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Using as reference point the hydromechanical servomechanism SMHR included in the aileron control
chain of the Romanian jet-fighter IAR 99, a nonlinear, backstepping type, position control law was
synthesised, which denotes a remarkable improving of tracking performance, quantified by decreasing
of system time constant. Another worthy noting result concerns the conversion of the same position
type servo, into a force servo, by means of a force control law and a modified valve port.
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1. INTRODUCTION

(Electro)hydraulic servoactuators (EHS) are encountered in most industries where heavy objects are
manipulated or large forces and torques with high speeds are exerted. The features as their large processing
force and stiffness, good positioning and high payload capabilities, and power to weight ratio, make this
type of actuation system appropriate for positioning of aircraft control surfaces, high power industrial
machinery, position control of military gun turrets and antennas, material handling, construction, mining and
agricultural equipment. “Industrial hydraulic technology is firmly entrenched in our global economy. The
usage knows no boundary lines” [1].

The demanding performance specifications for such applications are high bandwidth implying fast
response time, high accuracy and high fidelity control; such technical challenges have led the researchers to
examine how to improve hydraulic control design. There are some factors that limit the applications of EHS,
but the final factor limiting these applications is ourselves: human being’s understudying and knowledge of
these systems. Because of the complexity of EHS analysis and nonlinearities in the systems dynamics,
design and control of EHS are still difficult and immature, although various methodologies of the automatic
control science were brought to the proof in this field; from classical linearization [2], to artificial
intelligence paradigm [3].

A condition sine qua non of a systems design is first of all its stability; this condition concerns the
basis itself of the system approach, study and design. If the stability of a physical system is primordial, the
stability of the system's model is dependent, of course, on this model. The problem is for analyst to find a
representative model of the physical system. What means a „representative model” – this is an open debate
in the field. From viewpoint of the system analysis, the representative model must obey to a trade-off: the
model must be complex enough to describe the physical behaviour of the system and at the same time simple
enough to not compromise a qualitative analysis approach.

A way at hand of surpassing these contradictory requirements supposes the covering of the following
steps: a) the derivation of an as complex as possible model in accordance with the physical laws and
designing constraints which defines the object; b) a certain adjustment of the obtained model in accordance
with the qualitative mathematical apparatus used in view of the system synthesis and analysis; c) the
providing of designing or optimization indications in the chosen and applied theoretical framework; d) the
methodical validation of the provided results by simulation of the complex mathematical model.
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The step b) of this strategy requires some elucidation. On the one hand: the mathematical model, as a
thinking first result, which is derived from a physical reality, is more flexible than a methodology (i. e., a
mathematical theory), as a thinking second result, which is derived from a metareality − herein, the
mathematical thinking. On the other hand: all the mathematical models describing the same object promote
in the last analysis a certain firmness and „solidarity”, in other words, predict an approximate possible
behaviour of the object [3].

In this paper, the backstepping approach [4] is employed to successively develop, based on
Lyapunov’s direct method, position and, then, force tracking controllers for an EHS. A “backstepping” is a
recursive procedure, which allows deriving control law, generally for a nonlinear system

( ) ( )!x F x G x u= + (1)

where x ∈  !n is the state vector, u ∈  !m is the control vector and F and G are smooth vector fields of

appropriate dimensions. Moreover, the method implicitly guarantees stability references tracking and
transient performance.

As mentioned in [5], backstepping is a method that can be used on systems of special structure to find
an output z having a passivity property [3]: specifically, if a system is passive (plus some other technical
requirements), then the feedback ( ) ( )u t z t= −  renders the system asymptotically stable. The search for a
passivation output is unfortunately nontrivial. So, we can use backstepping for lower-triangular nonlinear
systems (for upper-triangular nonlinear systems, we can use a so-named forwarding method). Classes of
systems, for which this procedure works, are one after the other considered strict-feedback systems and
pure-feedback systems [6] and, finally, general nonlinear systems [7].

The key idea of backstepping is simple. At every step of backstepping, a new Control Lyapunov
Function (CLF) is constructed by augmentation of the CLF from the previous step by a term which penalises
the error between a state variable and its desired value. A major advantage of backstepping is the
construction of a Lyapunov function whose derivative can be made negative definite by a variety of control
laws rather that by a specific control law.

