
      THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
      OF THE ROMANIAN ACADEMY                                                           Volume 7, Number 2/2006, pp. 000-000

___________________________________________________________
Recommended by Marius IOSIFESCU, member of the Romanian Academy

BRANCHING PROCESSES AND INSURANCE

Gheorghiţă ZBĂGANU

“Gheorghe Mihoc – Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics of the  Romanian Academy
Casa Academiei Române, Calea 13 Septembrie no. 13, 050711 Bucharest, Romania. E-mail:zbagang@csm.ro

Somebody wants to ensure all its descendants as follows: at the end of the year of birth of a
descendant, this receives one monetary unit ( 1 MU). Suppose that the insurer knows the probability
distribution of  ξx – the number of descendants of x and of Tx – the age of the parent of x when x is
born. What premium insurance should be paid in order that the probability that the insurer will lose
money is a given ε? We give some estimation for that and prove that if Tx is bounded below by some
t0 > 0 then the sum paid by the insurer is a very short tailed random variable.

1.  NOTATION AND STATEMENT OF THE PROBLEM

Let N be the set of all positive integers and N 0 = N ∪  {0}. Let Γ = !
∞

=0k
 N k be the set of all finite

words with letters from N. The void word corresponding to k = 0 will be denoted by o. “o” is the common
ancestor of all the words. For k ≥ 1, an element x from N k is a word of length k which will be denoted
componentwise  by (x1,x2,…,xk). The operators naturally involved with Γ which will be used are

– the “delete first letter” operator θL: Γ \ { o}  → Γ  defined by θL(x1, x2,…xk) =( x2,…xk)
– the “delete last letter” operator θR: Γ \ { o}  → Γ  defined by θR(x1, x2,…xk) =( x1,…xk -1).

Clearly,  “L” from θL comes from “Left” and “R” from θR comes from “Right”.
The mth iterate of θL and θR will be denoted by θL

m and θR
m. Let us agree that θL

0(x)= θR
0(x)= x. Of

course, x ∈  N k ⇒  θL
k(x) = θR

k(x) = o. The meaning of x = (x1, x2,…xk) is as follows : x is the descendant of
θR(x) which is the descendant of θR

2(x) which is the descendant of θR
3(x),…., which is the descendant of θR

k-

1(x) = x1 which, finally, is one of the descendants of o. We can think of x as being names which, as in the old
times, described the genealogy of x.

Now, suppose that with every x ∈  Γ \ { o}  we associate two random variables, on some probability
space (Ω,K,P), namely, ξx : Ω → N 0 and Tx : Ω → (0,∞). Their meaning is that ξx  is the number of
descendants of x and Tx is the age of the parent of x – thus the age of θR(x) – when x was born. Then we can
express the time τx when x ∈  N k was born as

τx = 
kxxxxxx TTT ...21211

.. +++ = ∑
−

=
θ

1

0
)(R

k

m
xmT .       (1.1)

Suppose now that the insurance premium is put in a bank with a (possible variable) instantaneous

interest rate δ. This means that 1 MU at time 0 values exp 
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
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d)(  be the value of 1 MU at time t actualized at time 0. Then, according to the deal, the cost of

x for the insurer is  α(τx)

Thus, the total cost of the business for the insurer is  X = ∑
∞

=1k
kX , where Xk is the cost of the kth

generation,  Xk = ∑
∈

τα
kx

x
G

)( . The kth generation of ensured people can be defined as

Gk = { x ∈  N k │x1 ≤ ξo, x2 ≤ 
1xξ , x3 ≤ 

21xxξ ,…, xk ≤ 121 ... −
ξ

kxxx  } .       (1.2)

Remark that Gk is a random set – possible void if ξo = 0. Its section at ω ∈  Ω will be denoted by Gk (ω).
Precisely, according to our conventions,

Gk(ω) = { x ∈  N k │x1 ≤ ξo(ω), x2 ≤ 
1xξ (ω), x3 ≤ 

21xxξ (ω),…, xk ≤ 121 ... −
ξ

kxxx (ω) } .       (1.3)

Notice that, according to our assumptions about the random variables ξx the possibility that ξx = ∞ is
excluded, hence Gk(ω) is a finite set. As the family of all finite sub-sets of N 0 is countable, we can speak
about the distribution of Gk .

Definition. Let G ⊂  Ω × Γ be a set such that G (ω) := {x ∈  Γ│(ω,x) ∈  G } is finite for any ω. Suppose
that for every finite J ⊂  Γ the sets AJ(G ) := {ω∈Ω │ G (ω) = J} are in K. Then the distribution of G is the
system of numbers (πJ)J ⊂  Γ, J finite, where πJ = P(G (ω)= J); G  will be called a random set with finite
sections.

If G 1 and G 2 are two random sets with finite sections, we say that G 1 and G 2 are identically
distributed, and write G 1 ∼  G 2 , if P(G1(ω) = J) = P(G2(ω) = J) ∀  J ⊂  Γ, J finite.

