# ON COLLINEAR AND QUASI-COLLINEAR INVOLUTIONS 

Richard GABRIEL

Hardtstr. 36, D-76185 Karlsruhe, Germany

> We show that involution collinearity and involution quasi-collinearity are equivalent concepts in the projective group $\boldsymbol{P}_{1}(\boldsymbol{F})$.

An element $\boldsymbol{i} \neq \boldsymbol{e}$ in a group with unity $\boldsymbol{e}$ is said to be an involution if $\boldsymbol{i}^{2}=\boldsymbol{e}$.
Three involutions $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}$, where at least two of them are different, are said to be collinear if their product also is an involution: $\boldsymbol{i}_{1} \boldsymbol{i}_{2} \boldsymbol{i}_{3}=\boldsymbol{i}$. This definition was given by J.Hjemslev and G.Hessenberg; later Bachmann [1] used it in order to develop a plane geometry foundation based on group theory. In [2] we have investigated it in various groups and algebras, especially in symmetric groups.

Three involutions $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}$ are said to be quasi-collinear if there exists an element $\boldsymbol{c} \neq \boldsymbol{e}$ such that the products

$$
c i=i_{1}^{\prime}, c i_{2}=\boldsymbol{i}_{2}^{\prime}, c \boldsymbol{i}_{3}^{\prime}=i_{3}^{\prime}
$$

all are involutions. We have introduced this definition in [3] in connection with uniqueness of the solution to a three-message problem in a group.

Let $\boldsymbol{F}$ be a field and $\boldsymbol{P}_{1}(\boldsymbol{F})$ the associated projective group; it consists of all homographies of $\boldsymbol{F}$, i.e. of all maps of the form:

$$
y=\frac{a x+b}{c x+d}, \quad x \in F
$$

with $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \boldsymbol{F}$. Such a map can be homeomorphically represented by the matrix:

$$
K=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then the product of two homographies corresponds to the products of the two associated matrices. An involution is characterized by $\boldsymbol{d}=-\boldsymbol{a}$ and $\operatorname{det} \boldsymbol{K} \neq 0$.

Proposition. For any three involutions $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}$ in $\boldsymbol{P}_{1}(\boldsymbol{F})$ the following statements are equivalent:
(i) $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}$ are collinear: $\boldsymbol{i}_{1} \boldsymbol{i}_{2} \boldsymbol{i}_{3}=\boldsymbol{i}$;
(ii) $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}$ are quasi-collinear: $\boldsymbol{c i}=\boldsymbol{i}_{1}^{\prime}, c \boldsymbol{i}_{2}=\boldsymbol{i}_{2}^{\prime}, c \boldsymbol{i}_{3}=\boldsymbol{i}_{3}^{\prime}, \boldsymbol{c} \neq \boldsymbol{e}$;
(iii) the matrices:

$$
\boldsymbol{K}_{1}=\left[\begin{array}{cc}
x_{1} & x_{2} \\
\boldsymbol{x}_{3} & -x_{1}
\end{array}\right], \quad \boldsymbol{K}_{2}=\left[\begin{array}{cc}
\boldsymbol{y}_{1} & \boldsymbol{y}_{2} \\
\boldsymbol{y}_{3} & -\boldsymbol{y}_{1}
\end{array}\right], \quad \boldsymbol{K}_{3}=\left[\begin{array}{cc}
z_{1} & z_{2} \\
z_{3} & -z_{1}
\end{array}\right]
$$

associated with the involutions $\boldsymbol{i}_{1}, \boldsymbol{i}_{2}, \boldsymbol{i}_{3}$ are linearly dependent.
Proof. Obviously, (iii) is equivalent to

$$
\left|\begin{array}{lll}
x_{1} & x_{2} & x_{3}  \tag{iv}\\
y_{1} & y_{2} & y_{3} \\
z_{1} & z_{2} & z_{3}
\end{array}\right|=0
$$

We will show that both (i) and (ii) are equivalent to (iv). First, let us calculate the product

$$
\begin{gathered}
\boldsymbol{K}_{1} \boldsymbol{K}_{2} \boldsymbol{K}_{3}=\left[\begin{array}{cc}
x_{1} & x_{2} \\
x_{3} & -x_{1}
\end{array}\right]\left[\begin{array}{cc}
y_{1} & y_{2} \\
y_{3} & -y_{1}
\end{array}\right]\left[\begin{array}{cc}
z_{1} & z_{2} \\
z_{3} & -z_{1}
\end{array}\right]= \\
=\left[\begin{array}{cc}
x_{1} y_{1} z_{1}+x_{2} y_{3} z_{1}+x_{1} y_{2} z_{3}-x_{2} y_{1} z_{3} & * \\
* & x_{3} y_{1} z_{2}-x_{1} y_{3} z_{2}-x_{3} y_{2} z_{1}-x_{1} y_{1} z_{1}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{a} & \boldsymbol{b} \\
\boldsymbol{c} & d
\end{array}\right] .
\end{gathered}
$$

