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The turbulent flow of a micropolar fluid downwards on an inclined open channel is studied. The wave
profile moves downstream as a linear superposition of solitons at a constant speed and without
distortion. The model parameters are determined by using a genetic algorithm.
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1. INTRODUCTION

In a micropolar fluid the motion is described not only by a deformation but also by a micro-rotation
giving six degree of freedom (Eringen, 1966, 1970 [1,2], Brulin, 1982 [3]). The interaction between parts of
the fluid is transmitted not only by a force but also by a torque, resulting in asymmetric stresses and couple
stresses. The theory of hydrodynamic turbulence is still lacking a fundamental theory from which the
physical phenomena can be predicted and understood. The micropolar theory is employed here to obtain
solutions which are periodic with respect to distance, describing the phenomenon called "roll-waves" for
water flow along a wide inclined channel and to discuss the behavior of the solutions. In this work we study
the turbulent flow of a micropolar fluid in a wide channel inclined at an angle 0θ >  below the horizontal.

The principal aim of this paper is to represent the periodic waves as a linear superposition of equally
spaced solitons. A similar situation exists for Korteweg–de Vries, various modified Korteweg–de Vries,
Boussinesq and Burger equations (Whitham, 1974 [4], Lamb, 1980 [6], Munteanu, Donescu [7]). In the light
of inverse scattering theory, this representation may be viewed as a "clean interaction" of solitons, in that
they are superimposed but retain their identity and do not destroy each other under the non-linear coupling
(Whitham, 1984 [5]).

This representation requires determination of the model parameters: the wave numbers, the
frequencies and the phases. For computing these unknown parameters we propose a new method based on a
genetic algorithm.      Details on the genetic algorithm are available in Goldberg, 1989 [8] and Tanaka,
Nakamura, 1994 [9]).

The soliton representation is not so surprisingly in this case because Dressler [10] in 1949 studying the
roll-waves motion of the shallow water in inclined open channels has found an equivalent form expressed as
a cnoidal wave for a flow subject to the Chezy turbulent resisting force. Our theory generalizes the Dressler
theory to the case of a micropolar fluid flow subject to a Chezy resisting force, and demonstrates that the
presence of a resistance force, which varies with velocity, is sufficient to permit the construction of periodic
solutions.
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2. EQUATIONS OF THE NONLINEAR SHALOW MICROPOLAR FLUID

In the shallow flow the vertical dimensions are small compared to the horizontal dimensions. The
motion equations of a micropolar, viscous fluid are given by Eringen [1,2]:

grad grad ( )curlcurl (2 )grad div 2 curl ,v v v X v v wρ + ρ = − π − µ + α + µ + λ + α! (2.1)

grad ( )curlcurl (2 )grad div 4 2 curl ,Jw Jv w Y w w w vρ + ρ = − γ + ε + γ + ζ − α + α! (2.2)

where X  is the exterior body forces, Y is the exterior body couples, π is the thermodynamic pressure,

Jρ is the inertia tensor density, v  is the velocity vector v u
t

∂=
∂

, u  the displacement vector, φ  the micro-

rotation vector, w the micro-rotation velocity w φ
t

∂=
∂

, ρ  the fluid density.

The superposed dot indicates the partial differentiation with respect to time a a
t

∂=
∂

! . In (2.1), (2.2) λ

and µ  are the classical viscosities coefficients of the Navier-Stokes theory. The constants  , ,α ζ γ  and ε  are
the micropolar coefficients of viscosity. The elastic coefficients must fulfill the condition

0, 2 3 0, 0, 0, 2 3 0, 0.µ ≥ µ + λ ≥ α ≥ γ ≥ γ + ζ ≥ ε ≥ (2.3)

Equations (2.1) and (2.2) are six equations with unknown vector fields the velocity v  and micro-
rotation w . These equations must be supplemented by the equation of continuity for an incompressible fluid

div 0v = . (2.4)

In this case, the thermodynamic pressure π must be replaced by an unknown pressure p  to be
determined through the solution of each problem. The constitutive relations are

, , ,( ) ( ) ( ) 2 ,ij k k ij j i i j kij kp v v v wσ = − + λ δ + µ + α + µ − α − αε (2.5)

, , ,( ) ( )ij k k ij j i i jw w wµ = ζ δ + γ + ε + γ − ε , (2.6)

where ijσ is the stress tensor and ijµ  is the couple-stress tensor.
The field of equations (2.1), (2.2) and (2.4) are subject to certain boundary and initial conditions:
- traction conditions on the surface S  of the body B

kl k ln tσ =  , kl k lnµ = µ   on  S , (2.7)

where  lt  are the surface traction and  lµ  the surface couple acting on S .
- velocity conditions of adherence of the fluid to a solid boundary

0 0( ,0) ( ), ( ,0) ( )k k k kv x v x w x w x= =  in   B , (2.8)

where  0 0,k kv w  are the velocity and micro-rotation velocity of the solid boundary. For a rigid stationary
boundary we have  0 0 0k kv w= = .