If (G n)n is a sequence of random sets with finite sections we say that they are independent if the sets
(

nJA (Gn))n are independent for any collection (Jn)n of finite subsets of Γ.
The (possibly not realistic) maximal goal is to find the distribution of X and compute the number Π

(the premium) such that P(X > Π) = ε. This is the real problem. A minimal goal is to compute EX and
Var(X).  An intermediary goal is to say something about mX – the moment generating function of X.

We shall denote by Ek the expectation of Xk and by Vk its variance.

2. ADDITIONAL HYPOTHESES AND STRAIGHTFORWARD CONSEQUENCES

We shall suppose in the sequel that
H1. All the random variables ξx are i.i.d. and ξx ∼  ξ, where ξ is one of them. We shall denote Eξ := µ, Var ξ
= σ2.
H2. All the random variables Tx are i.i.d. and Tx ∼  T, where T is one of them. Moreover, T has positive
integer values.
H3. δ is constant. Then α(t) = v t with v = e - δ. Denote by Ln the quantities E(vT)n = EvnT. We shall often write
L instead of L1 and s2 = Var(vT) = L2 – L2. If δ > 0 it is obvious that 1 > L > L2 > L3 > …
H4. The random variables (ξx)x ∈  Γ and (Tx)x ∈  Γ are independent.

Assumptions H1 and H4 are natural. About assumption H2: it is easy to accept that Tx are independent
and that T assumes positive integer values, since we agreed that the insurance is paid at the end of the year. It
is more complicated to accept that Tx are identically distributed. However, if x has m descendants, born at
ages T1 ≤ T2 ≤ .. ≤ Tm, we can assume that these random variables arise from the same distribution T by
means of order statistics. Precisely, we can say that there exist some i.i.d. random variables '

1T ,…, '
mT  and
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that Ti = '
( )iT  is the i th order statistics attached to them. In this way we solved the problem of twins, too: if

the random variables are discrete, it is possible that some of the order statistics coincide. Finally, H3 is
hardly acceptable, but we do not know what can one say in its absence.

Under these assumptions the cost of the kth generation is

Xk = ∑
∈

τ

k

x

x
v

G
.       (2.1)

Proposition 2.1.   Assume only H1,H2 and H4 . Let x ∈  N k, k ≥ 2.
(i) We have τx ∼  T + τy , where y is some element from N k-1 and τy is independent on T.  Moreover, all

the random variables ( ) kxx N∈τ are identically distributed. They are not independent, but if x(n)
=(x1(n),x2(n),…,xk(n)) is a sequence of elements of N k such that m ≠ n ⇒  x1(m) ≠ x1(n), then (τx(n))n are
indeed independent.

(ii) For two arbitrary elements x,y ∈  N k, the correlation coefficient between τx and τy is r(τx, τy) =

k
yxl ),( , where l(x,y) = max{j ≤ k│xi = yi ∀  i ≤ j}.

Proof. According to (1.1), τx = ),...,,(),( 21211
..

kxxxxxx TTT +++ , where all k summands are i.i.d. and

distributed as T. We can take y = θL(x). 

Proposition 2.2. Assume all hypotheses H1 – H4. Then

Gk = !
on ξ≤

Gk-1,n,       (2.2)

where Gk-1,n = { x ∈  N k │x1 = n, x2 ≤ 
1xξ , x3 ≤ )( 21xxξ ,…, xk ≤ )...( 121 −

ξ
kxxx  }  are disjoint and θL(Gk,n) are

independent random sets distributed as  Gk-1. Hence, the vector Zk := (X1,…,Xk) can be written as

Zk = ),1( *
,1

o

nk
n

T Zv n −
ξ≤

∑ ,       (2.3)

where *
,1 nkZ −  are independent copies of Zk-1 and Tn ∼  T are i.i.d.

Remark. After all, the meaning of (2.2) and (2.3) is that the set of the descendants of generation k of
“o” is the union of the descendants of generation k-1 of its children and that the cost for the insurance of its
descendants is the cost of the insurance for its children and the descendants of the children.

Proof. Relation (2.2) is obvious by (1.2). Now, by the definition of θL,  θL(Gk,n) ={θL(x)│x ∈ Gk,n} =
{ (x2, x3,…,xk )∈  N k-1│ x2 ≤ ξn, x3 ≤ ),( 2xnξ ,…, xk ≤ ),...,,( 12 −

ξ
kxxn  }  are independent (since all the random

variables (ξ(n, y))n are i.i.d. ) and have the same distribution as Gk-1.

As to (2.3), write  Xk = ∑
∈

τ

k

x

x
v

G
= ∑

ξ≤
∈

τ

!
on

nk

x

x
v

,G
= ∑

ξ≤ on
∑

∈

τ

nk

x

x
v
,G

= ∑
ξ≤ on

Tnv ∑
θ∈

τ

nk

y

y
v

,LG
= ∑

ξ≤ on

Tnv *
,1 nkX −

where *
,1 nkX −  = ∑

θ∈

τ

nk

y

y
v

,LG
are distributed as Xk-1 and are independent.

Now, we compute the expectation and the variance of Xk. Recall the notation: Ek = EXk , Vk = Var(Xk), µ
=Eξ, σ2 = Var(ξ), Ln = EvnT, L = L1, s2 = L2 – L2 .

