L.C.K-MANIFOLDS ON A TANGENT BUNDLE DETERMINED BY A RIEMANN, FINSLER OR LAGRANGE STRUCTURE

Radu MIRON*, Hiroshi ENDO**

*"Al.I.Cuza"University, Faculty of Mathematics, 6600 Iași Romania, E-mail : <u>rmiron@uaic.ro</u> ** Utsunomiya University, Yoto 7-1-2, Utsunomiya-shi Japan, E-mail: hsk-endo@cc.utsunomiya-u.ac.jp

We prove that any Riemann structure (M, g) determines a local conformal Kähler manifold on the tangent bundle (TM, π, M) . The Finsler structures and Lagrange structures have the same properties.

Key words : Lck-manifolds, Lagrange spaces

1. INTRODUCTION

As we know ([5], [7]), any Riemann structure $R^n = (M, g)$ determines on the tangent bundle *TM* an almost Kähler structure (*TM*, $\overset{\circ}{\mathbb{G}}, \overset{\circ}{\mathbb{F}}$). We prove that the lift:

$$\left[\mathbb{G} = g_{ij}(x)dx^{i} \otimes dx^{j} + e^{2\sigma(x)}g_{ij}(x)\delta y^{i} \otimes \delta y^{j}\right]$$

of g to TM together with the correspondent almost complex structure:

$$\left[\mathbb{F}(x, y) = -e^{2\sigma(x)} \frac{\partial}{\partial y^{i}} \otimes dx^{i} + e^{2\sigma(x)} \frac{\delta}{\delta x^{i}} \otimes \delta y^{i} \right]$$

generate a local conformal almost Kähler structure (L.c.k)-structure. The same property holds for the Finsler spaces and Lagrange spaces.

2. THE ALMOST KÄHLER MANIFOLD DETERMINED BY A RIEMANN SPACE

Let $R^n = (M, g(x))$ be a Riemann space. The tangent bundle (TM, π, M) has $(x^i, y^i), i = 1, ..., n = \dim M$ as canonical local coordinates.

On the manifold *TM* there exist two distributions *N* and *V*, such that the following direct sum of linear spaces holds at any point $u \in TM$

$$\left[T_{u}TM=N_{u}\oplus V_{u}\right]$$

The horizontal distribution *N* has a local adapted basis $\frac{\delta}{\delta x^i}$, (i = 1, ..., n):

$$\frac{\delta}{\delta x^{i}} = \frac{\partial}{\partial x^{i}} - N_{i}^{j}(x, y) \frac{\partial}{\partial y^{j}}$$
(2.1)

where:

$$N_i^j = \gamma_{ih}^j \left(x \right) y^h \tag{2.2}$$

and $\gamma_{ih}^{j}(x)$ are the Christoffel symbols of the metric tensor $g_{ij}(x)$ of \mathbb{R}^{n} .

The vertical distribution V is integrable, so that it has the adapted basis:

$$\left[\frac{\partial}{\partial y^{i}}, (i = 1, ..., n)\right]$$

The dual basis of $\left(\frac{\delta}{\delta x^{i}}, \frac{\partial}{\partial y^{i}}\right)$ is given by $\left(dx^{i}, \delta y^{i}\right)$, where:
 $\delta y^{i} = dy^{i} + N_{i}^{j}(x, y)dx^{j}$ (2.2')

The Sasaki lift ([3], [4]) of the tensor metric $g_{ij}(x)$ to the manifold *TM* is defined by:

$$\overset{\circ}{\mathbb{G}}(x,y) = g_{ij}(x)dx^{i} \otimes dx^{j} + g_{ij}(x)\delta y^{i} \otimes \delta y^{j}$$
(2.3)

at any point $u = (x, y) \in TM$.

 \mathbb{G} is a Riemanian metric tensor on the manifold *TM*.

The horizontal distribution N determines a natural almost complex structure \mathbf{F} on TM:

$$\overset{\circ}{\mathbb{F}}(x,y) = -\frac{\partial}{\partial y^{i}} \otimes dx^{i} + \frac{\delta}{\delta x^{i}} \otimes \delta y^{i}$$
(2.4)

It is a known fact that \mathbb{F} is a complex structure if and only if the space \mathbb{R}^n is locally flat. Also, the following result is known ([5], [6], [7]).

Theorem 2.1.

1° The pair $\begin{pmatrix} \mathring{\mathbb{G}}, \mathring{\mathbb{F}} \end{pmatrix}$ is an almost Hermitian structure on TM determined only by the Riemannian

structure g(x).

