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1.  THE GENERALIZED RAYLEIGH DISTRIBUTION

Let k and θ be positive real numbers. The function ),0(),0(:),;(~ ∞→∞θ⋅ρ k  defined by

212
1

)1(
2),;(~ xk

k
ex

k
kx −+

+

+Γ
θ=θρ (1)

is a probability density function with respect to the Lebesgue measure restricted to ),0( ∞ .
The probability measure defined over the domain ),0( ∞  having the probability density function

),;(~ kθ⋅ρ  is called the generalized Rayleigh distribution. This distribution has two parameters θ and k and it
is denoted in the following by kRG ,θ . It was introduced by Voda in [1],[14] and [15] and independently by
Bury ([2]) in another similar form. This distribution is different from a noncentral chi-square distribution
advocated by Miller and others in [8], [9], [4] and [12], that is used in thermodynamics and signal processing
and is also referred to as generalized Rayleigh distribution or Ricean distribution ([6]). The nomination of
generalized Rayleigh distribution is somehow unfortunate since Miller generated a lot of research on the
direction of norms of Gaussian variates, see [1] and [10].

A wide range of probability distributions with positive support are particular cases of the distribution

given in (1). The Rayleigh distribution is obtained when k =0 and 
2

1
ω

=θ , the Maxwell distribution is a

particular case for k = 1/2 and 
22
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=θ , and when $k = -1/2 and 
2

1
ω

=θ  then one gets the half normal

distribution, see [5]. The χ2 (m) is also a special case of the generalized Rayleigh distribution and

corresponds to 1
2
−= mk  and 

22
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τ
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For statistical modelling and especially for reliability research and applications, employing a model
based on the generalized Rayleigh distribution family seems to be more useful than the widely used Weibull
model since the latter includes only the Rayleigh distribution while the former encompasses in addition the
Maxwell distribution.
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The cumulative distribution function of the generalized Rayleigh distribution can be calculated (e.g.
[16]) as
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where )(⋅Γa  is the incomplete Gamma function. Voda ([16]) also showed that if a random variable X is
distributed with a generalized Rayleigh distribution then X2 has a Gamma distribution.

2.  STATISTICAL MODELLING WHEN K IS KNOWN

When the parameter k is known then )()()()(),;(~ xTQexhckx θθ=θρ  where ),0(),0(: ∞→∞c ,
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, ),0(),0(: ∞→∞h , 12)( += kxxh , a ( )),0(),0( , ∞∞ BB - measurable function,

RQ →∞),0(: , θ=θ)(Q  and ,),0(: RT →∞  2)( xxT −= , a ( )RBB ,),0( ∞ -measurable function. Hence,
when k is known the statistical model

( )}0|{,),,0( ,),0( >θ∞ θ∞ kRGB (3)

is of exponential type ([3]) and the statistic T is sufficient for inference on the unknown parameter θ.
Following [11] it is possible to choose a σ-finite measure ν on ( )),0(),,0( ∞∞ B  that dominates the

statistical model (3). The probability density function of the probability distribution kRG ,θ  with respect to ν
is

2)();( xecx θ−θ=θρ (4)

for all positive x.

3.  TESTS FOR DISCRIMINATING BETWEEN TWO POPULATIONS

The novelty of this paper consists in testing the discrepancy between two distributions from the
generalized Rayleigh family. The tests proposed here refer to the θ’s parameters when the k’s are known.
Consider the statistical model
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that is dominated by the measure 21 nn ν⊗ν , where *
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for all positive x’s and y’s, with ( )
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. The function in (6) can be rewritten

equivalently as
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it follows that
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210 θ=θ∞∈θθ=Ω  The function ,),0(),0(: Rh →∞×∞  h(u,t) = u/t is
measurable and for any t > 0 the section application ),( th ⋅  is increasing.
Lemma 1. The statistic V = h(U,T) has the beta probability distribution 
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domain 0Ω .
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then we can say that 
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Beta distributed with the parameters stated above. This concludes the proof.
Let αβ ;, qp  be the quantile of order α, qpF ,  be the cumulative distribution function, and qpf ,  be the

probability distribution function of the Beta distribution with parameters p and q. For simplicity we denote
2
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1θµ  when 21 θ=θ .
Theorem 1. Let )1,0(∈α  and 21 , kk  be given. Then

 i. The test 
1

1C , provided by the critical region
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is uniformly most powerful unbiased at the level of significance α for testing the null hypothesis
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is uniformly most powerful unbiased at the level of significance α for testing the null hypothesis
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 iii. For testing the null hypothesis 21

)3(
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is uniformly most powerful unbiased test at the level of significance α. The scalars 21 , cc  satisfy the
conditions
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Proof: Since V is a free parameter statistic over 0Ω  then using theorem 1, chapter 5, from [7] it follows that
the test given by the critical region { }cyyxxVyyxxC nnnn >= ),...,,,...,( |),...,,,...,(

2121 11111  where c is
determined from

α=µθ )( 11
C (11)

is uniformly most powerful unbiased test for testing the null hypothesis 0:~ *)1(
0 ≤θH  versus the alternative
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1 >θH  at the level of significance α. From (11)
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and thus α−++β= 1;)1(,)1( 2211 nknkc , proving i. The proof for ii. is similar with i.
Using again theorem 1, chapter 5, from [7], the test characterized by the critical region
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is uniformly most powerful unbiased at the level of significance α for testing the null hypothesis
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0 =θH  versus the alternative 0:~ *)3(
0 ≠θH . The proof is finished by showing that the condition (12)

is equivalent with (10). This is true because
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for any x > 0.

4. CONCLUSION

The generalized Rayleigh distribution is a two-parameter class of distributions that includes Rayleigh,
Maxwell and chi-square. Statistical models based on this relatively unknown distribution may provide a
general platform for inference related to many areas of statistics, probability and engineering.

In this paper some uniformly most powerful unbiased tests were proposed to discriminate between two
generalized Rayleigh populations. The tests are conditional on the value of the parameter k.
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