Corollary 2.3. Under the assumptions H1-H4 we have

Ek = (µL)k,       (2.4)

V1 = µs2 + L2σ2.       (2.5)
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For k ≥ 2, Vk satisfies the recurrence

Vk = µL2Vk-1 +(µL)2k – 2V1.       (2.6)

Hence,  if we put

ρ = 2
2

L
Lµ

,       (2.7)

then

ρ = 1 ⇒  Vk = V1k(µL)2k – 2  and ρ ≠ 1 ⇒  Vk = V1(µL)2k – 2

1
1

−ρ
−ρk

.       (2.8)

Moreover,

µL > 1 ⇔ Ek → ∞, Vk → ∞ as k → ∞.       (2.9)

Finally,

EX < ∞ ⇔ µL < 1 and in this case EX = 
1

L
L

µ
− µ

.       (2.10)

Proof. Apply (2.3). As Xk = ∑
ξ≤ on

Tnv Yn = { }∑ ∑
∞

=
=ξ

=



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
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

1 1
0
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n

n

i
i

T Yv i ,Ti and Yi  are independent, it follows

that

EXk = ∑ ∑
∞

= =











1 1
EE

n

n

i
i

T Yv i P(ξo = n) =∑ ∑
∞

= =
− 





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




1 1
1E

n

n

i
kXL  P(ξo = n) (since Ti ∼  T and Yi ∼  Xk-1 ) =

∑
∞

=
−

1
1

n
knLE  P(ξo = n) = LEk-1Eξo = (µL)Ek-1.

As E0 = 1, (2.4) follows at once.
As to (2.5),  we have

V1 = EX12 – (EX1)2 = E( ∑
ξ≤ on

Tnv )2 - µ2L2 = ∑ ∑
∞

= =











1

2

1
E

n

n

i

Tiv  P(ξo = n) –  µ2L2 =

( )∑
∞

=
−+

1

2
2 )1(

n
LnnnL  P(ξo = n) –  µ2L2 = µL2 +L2(Eξ2 - Eξ) = µ(s2 + L2) + L2(µ2 +σ2 - µ)–  µ2L2

= µs2 + L2σ2.

As to (2.7), we have  EXk
2 = 

2

1 1
E∑ ∑

∞

= =











n

n

i
i

T Yv i P(ξo = n) = ∑ ∑
∞

= =

+





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



1 1',
'

'E
n

n

ii
ii

TT YYv ii P(ξo = n) =

∑ ∑ ∑
∞

= = ≤≠≤










+

1 1 '1
'

22 'E
n

n

i nii
ii

TT
i

T YYvvYv iii P(ξo = n) = ( )∑
∞

=
−− −+

1
1

222
12 E)1(E

n
kk XLnnXnL P(ξo = n) = µL2E(Xk-1)2 +

L2E2Xk-1 (Eξ2 - Eξ) = µL2(Vk-1 + E2Xk-1) + L2kµ2k-2(µ2 + σ2 - µ),  hence
Vk = EXk

2 – E2Xk = µL2(Vk-1 + µ2k-2L2k-2) + L2kµ2k-2(σ2 - µ) = µL2Vk-1 + µ2k-2L2k-2(µL2 + L2σ2 - µL2)
and (2.6) follows. Next, (2.8) can be proved by induction and (2.9) is obvious.
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3. CORRELATION COEFFICIENTS BETWEEN XM AND XN THE VARIANCE OF X

If we want to find a more precise estimation of Var(X), we have to compute the covariances cm,n =
EXmXn – EXmEXn . Let us put by convention X0 = 1. Then cm,0 = c0,n = 0.

Proposition 3.1. The covariances cm,n satisfy the recurrence relation

cm,n = µL2cm-1,n-1 + V1(µL)m+n-2.       (3.1)

Therefore,

ρ = 1 ⇒  cm,n = V1min(m,n)(µL)m + n – 2 , ρ ≠ 1 ⇒  cm,n = V1 1
1),min(

−ρ
−ρ nm

(µL)m + n – 2.       (3.2)

Proof. Suppose m ≥ n ≥ 1.According to (2.3), write

Xm = iT
i

i
v Y

≤ξ
∑  , Xn = '

'
'

iT
i

i
v Z

≤ξ
∑ ,       (3.3)

where Yi are i.i.d., distributed as Xm-1 and Zi’ also are i.i.d. and distributed as Xn-1. If i ≠ i’ then Yi are
independent on Zi’ – they represent the descendants of “i ” in generation m-1 and the descendants of “i’ ” in
generation n -1. If i = i’ they are not independent – they represent the descendants of “i” in generations m and
n, but the pair (Yi,Zi) is distributed as (Xm-1, Xn-1). That’s why we can write

EXmXn = E[( iT
i

i
v Y

≤ξ
∑ )( '

'
'

iT
i

i
v Z

≤ξ
∑ )] = 

1k

∞

=
∑  E[( iT

i
i k

v Y
≤
∑ )( '

'
'

iT
i

i k
v Z

≤
∑ )]P(ξo = k)

= 
1k

∞

=
∑  E[ 2 iT

i i
i k

v Y Z
≤
∑ + ' '