3. TWO-DIMENSIONAL FLOW

Consider a two-dimensional flow of a micropolar, isotropic, incompressible, viscous fluid in a wide
channel over a rigid bottom. We have chosen a wide channel to be sure that the motion will bee two-
dimensional only. The x-axis is horizontally and the bottom is given by h(x). The channel bed is linear and is
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inclined at an angle 0θ >  below the horizontal y mx= −  with tan 0m = θ > (fig.1). The vertical distance of
the surface above the x-axis is denoted by η (x).

The horizontal and vertical components of v  and w  are, respectively 1 2,v v and 1 2,w w . We write
2 2

1 1 1 1 1 2 1 2| | / | | / , , 0X r v v R r v v X g Y Y= − ρ = − ρ η = −ρ = =  in (2.1) and (2.2). Thus, equations (2.1), (2.2)
and (2.4) are then

2
1 1

1 1 1, 2 1, , 1
| |( )x y x

r v vv v v v v p v ρρ + ρ + ρ = − + µ + α ∆ −
η

! , (3.1)

2 1 2, 2 2, , 2( )x y yv v v v v p v gρ + ρ + ρ = − + µ + α ∆ − ρ! , (3.2)

1 1 1, 2 1, 1, 2, 1, 1(2 ) ( ) ( ) 4x y xx xy yyJw Jv w Jv w w w w wρ + ρ + ρ = γ + ζ + γ+ ζ − ε + γ + ε − α! , (3.3)

2 1 2, 2 2, 2, 1, 2, 2(2 ) ( ) ( ) 4x y yy xy xxJw Jv w Jv w w w w wρ + ρ + ρ = γ + ζ + γ + ζ − ε + γ + ε − α! , (3.4)

2, 1, 0x yv v− = ,  2, 1, 0x yw w− = , 1, 2, 0x yv v+ = . (3.5)

The coma represents the differentiation with respect to the shown variable. In (3.2) g  is the
acceleration of gravity. In the right side of (3.1) the term 2

1 1| | /r v v R−  represents the resisting body force
always acting opposite to that of the flow, where 2r is a constant depending upon the roughness of the
channel walls and R is the hydraulic radius.

According to this formula, the turbulent fluctuations exert
on the main flow a resistive body force at every point of
magnitude 2 2

1 /r v R . Since the most flows in practice are
highly turbulent we take account of the resistive force due to
the momentum transport of the secondary flow exerted on the
average flow at each point. The resistance effects due to the
dynamic viscosity of the water are neglected. The above
expression of the resisting force was given by Chezy
(Dressler [4], 1949). The hydraulic radius is defined as the
ratio of the area of a cross section of the water normal to the
channel to its "wetted perimeter". That means that part of the
perimeter excluding the free surface of the water. The Chezy
formula thus expresses the fact that the resistance will be
greater in shallow regions where all of the water is closer to

the rough boundary. The Chezy formula is valid only for uniform flows, and although it is used for non-
uniform flows when the flow vary slowly with respect to x, y and t. In our case R = η . In equations (3.1)-
(3.5) the unknown functions are , , 1,2i iv w i = , p and η . The boundary conditions are

1 , 2xv vη + η =!   at   y = η , (3.6)

0p =   at   y = η , (3.7)

1 2 0v m v− =   at   y h= , (3.8)

The condition (3.6) says that a particle at the surface will remain at the surface and (3.8) - the velocity
at the bottom is tangential to the bottom.  We add the following condition

0, 1,2iw i= =    at    y h= . (3.9)

Fig. 1 Geometry of the flow
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Let the constant H  be a typical vertical dimension of the resulting flow, and L  a typical horizontal
dimension. We 2 2/H L = δ  the expansion parameter which we will use for a perturbation procedure. New
dimensionless variables are defined by

, , ,
gHx y t

L H L
α = β = τ =    1

1, , vpP V
H gH gH
ηΥ = = =

ρ
 ,

hd
H

= , 2 1 2
2 1 2, ,

/ /
H v w HwV W W
L gH g H L g H

= = = ,

,
L gH L gH

µ αµ = α =
ρ ρ

, 
2

2 r Hr
L

= , , , .
LJ gH LJ gH LJ gH

ζ γ εζ = γ = ε =
ρ ρ ρ

(3.10)