2° The almost symplectic structure associated to $\begin{pmatrix} \mathring{G}, \mathring{F} \end{pmatrix}$ is given by:

$$\overset{\circ}{\theta} = g_{ij}(x)\delta y^{i} \wedge dx^{j}$$
(2.5)

The manifold $\left(TM, \overset{\circ}{\mathbb{G}}, \overset{\circ}{\mathbb{F}}\right)$ is an almost Kählerian space, determined only by a Riemannian structure space g(x) i.e. we have:

$$d\theta = 0 \tag{2.6}$$

Also, we have:

Theorem 2.2. The manifold $\left(TM, \overset{\circ}{\mathbb{G}}, \overset{\circ}{\mathbb{F}}\right)$ is a Kähler manifold if and only if the Riemann space $R^n = (M, g)$ is locally flat.

3. L.C.K-MANIFOLD DETERMINED BY RIEMANNIAN SPACE R^n

Let us consider on the manifold *M* the conformal change:

$$g(x) \rightarrow e^{2\sigma(x)}g(x)$$

of the metric tensor g, where $\sigma(x)$ is a differentiable function, locally defined. We denote:

$$\overline{g}_{ij}(x) = e^{2\sigma(x)}g(x) \tag{3.1}$$

On the manifold *TM* we locally define the tensor field:

$$\mathbb{G}(x,y) = g_{ij}(x)dx^{i} \otimes dx^{j} + \overline{g}_{ij}(x)\delta y^{i} \otimes \delta y^{i}$$
(3.2)

where \overline{g}_{ij} is from (3.1). The distributions N and V are orthogonal with respect to \mathbb{G} .

Consider, also, the tensor field:

$$\mathbb{F} = -e^{-2\sigma(x)} \frac{\partial}{\partial y^{i}} \otimes dx^{i} + e^{2\sigma(x)} \frac{\delta}{\delta x^{i}} \otimes \delta y^{i}$$
(3.3)

The following properties of \mathbb{F} hold:

Theorem 3.1.

1° \mathbb{F} is locally defined on the manifold TM.

2° \mathbb{F} depends only on the conformal structure defined by the Riemann structure g(x) on the base manifold M.

 $3^{o} \mathbb{F}$ is a tensor field of type (1,1).

 $4^{\circ} \mathbb{F}$ is an almost complex structure.

 $5^{o} \mathbb{F}$ is a complex structure if and only if:

a. The space $R^n = (M, g)$ is locally flat and

b. The function $\sigma(x)$ is constant.

The proof of this theorem is not difficult. Also, we can prove:

Theorem 3.2.

1° The pair (\mathbb{G},\mathbb{F}) is an almost Hermitian structure locally determined on TM

by the conformal structure $\overline{g}(x)$.

2° The almost symplectic structure $\overline{\theta}$ associated to (\mathbb{G},\mathbb{F}) is:

$$\overline{\theta} = e^{2\sigma(x)}\theta$$

3° The following property holds:

$$d\overline{\theta} = 0, (\text{modulo}\overline{\theta})$$

4° The manifold $(TM, \mathbb{G}, \mathbb{F})$ is locally conformal with an almost Kähler manifold.

If \mathbb{R}^n is locally flat, then $(TM, \mathbb{G}, \mathbb{F})$ is a local conformal with a Kähler manifold.

4. L.C.K-MANIFOLD ON TM DETERMINED BY A FINSLER STRUCTURE

Let $F^n = (M, \mathbb{F}(x, y))$ be a Finsler manifold, having $\mathbb{F}(x, y)$ as fundamental function, and:

$$g_{ij}(x,y) = \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j}, \forall (x,y) \in \widetilde{TM} = TM \setminus \{0\}$$

$$(4.1)$$

as fundamental tensor field. We denote by N the Cartan nonlinear connection, with coefficients:

$$N_{j}^{i}(x,y) = \frac{1}{2} \frac{\partial}{\partial y^{j}} \left(y_{rs}^{j}(x,y) y^{r} y^{s} \right)$$

$$(4.2)$$

 γ_{js}^{i} being the Christoffel symbols of the fundamental tensor field $g_{ij}(x, y)$ of the space F^{n} .

The direct decomposition $T_u TM = N_u \oplus V_u$ holds and an adapted basis to N_u and V_u , $\forall u \in \widetilde{TM} = TM \setminus \{0\}$ is given by $\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^i} (i = 1, ..., n)$, where $\frac{\delta}{\delta x^i}$ are defined by (2.1) and (4.2). Its dual basis is $(dx^i, \delta y^i)$, the 1-forms δy^i being expressed in (2.2)', (4.2).

The Sasaki-Matsumoto ([5], [7]) lift of $g_{ii}(x, y)$ to \widetilde{TM} is:

$$\overset{\vee}{\mathbb{G}}(x,y) = g_{ij}(x,y)dx^{i} \otimes dx^{j} + g_{ij}(x,y)dy^{i} \otimes dy^{j}$$

$$\tag{4.3}$$

and the almost complex structure $\overset{\vee}{\mathbb{F}}$ determined by the Cartan nonlinear connection is given by (2.4), (4.2).