'
1 '

i iT T
i i

i i k
v v Y Z

≤ ≠ ≤
∑ ]P(ξo = k)

=
1k

∞

=
∑ [( 2E EiT

i i
i k

v Y Z
≤
∑ )  + ' '

'
1 '

E E E Ei iT T
i i

i i k
v v Y Z

≤ ≠ ≤
∑ ]P(ξo = k)

= 
1k

∞

=
∑  [( 2 1 1E( )m n

i k
L X X− −

≤
∑ )+ 2

1 1
1 '

E Em n
i i k

L X X− −
≤ ≠ ≤
∑ ]P(ξo = k)

= 
1k

∞

=
∑  [( 2 1 1E( )m nkL X X− − )+ 2

1 1( 1) E Em nk k L − −− ]P(ξo = k)

= L2E(Xm-1Xn-1)Eξ + L2(µL)m+n-2(Eξ2 - Eξ) .

If we write EXmXn = cm,n + EmEn = cm,n + (µL)m+n , then it follows that cm,n - (µL)m+n = µL2[cm-1,n-1 + (µL)m+n-2 ]
+ (µ2 + σ2 - µ) L2(µL)m+n-2 or

cm,n = µL2cm-1,n-1 + (µL)m+n-2(µL2 + σ2L2 - µL2)       (3.4)

and this is precisely (3.1) since µ(L2- L2) + σ2L2 = V1.  To check (3.2), let us write (3.1) as

cm+1,n+1 = acm,n + V1qm+n       (3.5)

with a = µL2 and q = µL. Notice that q < 1, if we want EX to be finite. Let also Q = q2. Then, for n = 0 we get
cm+1,1 = V1qm ⇔ cm.1 = V1qm-1. For n = 1 it follows that cm+1,2 = aV1qm-1 + V1qm , hence cm,2 = V1qm-2(a + Q). By
iteration, we find that

m ≥ n ⇒  cm,n = V1qm – n(an-1 + an-2Q + …+ aQn-2 + Qn-1)       (1.1)

and that is precisely (3.2), since ρ = 1 is the same as a = Q ⇔ L2 = µL2.

Proposition 3.2.  The correlation coefficients rm,n = r(Xm,Xn) are given by
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ρ = 1 ⇒  rm,n = ),max(
),min(

nm
nm , ρ ≠ 1 ⇒  rm,n = 

1
1

),max(

),min(

−ρ
−ρ

nm

nm
.       (3.7)

Proof. We have rm,n = ,

, ,

m n

m m n n

c
c c

. Suppose that m ≥ n and ρ ≠ 1. Then , by (3.6) we have

cm,n = V1qm – n(an  -1 + an - 2Q + …+ aQn - 2 + Qn - 1), cm,m = V1(am-1 + am - 2Q + …+ aQm - 2 + Qm - 1),

cm,m = V1(an-1 + an - 2Q + …+ aQn - 2 + Qn - 1), thus    r2
m,n

 = 
1 2 1 2

1 2 1 1 2 1

( ... )
( ... )( ... )

m n n n n

m m m n n n

Q a a Q Q
a a Q Q a a Q Q

− − − −

− − − − − −

+ + +
+ + + + + +

= 
( 1) ( 1) 1 2 1

1 2 1

( ... )
( ... )

m n n n n

m m m

Q a a Q Q
a a Q Q

− − − − − −

− − −

+ + +
+ + +

= 
( 1) 1 2 1

( 1) 1 2 1

( ... )
( ... )

n n n n

m m m m

Q a a Q Q
Q a a Q Q

− − − − −

− − − − −

+ + +
+ + +

.

As a/Q = ρ, we can further write r2
m,n = 

1

1

1 ...
1 ...

n

m

−

−

+ ρ + + ρ
+ ρ + + ρ

 and the proof is complete.

Corollary 3.3.. Var(X) < ∞ ⇔ µL < 1 and in this case

Var(X) =
( ) ))(1(1 22

1

LL
V

µρ−µ−
= 

( ) )1(1 2
2
1

LL
V

µ−µ−
.       (3.8)

Proof. We have Var(X) = 
1 1

cov
m n

∞ ∞

= =
∑∑ (Xm,Xn) . Let x = µL. If ρ ≠ 1, then according to (3.2) we have

Var(X) = ∑ ∑
∞

=

∞

=

∧−+ −ρ
−ρ

1 1

21 )1(1
m n

nmnmxV  = 









−ρ−ρ ∑∑ ∑ ∑

∞

=

∞

=

∞

=

∞

=

−+∧−+

1 1 1 1

221
1

m n m n

nmnmnm xxV  =

1
1
−ρ

V [(1+2x + 2x2 +…)(ρ + ρ2x2 + ρ3x4 + ρ4x6+ …) – (1 + x + …)2) = 1
1
−ρ

V [ 21
)11

2(
xx ρ−

ρ−
−

- 
( )21
1
x−

]

= 1
1
−ρ

V [ 211
1

xx
x

ρ−
ρ⋅

−
+ - 

( )21
1
x−

] = 1
1
−ρ

V [
( ) )1(1

)1()1(
22

22

xx
xx

ρ−−
ρ−−−ρ ] = 

( ) )1(1 22
1

xx
V

ρ−−
.