The paper addresses the problem of the control laws synthesis which provides asymptotic stability and
tracking performance for an EHS. The full state information is considered available. The backstepping has
not been applied to control of an used in aviation, position tracking, EHS, to the best of the author’s
knowledge.

2. BACKSTEPPING POSITION CONTROL SYNTHESIS FOR EHS

The differential equations governing the dynamics of the EHS are those given in [3] and are reported
having as a reference point the hydromechanical servomechanism SMHR (HM SMHR) included in the
aileron control chain of Romanian jet-fighter IAR 99:

( )! , ! , ! .x x x k m x f m x S m x x Sx k x c wk p x u kd a c1 2 2 1 2 3 3 2 3 3= =- - + = - - + -" v ρ  (2)

The state variables are denoted by: x1 [cm] − EHS load displacement; x2 [cm/s] − EHS load velocity;
x3 [daN/cm2] − load pressure differential; u [V] − control variable. The nominal values of the parameters
appearing in equations (2) are: m = 0.033 daNs2/cm − equivalent inertial load of primary control surface
reduced at the EHS’s rod; S = 10 cm2 − EHS’s piston area; f = 1 daNs/cm − equivalent viscous friction force
coefficient; k = 100 daN/cm − equivalent aerodynamic elastic force coefficient; w = 0.05 cm − valve-port
width; pa = 210 daN/cm2 − supply pressure; cd = 0.63 − volumetric flow coefficient of the valve port;
k"= 5/210 cm5/(daN×s) − internal leakage cylinder’s coefficient ; ρ = 85/(981×105) daNs2/cm5 − volumetric
density of oil; kv = 0.0085/(0.05×10) cm/V − valve displacement/voltage coefficient;
kc = 30/12 000 cm5/daN − coefficient involving the bulk modulus of the oil used and the EHS’s cylinder
semivolume. The valve dynamics is evaded in mathematical model (2); a proportionality coefficient kv
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between the control (input voltage to servovalve) and valve displacement was considered. Clearly, system
(2) is lower triangular, in strict feedback form, and, therefore, suitable for application of backstepping.
Taking the non-adaptive case [8] − the system parameters are assumed to be known − let introduce the
notations

 e x x ii i id= − ,   = 1, ...,3 (3)

where xid stand for the “desired” values of the state variables. So, the control objective is to have the EHS
track of a specified x1d position trajectory, in other words, making e1 0→ .

Proposition 1. Under assumption of nonsaturating load ( )x pa3 < , the control u given by
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( ) ( )x kx S fx S me S m x S mk e Sd d3 1 2 1 1 2 2 2 2 2= + − + −ρ ρ ρ! (5)

x x k ed d2 1 1 1= −!  (6)

when applied to (2), guarantees global asymptotic stability of position tracking error e x x d1 1 1= − .
Proof: We start by defining the Lyapunov like function

V e1 1 1
2 2= ρ . (7)

The derivative of (7) is given by

( ) ( ) ( )! ! ! ! !V e x x e x x e e x xd d d d1 1 1 1 1 1 1 2 1 1 1 2 2 1= − = − = + −ρ ρ ρ .
With (6), !V1  becomes

!V k e e e1 1 1 1
2

1 1 2= − +ρ ρ (8)

where ρ1, k1 stand for weighting parameters. Now, in order to go one step ahead, a new Lyapunov like
function V2 is defined as

V V e2 1 2 2
2 2= + ρ . (9)

By taking the derivative of (9)
( )[ ]
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If x3d is chosen as (5), then !V2  is simplified to

!V k e k e Se e m2 1 1 1
2

2 2
2

2 2 3= − − +ρ ρ (10)

The new weighting parameters ρ2 , k2 were also introduced. Finally, V3 is defined to be

V V e3 2 3 3
2 2= + ρ (11)

and taking the derivative of (11), one may write

( )( )! !V k e k e e Se m Sx k k x k c wk p x u k xc c d a c d3 1 1 1
2

2 2
2

3 2 2 3 2 3 3 3= − − + + − − + − −





ρ ρ ρ ρ" v .