The following result is known ([5], [7]):

Theorem 4.1.

1° The pair $(\overset{\check{}}{\mathbb{G}},\overset{\check{}}{\mathbb{F}})$ is an almost Hermitian structure determined only by the fundamental function $\mathbb{F}(x,y)$.

2° The almost symplectic structure associated to $\begin{pmatrix} \check{\mathbb{G}}, \check{\mathbb{F}} \end{pmatrix}$ is given by the 2-form:

$$\stackrel{\diamond}{\theta}(x,y) = g_{ij}(x,y)\delta y^i \wedge dx^j$$

3° The structure $\overset{\circ}{\theta}$ is symplectic, i.e., $d\overset{\circ}{\theta} = 0$. 4° The manifold $\left(\widetilde{TM}, \overset{\circ}{\mathbb{G}}, \overset{\circ}{\mathbb{F}}\right)$ is almost Kählerian.

Now, let us consider the conformal transformation:

$$\overline{\mathbb{F}}(x,y) = e^{2\sigma(x)} \mathbb{F}(x,y), \qquad (4.4)$$

of the fundamental function $\mathbb{F}(x, y)$, where $\sigma(x)$ is a local differentiable function on the base manifold *M*.

With respect to (4.4) we have the conformal transformation:

$$\bar{g}_{ij}(x,y) = e^{2\sigma(x)}g_{ij}(x,y),$$
(4.5)

of the fundamental tensor field. Now, we consider the following lift of $g_{ij}(x, y)$ and $\overline{g}_{ij}(x, y)$:

$$\overline{\mathbb{G}}(x,y) = g_{ij}(x,y)dx^{i} \otimes dx^{j} + e^{2\sigma(x)}g_{ij}(x,y)dy^{i} \otimes dy^{j}$$
(4.6)

and the following tensor field of (1,1) type:

$$\overline{\mathbb{F}}(x,y) = -e^{2\sigma(x)}\frac{\partial}{\partial y^{i}} + e^{2\sigma(x)}\frac{\delta}{\delta x^{i}} \otimes \delta y^{i}$$
(4.7)

The proof of the following theorem is not hard.

Theorem 4.2.

1° The pair $(\overline{\mathbb{G}}, \overline{\mathbb{F}})$ is an almost Hermitian structure locally determined on the manifold \widetilde{TM} by the fundamental functions $\mathbb{F}(x, y)$ and $\overline{\mathbb{F}}(x, y) = e^{2\sigma(x)} \mathbb{F}(x, y)$.

2° The associated almost symplectic structure $\overline{\theta}$ is:

$$\overline{\theta}(x, y) = e^{2\sigma(x)} \overset{\vee}{\theta}(x, y)$$

3° The following property holds:

$$d\overline{\theta} = 0$$
, (modulo θ)

 $4^{\circ}\left(\widetilde{TM},\overline{\mathbb{G}},\overline{\mathbb{F}}\right)$ is a (L.c.k)-manifold.

Finally, we remark that the previous theory can be extended, step by step, to Lagrange spaces $L^n = (M, L(x, y))$ ([4], [5]).

REFERENCES

- 1. ENDO, H, *On Ricci curvatures of almost cosymplectic manifolds*, Analele Stiintifice Ale Univ. "Al.I.Cuza" Iasi Tomul XL, s.I.a, Mat., 1994, fl. 75-83.
- 2. ENDO, H, *On invariant submanifolds of cosymplectic manifolds*, Analele Stiintifice Ale Univ. "Al.I.Cuza" Iasi Tomul XLVII, s.I.a, Mat., 2001, fl. 143-152.
- 3. KASHIWADA, T, Some properties of locally conformal Kähler manifolds, Hokkaido Math. J. Vol 8, 1979, 191-198.

4. MIRON, R, Lagrangian theory of Relativity, Univ. Timisoara, 84, (1985), 53pg.

- 5. MIRON, R, ANASTASIEI, M, *The Geometry of Lagrange Spaces; Theory and Applications*, Kluwer Acad publ. FTPH No.59, 1994.
- 6. MIRON, R., MATSUMOTO, K, *The almost Hermitian structures determined by Riemannian structures on tangent bundle*, to appear in AGG-Hadronic Press.2002.
- 7. MIRON, R, HRIMIUC, D, SHIMADA, H., SABĂU, V.S: *The Geometry of Hamilton and Lagrange spaces*, Kluwer Acad. Publ. FTPH. no.118, 2001.
- 8. VAISMAN, I., On locally conformal almost Kähler manifolds, Israel J. of Math., Vol 24, Nos. 3-4, 1976, 338-351.

Received February 3, 2003