The second equality follows from the definition of ρ: ρx2 = 2
2

L
Lµ

µ2L2. If ρ = 1 the result is the same:

Var(X) = ∑∑
∞

=

∞

=

−+∧
1 1

2
1 )(

m n

nmxnmV = V1(1+2x + 2x2 + 2x3 + …) (1 + 2x2 + 3x4 + 4x6 + ..) =

V1 ( )221
1

1
1

xx
x

−
⋅

−
+  = 

( ) )1(1 22
1

xx
V

−−
= 

( ) )1(1 22
1

xx
V

ρ−−
 .

Remark. Let Nk =│Gk │be the number of descendants of “o” in generation k. It is well known that ENk

= µk , thus  µ > 1 ⇔ ENk → ∞. Relation (2.9) points out that it is possible that the total cost of the insurer
have a finite expectation, if the interest rate δ is great enough to ensure the inequality µL < 1.

Moreover, if we let δ → 0, we find the classical results of branching process theory (see [1], [3]) as

particular cases. Thus, δ = 0  ⇒  v = 1 ⇒  L = L2 = 1, ρ = 
µ
1 , V1 = σ2.Then Xk = Nk = the number of members
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of Gk and X is the total number of descendents of “o”. We have EX = 
µ−

µ
1 , Var (X) = 

( )3
2

1 µ−
σ  and the

correlation coefficient of Nm and Nn is rm,n = nm

nm
nm

∨

∧
−

µ−
µ−µ

1
1 .

Example. For instance, if δ = ln 1.05 , thus v = 0.953, and T = 14 + Z, Z ∼  Binomial (114,p), p = .1 (just
for fun, x may procreate between age 14 and 114 years with an expected age of procreation at 24 years !),
then L = EvT = v14(q+pv)100 ≈   0.3133 thus EX < ∞ as long as µ < 1/L ≈ 3.19. Further on, L2 = Ev2T =
v28(q+pv2)100 ≈  0.1002. Now, if, for instance, ξ ∼  Bin(6,1/3), then µ = 2, σ2 = 4/3, µL ≈ 0.6267, hence EX ≈
1.679. As V1 = µ(L2 – L2) + L2σ2 ≈2s2 +  0.1745 ≈0.1787 and µL ≈ .6266, µL2 ≈.2004, by (4.7) we get

Var(X) = 
( ) )2004.1(6266.1

1787.
2 −−

 ≈ 1,6029 ⇒  σ(X) ≈ 1.266.

From now on we can apply Tchebyshev’s inequality to estimate P (X > C): P(X >EX + kσ(X)) < k –2 .
The problem is that such as estimation is bad. For k = 5 we get P(X  > 1.679 + 5·1.266) = P(X > 8.0092) <
1/25 = 4%, but surely this probability is much less than that. We think that the premium Π = 8 MU is very
safe for the insurer under the conditions assumed. However, more sophisticated techniques are necessary to
find  better bounds.

What can one say about the exponential premium principle? In order to be able to make estimations
one has to study some moment generating functions.

4. MOMENT GENERATING FUNCTION OF (X1,…, XK) AND EXPONENTIAL PREMIUM

In the sequel we assume H1 – H4.
Let mk(t1,…,tk) = Eexp(t1X1 + t2X2 + …+ tkXk) or, for short, mk(t) = E >< kZe ,t , be the moment generating

function of the vector (X1,…,Xk) of costs for the first k generations of descendants, actualized at moment t =
0. Let also ϕk(t) = mk(t,…,t) = Eexp[t(X1 +X2 + …+ Xk)] and Πk(t) = log[ϕk(t)] / t. Then, for t > 0, Πk(t) is the
very definition of the exponential premium demanded by an insurer with constant risk-aversion t in order to
ensure the first k generations. (see [2], [4], [6])

 We are interested in the function Π(t) = log(EetX ) / t. Since we only deal with positive random
variables, it is clear that Π = limk→∞Πk.

Proposition 4.1.  Let g(x) = Exξ be the generating function of ξo and m(t) = TtveE , where T = To. Then
(i) m1(t) = g(m(t)) = g[ TtveE ] ;

(ii) k ≥ 2 ⇒   mk(t1,…,tk) = g[E( ),...,,( 321
1 T

k
TT

k
vt vtvtvtme

T

− )] ;

(iii) ϕk(t) = g[E(
Ttve ϕk-1(tvT))];

(iv) the m.g.f. ϕ(t) = EetX
  of X,  satisfies the relation ϕ(t) = g[E(etYϕ(tY))] with Y = vT;

(v)  the exponential premium Π(t) satisfies the relation t )]E(log[)( )(( tYYtegt Π+=Π , Y = vT.

