∩ , (5.7)

( , 0)p ξ + [ ]1 '( ) 2 '( ) ... 2 '(h h ka h mka
k

ξ ξ ξ+ + += + − + + − , [ ]( , ( 1) ) 0,1x mka m ka∈ + ∩ . (5.8)

The lift and moment coefficients are

[ ]1

0
( , 0) ( , 0) dLC p pξ ξ ξ= − − +∫ , (5.9)

[ ]1

0
( , 0) ( , 0) dMC p pξ ξ ξ ξ= − − +∫ . (5.10)

Let us consider some examples. For the thin profile in a free stream ( , )a b= ∞ = ∞  we have

[ ]1

0

1 '( ) '( ) dLC h h
k

ξ ξ ξ+ −= − +∫ , (5.11)

[ ]1

0

1 '( ) '( ) dMC h h
k

ξ ξ ξ ξ+ −= − +∫ . (5.12)

For the thin profile in ground effects ( )b = ∞ , taking for example 
11
2

ka≥ ≥ , we have

[ ]1

0

1 '( ) '( ) dLC h h
k

ξ ξ ξ+ −= − + −∫
1

0

2 '( )d
ka

h
k

ξ ξ
−

−∫ , (5.13)
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[ ]1

0

1 '( ) '( ) dMC h h
k

ξ ξ ξ ξ+ −= − + −∫
1

0

2 ( ) '( )d
ka

ka h
k

ξ ξ ξ
−

−+∫ . (5.14)

For the thin profile in a wind tunnel, taking for example 
11
2

ka≥ ≥ , 
11
2

kb≥ ≥ , we have

[ ]1

0

1 '( ) '( ) dLC h h
k

ξ ξ ξ+ −= − + −∫
1 1

0 0

2 2'( )d '( )d
ka kb

h h
k k

ξ ξ ξ ξ
− −

− +−∫ ∫ ,

[ ]1

0

1 '( ) '( ) dMC h h
k

ξ ξ ξ ξ+ −= − + −∫
1 1

0 0

2 2( ) '( )d ( ) '( )d .
ka kb

ka h kb h
k k

ξ ξ ξ ξ ξ ξ
− −

− ++ − +∫ ∫
(5.15)

For the flat plate profile the equations are

[ ]( ) ( ) , 0,1h x h x x xε+ −= = − ∈ , (5.16)

and the corresponding coefficients are

2 , ,L MC C
k k
ε ε= = (5.17)

for the profile in a free stream,

2 22 (2 ), (2 )L MC ka C k a
k k
ε ε= − = − , (5.18)

for the ground effects 




 ≥≥

2
11 ka , and

( ),32 kbka
k

CL −−= ε
, ( )22223 bkak

k
CM −−= ε

, (5.19)






 ≥≥≥≥

2
11,

2
11 kbka , for the profile in a  tunnel. Formulas (5.10) – (5.20) are  those obtained in [1],

page 302 and [2].
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