In terms of the dimensionless variables (3.1)-(3.9) become
2 2

1, 1 1, 1, , 2 1, 1, 1[ ( ) ] ( ) 0Y V V V V P V V Y V Y r Vτ α αα α β ββδ + − µ + α + + − µ + α + = , (3.11)

2, 1 2, 2, , 2 2, 2,[ ( ) 1] ( ) 0V VV V P V V Vτ α αα β β ββδ + − µ + α + + + − µ + α = , (3.12)

1, 1 1, 1, 1 2 1, 1, 2,[ (2 ) 4 ] ( ) ( ) 0W VW W W V W W Wτ α αα β ββ αβδ + − γ + ζ + α + − γ + ε − γ + ζ − ε = , (3.13)

2, 1 2, 2, 2 2 2, 2, 1,[ ( ) 4 ] (2 ) ( ) 0W V W W W V W W Wτ α αα β ββ αβδ + − γ + ε + α + − γ + ζ − γ + ζ − ε = , (3.14)

2, 1, 0V Vα β− = ,  2, 1, 0W Wα β− = ,    1, 2, 0V Vα βδ + = ,    , 1 , 2( )Y V Y Vτ αδ + =   at   Yβ = , (3.15)

0P =   at   Yβ = ,  1 2/V m H Vδ =   at   dβ = ,  1 2 0W W= =   at   dβ = . (3.16)

We assume that the unknowns can be expressed as power series in terms of δ

( )

0
( , , )k k

i i
k

V V
∞

=
= α β τ δ∑ ,  1,2i = , ( )

0
( , , )k k

i i
k

W W
∞

=
= α β τ δ∑ ,  1,2i = ,

 ( )

0
( , , )k k

k
P P

∞

=
= α β τ δ∑ ,   ( )

0
( , )k k

k
Y Y

∞

=
= α τ δ∑ .

(3.17)

The series  (3.17) are inserted in (3.11)-(3.16) and the resulting coefficients of like powers of δ  are
equated. Consider that

( ) ( )log ( , , )
k

k k
i ikM f∂= α β τ

∂α
 ,   1,2,...k N= ,     1,2...6i = , (3.18)

where  1 2 1 2( , , , , , )M V V W W P Y= and
(1)

1( , , ) 1 expi if α β τ = + θ ,   (2)
1 2 1 2( , , ) 1 exp exp exp( )i i i i if α β τ = + θ + θ + θ + θ ,

……….

( )

1 1 1
( , , ) 1 exp exp( ) exp( ) ....

N N N
N

i ji ji li ji li ri
j j l j l r

f
= ≠ = ≠ ≠ =

α β τ = + θ + θ + θ + θ + θ + θ +∑ ∑ ∑ ,

ki ki ki ki kia bθ = α + β − ω τ +ς  ,  1,2,...k N= ,  1,2...6i = ,

(3.19)
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and ,ki kia b the nondimensional wave numbers, kiω  the nondimensional frequencies and  kiς  the
nondimensional phases. The parameters in this formulation ,ki kia b , kiω and kiς , 1,2,...k N= , 1,2...6i = are
computable from (3.18),(3.19) and the like powers of δ  equations. The numerical determination of these
parameters are discussed in the next section. We find that asymptotically the solutions become

( ) 2sech ( 2 )k
i ik ki ki ki kiM A a b t= α + β − ω − ∆ ,

1,2,...k N= ,  1,2...6i =   at   t → ±∞ ,
(3.20)

where the constants ,A ∆  can be easily calculated with respect to  ,ki kia b ,  kiω  and kiς  . The functions
( )k
iM  are periodic with the period 2 ki∆ . These solutions represent a linear superposition of solitons, a row

of solitons, spaced  2 ki∆  apart.

4. APPLICATION OF GENETIC ALGORITHM TO PARAMETERS DETERMINATION

Next step is to use (3.18),(3.19) and the like powers of δ  equations to determine 23× N parameters

{ , , , }ki ki ki kip a b= ω ς , 1,2,...k N= , 1,2...6i = , (4.1)

The wave numbers, frequencies and constant phases are also vectors

11 12 13 6 11 12 13 5

11 12 13 6 11 12 13 6

( , , ,..... ), ( , , ,.... ),
( , , ,.... ), ( , , ,.... ).

ki N ki N

ki N ki N

a a a a a b b b b b= =
ω = ω ω ω ω ς = ς ς ς ς

(4.2)