Now, if the control u is synthesised as (4), then V3 is indeed obtained as a Lyapunov function for the system
defined by (2): the control low given by (4), (5), (6), with given x1d renders the derivative !V3  negative
semidefinite:

!V k e k e k e3 1 1 1
2

2 2
2

3 3
2= − − −ρ (12)
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and ρ3, k3 are the latest weighting parameters introduced. Note that as soon as the values of state variables
x1, x2, x3 and desired x x x xd d d d1 1 1 1, ! !! , !!! ,    are measured and, respectively, known, the control u can be
calculated by using (2), (3), (5) and (6). Substituting (3), (4), (5) and (6) in (2), an autonomous closed loop
form, analogous to (1), occurs

( )! ~e F e= . (1′)

Because ( )e: , ,= e e e1 2 3  is the largest invariant set in ( ){ }E V: != =e e3 0  then, based on LaSalle’s invariance

principle ([9], Chapter 2, Theorem 8), we conclude that all tracking errors ei, i = 1, ..., 3, converge to zero
asymptotically. 

Let note that the mathematical model (2) involves a conjecture: a chosen positive u does not change its
sign, in transitory regime, when various positive x1d is claimed to achieve; otherwise, the model must contain
the term p x ua − 3sgn  and the backstepping cannot works in the described manner. This technical
difficulty can be evaded by introducing a new state variable, the valve position.

3. BACKSTEPPING FORCE CONTROL SYNTHESIS FOR EHS

Let now consider the case of force control. It can be easily verified inspecting the system (2) that the
internal states x1 and x2, as described by the first two equations in (2), are stable. On the other hand, the
output of interest in force control is, of course, the pressure. Then, if it is not necessary to stabilise the states
x1, x2, a backstepping procedure cannot be applied only about x3 oneself. In these circumstances, we adapt
the mathematical model to the backstepping methodology: the system (2) will be completed by adding an
equation of first order for the dynamics of the valve position x xv : = 4 :

( )
! , !

! , !

x x x k mx f mx S mx

x Sx k x c w p x x k x x k ud a c

1 2 2 1 2 3

3 2 3 3 4 4 4

= = − − +

= − − + − = − +" ρ τ τv
(13)

where τ − time constant of the (servo)valve.
Proposition 2. Under assumption of a nonsaturating load ( )x pa3 < , the control u given by

( ) ( )[ ] ( )u c w p x e k x x k e kd a c d v= − − + + −τ ρ ρ ρ τ ρ3 3 3 4 4 4 4 4 4! (14)

( )( )x k c w p x S x k k x k x k ed c d a c c d4 3 2 3 3 3 3= − + + −ρ " ! . (15)

when applied to (13), guarantees global asymptotic stability of pressure (force) tracking error e x x d3 3 3= − .
Proof: Consider

V e e x x e x xd d3 3 3
2

3 3 3 4 4 42= = - = -ρ ,        : ,      : (16)
and differentiating yields 

 ( )( )! ! ( ) !V e e e Sx k k x k c w p x k e x xc c d a c d d3 3 3 3 3 3 2 3 3 4 4 3= = − − + − + −ρ ρ ρ" .

If x4d is chosen as (15), then !V3  is simplified to

( )!V k e c we e p x kd a c3 3 3 3
2

3 3 4 3= − + −ρ ρ ρ (17)

where ρ3 and k3 are weighting parameters. Now, in order to go one step ahead, V4 is defined as

V V e4 3 4 4
2 2= + ρ      (18)

and taking again the derivative, we have



5 Nonlinear control syntesis for position  and force electrohidraulic servos

( ) ( )[ ]! !V k e e c we p x k x k u xd a c d4 3 3 3
2

4 3 3 3 4 4 4= − + − + − + −ρ ρ ρ ρ τ τv .

Now, if the control u is synthesised as (14), then V4 is obtained as Lyapunov function, because

!V k e k e4 3 3 3
2

4 4
2= − −ρ . (19)

The same referring to LaSalle’s principle as in previous Section finish the proof of the Proposition 2.

4. SIMULATION RESULTS AND CONCLUSIONS

As it was pointed out, the objective of backstepping synthesised control is to have the EHS track of
specified x1d position or x3d pressure trajectories. Such trajectories can be described in the manner

x x e iid is

t
tir= −











 =

−
1 1 3, or (20)

which is associated with time response of a first order systems to step input: xis stand for stationary value of
the states x1, respectively x3 and tir stand for time constants.