Proof. (i)  m1(t) = Eexp(tX1) = Eexp(t ∑
ξ≤ oi

Tjv ) = ∑
∞

=

∑
≤

0
E

n

vt
ni

iT

e P(ξo = n) = ∑
∞

=0
)(E

n

ntvTe  P(ξo = n) =

g( TtveE ) = g(m(t)).
      (ii) Apply (2.3). For k ≥ 2, write t = (t1,…,tk) as t = (t1,u) with u =(t2,…,tk). Then t1X1 + t2X2 + …+ tkXk =
<t, Zk>  = < t, ),1( *

,1
o

nk
n

T Zv n −
ξ≤

∑ > = ),( *
,11

o

><+ −
ξ≤

∑ nk
n

T Ztv n u , where *
,1 nkZ −  are independent copies of Zk-1.

Write this relation as
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t1X1 + t2X2 + …+ tkXk = { }Nnk
N Nn

T Ztv n =ξ−
≥ ≤

><+∑ ∑ o
1)),(( *

,11
0

u .       (4.1)

Then  exp(t1X1 + t2X2 + …+ tkXk) = { }Nnk
N Nn

T Ztv n =ξ−
≥ ≤

><+∑ ∑ o
1)),(exp( *

,11
0

u ,  hence

mk(t) = )()),(exp(E o
*

,11
0

NPZtv nk
N Nn

Tn =ξ><+ −
≥ ≤

∑ ∑ u .

As (Tn, *
,1 nkZ − )n are i.i.d., we can write

mk(t) = )()),(exp((E o
*

1,11
0

1 NPZtv n
k

N

T =ξ><+ −
≥

∑ u  = g[ )),(exp(E *
1,111 ><+ −k

T Ztv u ].       (4.2)

As T1 is independent on Z*
k-1,1 we have

)),(exp(E( *
1,111 ><+ −k

T Ztv u  = )),exp()exp(E( *
1,11 1 >< −k

T Zvt u =

E[ )),exp()exp(E( 1
*

1,11 11 TZvvt k
TT >< −u ] = E[ )),exp(E()exp( 1

*
1,11 11 TZvvt k

TT >< −u ] =

E[ )()exp( 11 11 um T
k

T vvt − ].

 (iii)  is a special case of (ii)  for t1 = t2 = … = tk = t.  while, for (iv) let k → ∞ in (iii). Finally, (v) is
obvious.

In the special case δ = 0 ⇔ v = 1 we obtain classical results (see [1],[3]). In this case, Xk = Nk and X = N
is the total number of descendants of “o”. We have

Corollary 4.2. Let g(x) = Exξ be the generating function of ξo and gk  the generating function of the
vector (N1,…,Nk) defined by  gk( x1,x2,…,xk) = E[ kN

k
NN xxx ...21

21 ]. Let also ck(x) = gk(x,x,…,x) be the
generating function of Sk := N1 + N2 + … + Nk and c = limk→∞ck  the generating function of the total number
of N descendants of “o”. Then

(i) g1 = g;
(ii) k ≥ 2 ⇒   gk(x1,…,xk) = g[x1gk-1(x2,…,xk)] , xi > 0 ∀  1 ≤ i ≤ k;
(iii) ck(x) = g[xck-1(x)] ∀  x > 0;
(iv) c(x) = g[xc(x)]  ∀  x > 0;
(v) the exponential premium of N, Π(t) = [log c(et)] / t satisfies the equation t )](log[)( )(1( ttegt Π+=Π .

Proof. In Proposition 4.1. take vT = 1 and replace exp(tj) by xj. 

Remark. It is difficult to find natural cases when the functional equation (iv) from Pproposition 4.1 has
computable solutions. However, it provides another way to prove (2.10) and (3.8) concerning EX and
Var(X), if we can prove somehow that ϕ(t) < ∞ in a neighborhood of 0. If we denote by Y the random
variable vT, 0 < Y < 1, then equation (iv) from Proposition 4.1 becomes

ϕ(t) = g(ψ(t)) with ψ(t) = E(etYϕ(tY)).       (4.3)

Then ϕ´(0) = g´(ψ(0)⋅ψ´(0) = g´(1)(1 + ϕ´ (0))EY. As g´(1) = Eξo = µ and EY = L, we get the equation ϕ´(0)
= µL(1 + ϕ´(0)); as ϕ´(0) = EX , we rediscover (2.10). If we differentiate (4.3) twice, after some (tedious)
computations we rediscover (3.8), since ϕ´´(0) = EX2.

Definiton. Let F be a probability distribution on [0,∞). Consider  its moment generating function mF(t)
= ∫ txe dF(x). Let Dom(F) := {t│mF(t) < ∞}. Then F is called  short tailed if (-∞,0] ∈ Int(Dom(F)); or, in

other words, if mF(t) < ∞ ∀  t < t0 for some positive t0. For instance, any F with bounded support is short
tailed; Poisson(λ), Negbin(ν,λ) and Gamma(ν,λ)  all are short tailed. Call F to be very short tailed (and write
F ∈  VST ) if Dom(F) = ℜ . For instance, Binomial(n,p) and Poisson(λ) are very short tailed but Negbin(ν,λ)
and Gamma(ν,λ) are not.
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From a practical point of view, a distribution F  is VST if its exponential premium ΠF(t) defined as
[log mF(t)] / t is finite at any risk-aversion coefficient t > 0 (or, to use the slang, if “F can be insured”).