Now it is clear that $\boldsymbol{a}+\boldsymbol{d}=0$, that is, (i) is equivalent to (iv).
Second, let $\boldsymbol{C} \neq \boldsymbol{\lambda} \boldsymbol{I}$ be a matrix with $\operatorname{det} \boldsymbol{C} \neq 0$ consider the products

$$
\begin{aligned}
& \boldsymbol{C K}_{1}=\left[\begin{array}{ll}
\boldsymbol{c}_{1} & \boldsymbol{c}_{2} \\
\boldsymbol{c}_{3} & \boldsymbol{c}_{4}
\end{array}\right]\left[\begin{array}{cc}
x_{1} & \boldsymbol{x}_{2} \\
x_{3} & -\boldsymbol{x}_{1}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{c}_{1} x_{1}+\boldsymbol{c}_{2} x_{3} & * \\
* & \boldsymbol{c}_{3} x_{2}-\boldsymbol{c}_{4} x_{1}
\end{array}\right] \\
& \boldsymbol{C K}=\left[\begin{array}{ll}
\boldsymbol{c}_{1} & \boldsymbol{c}_{2} \\
\boldsymbol{c}_{3} & \boldsymbol{c}_{4}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{y}_{1} & \boldsymbol{y}_{2} \\
\boldsymbol{y}_{3} & -\boldsymbol{y}_{1}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{c}_{1} y_{1}+\boldsymbol{c}_{2} y_{3} & * \\
* & \boldsymbol{c}_{3} y_{2}-\boldsymbol{c}_{4} y_{1}
\end{array}\right] \\
& \boldsymbol{C K}_{3}=\left[\begin{array}{ll}
\boldsymbol{c}_{1} & \boldsymbol{c}_{2} \\
\boldsymbol{c}_{3} & \boldsymbol{c}_{4}
\end{array}\right]\left[\begin{array}{ll}
z_{1} & z_{2} \\
z_{3} & -z_{1}
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{c}_{1} z_{1}+\boldsymbol{c}_{2} z_{3} & * \\
* & \boldsymbol{c}_{3} z_{2}-\boldsymbol{c}_{4} z_{1}
\end{array}\right]
\end{aligned}
$$

These matrices are associated with involutions if and only if

$$
\begin{align*}
& \left(c_{1}-c_{4}\right) x_{1}+c_{3} x_{2}+c_{2} x_{3}=0 \\
& \left(c_{1}-c_{4}\right) y_{1}+c_{3} y_{2}+c_{2} y_{3}=0  \tag{v}\\
& \left(c_{1}-c_{4}\right) z_{1}+c_{3} z_{2}+c_{2} z_{3}=0
\end{align*}
$$

and it is easy to see that (v) is equivalent to (iv).

## Remarks.

1. Statement (ii) is a consequence of statement (i) even in an arbitrary group $\boldsymbol{G}$. Indeed, from $\boldsymbol{i}_{1} \boldsymbol{i}_{2} \boldsymbol{i}_{3}=\boldsymbol{i}$ we get

$$
\left(i_{1} i_{2}\right) i_{3}=i=i_{3}^{\prime},\left(i_{1} i_{2}\right) i_{2}=i_{1}=i_{2}^{\prime},\left(i_{1} i_{2}\right) i_{1}=i_{1}^{\prime} .
$$

With $\boldsymbol{c}=\boldsymbol{i}_{1} \boldsymbol{i}_{2} \neq \boldsymbol{e}$, statement (ii) is satisfied as soon as $\boldsymbol{i}_{1} \neq \boldsymbol{i}_{2}$.
2. In a Bachmann geometry, the group $\boldsymbol{P}_{1}(\boldsymbol{F})$ is essential. Therefore, collinearity and quasicollinearity in $\boldsymbol{P}_{1}(\boldsymbol{F})$ are equivalent concepts.
3. In an infinite symmetric group there are, however, quasi-collinear involutions which are not collinear.

## REFERENCES

1. BACHMANN, F., Aufbau der Geometrie aus dem Spiegelungsbegriff. Berlin, 1959.
2. GABRIEL, R., Eine Kollinearitätsbedingung für Involutionen in Gruppen und Algebren. J. Reine Angew. Math. 267, pp. 20 49, 1974.
3. GABRIEL, R., Three-message problem in a symmetric group with application to a cryptographic method. Rev. Roumaine Math. Pures Appl. 45, pp. 937-941, 2000.