The resulting system is a system of 36 equations  to determine a number of 23× N unknowns. In this
paper a new method is proposed to determine the model parameters (Goldberg 1989 [8]). It is assumed the
parameters p are discretized into discrete values with the step width { , , , }ki ki ki kip a b∆ = ∆ ∆ ∆ω ∆ς . The set of
parameters for arbitrary values , , , ,{ , , , }ki m ki n ki q ki sp a b= ω ς can be expressed as 6N numbers

( 1) ( 1) ( 1)ikmnqs ik ik ik ik ik ikN m N Q S n Q S q S s= − + − + − + ,

where kiM , ,ki kiN Q  and kiS  denote the total number of discretized values for each parameter p . These
numbers represent an individual in a population and for the discretized parameters indicate a specific
solution (Tanaka, Nakamura, 1994 [9], Chiroiu et al., 1999 [13]). An individual is expressed as a row of
the integer number with genN = 6N genes. To compute the fitness F we write (3.18)-(3.19) in the form

( ) ( )m m
k kL = π , 0,1,2m = , 1,2,...12k = , and note the square sum of differences ( ) ( )m m

k kL − π  by ℑ

2 12
( ) ( ) 2

0 1
( )j j

k k
j k

L
= =

ℑ = − π∑∑ . (4.3)

We define fitness as follows 0 /F = ℑ ℑ , with 
2 12

( ) 2
0

0 1
( )j

k
j k= =

ℑ = π∑∑ .  As the convergence criterion of

iterative computations we use the expression Z to be maximum 0
10

1 log
2

Z ℑ=
ℑ

→  max. Numerical

simulation is carried out for λ =1.055× 10 3− Kg/ms, and µ =1.205× 10 3− Kg/ms. The micropolar coefficients
of viscosity have values α = ζ = ε =1.035× 10 3− mKg/s. We consider tanm = θ with m ∈ [0.2, 0.8]. The
value m = 0.8 represents an upper limit on the slopes for which the shallow fluid theory furnish a good
approximation. The number 2r must satisfy the condition 24 0.7 ,r m≤ , which is important for existence of
waves. If the resistance is too large, the waves cannot form. This condition is obtained numerically. We take

2r ∈ [0.035, 0.14]. The value 2r = 0.14 was chosen as the greatest value for the resistance since it satisfies
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the condition (4.8) for m = 0.8. The intervals for the model parameters are evaluated from the condition that
the total mass of fluid per wavelength is constant and the same in all approximations. In order to illustrate
the results three cases are considered (N = 4):

- case 1   θ= 45 0   ( m  = 1) ,  2r = 0.17 ,

- case 2   θ= 31 0   ( m  = 0.6) ,  2r = 0.1,

  - case 3   θ= 22 0   ( m  = 0.4) ,  2r = 0.06 .

In all cases we have assumed that the number of populations is 25, ratio of reproduction is 1, number
of multi-point crossovers is 1, probability of mutation is 0.2 and maximum number of generations is 250.

The linear summation of the solution ( , )Y α τ for τ → ∞  is given in fig. 2-4 ( τ → ∞  means in the
numerical simulation the time interval after that the solutions have a permanent profile in time). In all cases
the fluid velocity is greater in the region of the crests than in the shallower regions, but nowhere will the
fluid velocity be as great as the wave speed.  For example, in the case 1 the average fluid velocity is about
3.05 m/s while the wave velocity is about 4.1 m/s. From numerical simulations we conclude that the
remaining solutions have a similar evolution with respect to α : they increase and decrease in the same
manner as Y . The micro-rotation components and the vertical component of the fluid velocity are greater in
the crest regions than in the shallower regions. The model parameters were obtained after 149 iterations in
the case 1, 167 in the case 2 and 187 in the case 3.

 In conclusion, the solutions we have obtained in this paper describe the phenomenon called "roll-
waves" for fluid flow along a wide inclined channel. This phenomenon appears in hydraulic applications
like run-off channels and open aqueducts. When a liquid flows turbulently downwards on an inclined open
channel, the wave profile represented as sums of solitons moves downstream as a progressing wave at a
constant speed and without distortion, and such that the velocities of the fluid particles are everywhere less
than the wave velocity. Comparing only the performance, the genetic algorithm is superior to other
conjugate gradient methods because it is simple to be applied, is stable and the correct solutions are detected
through a relative small number of iterations, without requiring the stopping criterion for them. We need
more computer memory in order to store the data, but in view of today's computer capabilities we do not
consider this as a real disadvantage.

Fig. 2 The profile of the wave ( , )Y α τ in the case 1



Motion of a micropolar fluid in inclined open channels  7

Fig. 3 The profile of the wave ( , )Y α τ in the case 2

Fig. 4 The profile of the wave ( , )Y α τ in the case 3
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