If F ∉  VST then there exists  t0 > 0 such that ΠF(t) = ∞ if t > t0. (F “cannot be ensured” if the risk-
aversion coefficient of the ensurer is too big).

Here is a main difference between N and X.

Proposition 4.3.  N is never  very short tailed (if we let aside the trivial case ξ = 0 (a.s.), but is short
tailed if ξ is short tailed and we are in the subcritical case , i.e., µ < 1 (see [1]).

Proof. If µ = Eξ ≥ 1, then EN = ∞  hence N cannot be short tailed. Suppose that µ < 1 (the subcritical

case). Let ξ ~ 



......
......10

10 nppp
n . Then p0 > 0 and pn > 0 for some n ≥ 1. Let ϕ(t) = c(et) be the m.g.f. of

N. By Corollary 5.2 (iv) ϕ satisfies the equation

ϕ(t) = g(etϕ(t)).       (4.4)

Hence  ϕ(t) > p0 + pnentϕn(t). Let t > 0 be such that α:=  pnent > 1. Then ϕ(t) > αϕn(t). As ϕ(t) > 1, we have
ϕ(t) < ϕn(t), hence ϕn(t) > ϕ(t) > αϕn(t), which can only hold if ϕ(t) = ∞. The second assertion is a special
case (α=1) of the next result.

Proposition 4.4. Let Y = eT, L = EY and µ = Eξo. Suppose that

µL < 1.       (4.5)

 (i) If ξ is short tailed, then X is short tailed, too;
(ii) If ξ is VST and ess sup Y < 1   then S is VST, too;
(iii) N is short tailed ⇔ ξ is short tailed and µ < 1 (the subcritical case).

Proof. (i) We have to prove that there exists t* > 0 such that t < t* ⇒  EetX < ∞. Keep the same notation
as in Proposition 4.1.Thus ϕk(t) = E exp[t(X1 + X2 + … + Xk)] satisfies the recurrence relations

ϕ1(t) = g(EetY) and k ≥ 2 ⇒  ϕk(t) = g(E(etYϕk-1(tY )).       (4.6)

From the very definition of ϕk the sequence (ϕk(t))k is increasing. Hence it has a limit, ϕ(t) = EetX , such that
ϕ(t) = g(E(etYϕ(tY )).

As we agreed that ξ is short tailed, there exists x0 > 1 such that x < x0 ⇒  g(x) < ∞. Let then    t0 = 
α

0ln x .

Thus t0 > 0 and t < t0 ⇒  ψ(t) < ∞. Remark that ϕ ′1(0) = 1 and ϕ1 ′(0) = µL < 1. As ϕ1 is increasing and
convex, the equation ϕ1(t) = 1 + βt has exactly one positive solution t(β) for any β > ϕ1 ′ (0) = µL. .

Let β ∈  (µL, 1) be fixed and let t1 be the unique positive solution of ϕ1(t) = 1 + βt. As the line t " 1 +
βt is a chord and ψ is convex, it follows that

ϕ1(t) < 1 + βt ∀  t ∈  (0, t1).       (4.7)

Let t* = (1 - β)t1 . Then t* > 0 and we claim that

t < t*  ⇒  ϕ(t) ≤ 1 + 
β−

β
1

t  < ∞.       (4.8)

In order to prove that, we shall check by induction that

t < t*  ⇒  ϕk(t) < 1 + t(β + β2 + … + βk).       (4.9)

For k = 1 the assertion is true. Let k ≥ 2 and  t < t*. Then

ϕk(t) = g(E(etYϕk-1(tY )) ≤ g(E(etY( 1 + tY(β + β2 + …+ βk – 1))))       (4.10)

 (since tY < t < t* ) . But 1 + tY(β + β2 + …+ βk – 1)< exp(tY(β + β2 + …+ βk – 1)) , hence (4.10) implies the
inequality ϕk(t) ≤ g(E exp( tY + tY(β + β2 + …+ βk – 1))) = ϕ1(t(1 + β + …+ βk)). Next,  t(1 + β + …+ βk - 1) <
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t*(1 + β + …+ βk - 1) < t* / (1 - β) = t1. Then (4.2) holds. Hence ϕk(t) < 1 + βt(1 + β + …+ βk – 1) . Therefore
(4.9) holds thus (4.8) holds, too.

(ii) Suppose that ξ is VST. Let α = ess sup Y  < 1. The news is that now ϕ1(t) < ∞ ∀  t > 0. We want to
prove that ϕ(t) < ∞ ∀  t > 0. Suppose for a contradiction that ϕ(t) = ∞. As ϕ(t) = g(E(etYϕ(tY )) and 1 ≤ etY ≤ et

that would imply the fact that Eϕ(tY) = ∞. But Y ≤ α ⇒  ϕ(tY) ≤ ϕ(αt) ⇒  Eϕ(tY) ≤ ϕ(αt) ⇒  ϕ(αt) = ∞.
Repeating the arguments ϕ(αt) = ∞ ⇒  ϕ(α2t) < ∞ ⇒  … ⇒  ϕ(αkt) < ∞ ∀  k ⇒  ϕ(t) = ∞ ∀  t > 0 and that
contradicts the existence of t* > 0 such that ϕ(t) < ∞ for t < t*.

