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ON COLLINEAR AND QUASI-COLLINEAR INVOLUTIONS

Richard GABRIEL

Hardtstr. 36, D-76185 Karlsruhe, Germany

We show that involution collinearity and involution quasi-collinearity  are equivalent concepts  in the
projective group )(1 FP .

An element ei ≠  in a group with unity e is said to be an involution if ei =2 .
Three involutions i i i1 2 3, , , where at least two of them are different, are said to be collinear if their

product also is an involution: i i i i1 2 3 = . This definition was given by J.Hjemslev and G.Hessenberg; later
Bachmann [1] used it in order to develop a plane geometry foundation based on group theory. In [2] we have
investigated it in various groups and algebras, especially in symmetric groups.

Three involutions i i i1 2 3, ,  are said to be quasi-collinear if there exists an element ec ≠  such that the
products

1 2 2 3 3, ,′ ′ ′= = =c i i ci i cí i

all are involutions. We have introduced this definition in [3] in connection with uniqueness of the solution to
a three-message problem in a group.

Let F be a field and )(1 FP  the associated projective group; it consists of all homographies of F, i.e.
of all maps of the form:
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with  a, b, c, d ∈  F. Such a map can  be homeomorphically represented by the matrix:
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Then the product of two homographies corresponds to the products of the two associated matrices. An
involution is characterized by ad −= and .0det ≠K

Proposition. For any three involutions i i i1 2 3, ,  in )(1 FP the following statements are equivalent:
(i)  i i i1 2 3, ,  are collinear: i i i i1 2 3 = ;
(ii) i i i1 2 3, ,  are quasi-collinear: 33221 ,, iíciciiic ′=′=′= ,  ec ≠ ;
(iii) the matrices:
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associated with the involutions i i i1 2 3, ,  are linearly  dependent.

Proof. Obviously, (iii) is equivalent to
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We will show that both (i) and (ii) are equivalent to (iv). First, let us calculate the product
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Now it is clear that a + d = 0, that is, (i) is equivalent to (iv).

Second, let IC λ≠  be a matrix with 0det ≠C  consider the products
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These matrices are associated with involutions if and only if
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and it is easy to see that (v) is equivalent to (iv). 

Remarks.
1. Statement (ii) is a consequence of statement (i) even in an arbitrary group G. Indeed,

from i i i i1 2 3 =  we get

3321 )( iiiii ′== , 21221 )( iiiii ′== , 1121 )( iiii ′= .

With eiic ≠= 21 , statement (ii) is satisfied as soon as 21 ii ≠ .

2. In a Bachmann geometry, the group )(1 FP  is essential. Therefore, collinearity and quasi-
collinearity in )(1 FP  are equivalent concepts.



3 On collinear and qusi-collinear involutions

3. In an infinite symmetric group there are, however,  quasi-collinear involutions which are not
collinear.
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