As reference point of the numerical simulations we take the mathematical model of the HM SMHR

( )[ ]! , ! , !x x x k mx f mx S mx x Sx k x c w p x r x kd a c= = − − + = − − + − −2 2 1 2 3 3 2 3 3 1" λ ρ (21)

where: λ = 2 3 − the coefficient of the rigid feedback kinematics; r − the reference input at servo rigid
feedback kinematics linkage point [cm].

Simulations have been performed to investigate the performance of the proposed nonlinear controllers,
in the two cases defined by the nonlinear control laws (4) and (14). Zero initial conditions − corresponding
to the zero equilibrium point − were chosen for Runge-Kutta integration of the systems: (21), with a simple,
rigid mechanical position feedback; (2) with control low (4); and (13) with control low (14).

A relatively good tracking of references r is possible with the HM SMHR (21), but only in the absence
of perturbations [10]. To have in this servo a concrete term of comparison for the developed in Section 3
position control technique, we choose ( )r = =0 0085 0 5 0 0255. . .λ cm . Then, having this reference, the entire
valve port is in fact open to flow passing and, consequently, the resulting time constant characterises the
best step input tracking with the “passive” system: τ ≅  0.035 s (Fig. 1a, where the error signal ( )e r x:= −λ 1

is represented; initial error: e0 0 017= . cm ).
An evidently better tracking of step references is ensured by backstepping position control synthesis.

The values of the tuning parameters were: k1 = 400 daN/cm; k2 = 4 daN/cm; k3 = 400 cm5/(daN×s);
ρ1 = 400 daN/cm; ρ2 = 0.033 daN×s2/cm; ρ3 = 1 cm5/daN. The desired control objective, in terms of position
reference x1s = 0.0255 cm and tr= 0.01 s, is accomplished with faster time constant τ ≅  0.0255 s; when tr was
chosen 0.005 s, a better time constant τ ≅  0.0217 s was obtained (Fig. 1b). The transient regime is stable,
irrespective of stationary regime values x s1  and tr; however, the designer must be attentive to control
saturation. To counteract this effect, special antiwindup strategies can be used [3].

Similar conclusions are valid in the case of backstepping force control (Fig. 2). The values of the
tuning parameters were: k3 = 400 s−1; k4 = 800 daN/(cm×s); ρ3 = 1 cm5/daN; ρ4 = 1 daN/cm. A time constant
τ = 1/573 s of the valve was considered. Worthy noting, herein the valve displacement/voltage coefficient
kv = 0.085/(0.05×10) cm/V means a tenfold necessary valve port area. The desired control objective, in
terms of pressure reference x3s = 100 daN/cm2 and tr = 0.1 s (Fig. 2a), and x3s = 150 daN/cm2 and tr = 0.1 s, is
accomplished with good time constants: τ ≅  0.16 s and, respectively, τ ≅  0.19 s; when x3s and tr were chosen
175 daN/cm2 and, respectively, 0.05 s, an also good time constant τ ≅  0.175 s was obtained (Fig. 2b).
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 Figure 1 − Comparison between the step input tracking.

 a) SMHR case: τ ≅  0.035 s; b) EHS case with backstepping position control: τ ≅  0.0217.

0

2

4

6

8

0 0.1 0.2 0.3 0.4 0.5 0.6

0

25

50

75

100
u[V] x3 , x3d [daN/cm

2]

x3d

x3

u

t [s]

                 

0

2

4

6

8

10

0 0.11 0.22 0.33 0.44 0.55 0.66

0

35

70

105

140

175
u [V] x3, x3d [daN/cm

2]

u
x3d

x3

t [s]

a)                                                                                b)

Figure 2 − Backstepping pressure control: a) x3s = 100 daN/cm2, tr = 0.1 s, τ ≅  0.16 s; b)x3s = 175 daN/cm2, tr = 0.05 s, τ ≅  0.175 s.  

It can be seen that the state variables x1, in the first case, and x3, in the second case, come very close to
the desired x1d and, respectively, x3d, values.

However, one cannot neglect the fact that these results were obtained for the case when all parameters
are exactly known. A further work should treat the adaptive case, which supposes off-line and/or on-line
identifying of system parameters.
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