(iii) “⇒ ”. Of course ξo ≤ N, hence if N is short tailed, ξo is short tailed, too. If µ1 ≥ 1, then EN = ∞, thus
N cannot be short tailed. The converse implication, “⇐ ” is a particular case of (i)., for α=1. 

Corollary 4.5.  Let Y = vT. Suppose that there exists a > 0 such that T ≥ a a.s. Let α = va < 1. Suppose
that αµ < 1 and ξ is VST. Then X is VST, too.

We shall give now a lower bound for ϕ(t). We need the following
Definition  (See [5], [6]). Let Y and Y ′ be two non-negative random variables. Then Y is dominated by

Y ′ in the increasing convex order (denoted by Y ####icx Y ′) if Eu(Y) ≤ Eu(Y ′) for any u :[0,∞) → [0,∞) non-
decreasing and convex. We shall use the following properties of this stochastic dominance: (some of them
are obvious).

(i) EY  ####icx Y.

(ii) Y  ####icx Y ′ , ψ is non-decreasing and convex ⇒  ψ(Y) ####icx ψ(Y ′).
(iii) Invariance w.r. to compounding: if (Yn)n and (Y ′n)n are i.i.d. and N, N ′ are two counters

independent on both, then Y1 + …+ YN ####icx Y ′1 + … + Y ′N’.

(iv) If Y ####icx Y ′ then mY(t) ≤ mY’(t) ∀  t ≥≥≥≥ 0 ,  thus ΠY ≤ ΠY’ .
We shall need another property, as well, for which we do not know references.

Lemma 4.6..  Let Yi, Zi (i = 1,2) be positive and independent. Suppose that Y1 ####icx Y2 and Z1 ####icx Z2.

Then Y1Z1 ####icx Y2Z2.
Proof. Let Fi , Gi be the distributions of Yi, Zi. Let also u be non- decreasing, convex and positive. Then

Eu(Y1Z1) = ∫∫u (yz)dF1(y)dG1(z). As the mapping y " u(yz) is non-decreasing and convex and Y1 ####icx Y2 , it

follows that ∫u (yz)dF1(y) ≤ ∫u (yz)dF2(y). Let w(z) = ∫u (yz)dF2(y). Then w  also is non-decreasing and

convex (obvious), hence Eu(Y1Z1) ≤ ∫w (z)dG1(z) ≤ ∫w (z)dG2(z) = Eu(Y2Z2). 

We now prove a result concerning comparisons of two different progeny scenarios of progeny. Recall

that Γ  = !
∞

=0k
 N k.

Proposition 4.7.  Let ξξξξ =( ξx)x∈ Γ and ξξξξ ′ =( ξ ′x)x∈ Γ be two families of  i.i.d. random variables associated
with the progeny of “o” under two scenarios. Let also T ′ = (Tx)x∈ Γ and T ′ =( T’′x)x be i.i.d., denoting the
independent  birth times of the same progeny . Let Xk , X ′k be the costs of the kth generation according to

both scenarios and X, X ′ be the total costs of the insurance.  Suppose that xTv  ####icx 
'
xTv  and  ξx ####icx ξ ′x ∀  x

∈  Γ. Then Xk ####icx X ′k ∀  k and X ####icx X ′.

Proof. Induction on k. Let Yx = xTv  and Y’x = 
'
xTv . For k = 1,  X1 = ∑

ξ≤ oi
iY is increasing, convex and

dominated by  X  ′1 = 
o

'

'
i

i
Y

ξ≤
∑ by invariance to compounding (property (iii)). We shall now use (3.4): Xk =
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*
,1

o

nk
n

n XY −
ξ≤

∑  with X*
k-1,n i.i.d. distributed as Xk-1 and X ′k =  '*

,1
o

nk
n

n XY −
ξ≤

∑  with X’*
k-1,n i.i.d. distributed as X ′k-

1. According to Lemma 5.5. and to invariance to compounding, we have Xk ####icx X ′k by the induction

hypothesis. In the same way one can prove that X ####icx X ′.
Now, here is a lower bound for the exponential premium Π.

Corollary 4.8.. Let L = EvT. Then LN1 + L2N2 + …+ LkNk ####icx X1 + Xn + … + Xk for any k . It follows
that ϕk ≥ ψk and ϕ ≥ ψ, where ψk(t) = Eexp(t(LN1 + L2N2 + …+ LkNk)), ψ = limk→∞ψk .

Hence Π(t) ≥ (lnψ(t)) / t .  Moreover, ψ is the unique solution of the equation ψ(t) = g(etLψ(tL)).
Proof. Use the fact that L = EvT ####icx vT and Proposition 4.7 with T = T′, Y = L and Y′ = vT.

5. OPEN PROBLEMS

1. Estimate r = r(ξ,T) := sup{ t│ϕ(t) < ∞} . This constant would mean the maximum risk-aversion
coefficient that an insurer can allow.

2. Find a better estimation of P(X > C) than that given by Tchebycheff’s inequality.
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