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The purpose of this paper is to analyse the motion of the transverse magnetoelastic waves in an
incompressible, neo-Hookean solid interacting with a magnetic field. It is shown a decay of the waves
amplitudes as t → ∞ , and a resonant interaction between the fast and/or the slow waves, for nonzero
initial conditions.
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1. INTRODUCTION

The electroelastic and magnetoelastic waves are produced by the interaction between the mechanical
waves and the electromagnetic field and their behavior are of interest in various acoustic devices design.
With development of nanotechnology and nanoapplications in physics and engineering, there is a significant
increase of interest to magnetoelasticity (Zinchuk and Podlipenets [1], Savin [2], Tucker and Rampton [3]).

 Besides practical importance there is a theoretical interest in the propagation of magnetoelastic waves
in different media, in the understanding of the evolution of waves, their stability and instability, the role of
localized waves, etc.

In contrast to the known results in elastodynamics, where no decay of elastic waves is proved, the
interaction between elastic and magnetic effects determine a decay of amplitudes of solutions. The energy
decay of magnetoelastic waves in bounded conductive media is proved by Menzala and Zuazua [4]. Shul’ga
and Ratushnyak [5] have studied the behavior of magnetoelastic Love waves in laminate ferrite-dielectrics
media. Chiroiu et al [6] have analysed the subharmonic generation of magnetoelastic Love waves in a ferrite-
dielectric plate with Cantor-like structure. It is shown that the waves generated by interacting mechanical
waves and an electromagnetic field, are expressed as a nonlinear superposition of cnoidal waves in both
phonon and fracton vibration regime.

Domanski [7]  has applied the asymptotic expansion of high-frequency small amplitude weaves to
study the nonlinear equations of magnetoelasticity, and the resonant interaction effects.  Rivera and Santos
[8], and Andreouand Dassios [9] have shown also that the 3D magnetoelastic waves decays to zero as time
goes to infinity, provided the initial data is smooth enough. Di Perna and Majda [10], Joly et al. [11] and
Majda and Rosales [12] have studies the resonantly interacting of nonlinear hyperbolic waves.

The main purpose of this paper is to study the motion of the transverse magnetoelastic waves in a
incompressible, neo-Hookean solid interacting with a magnetic field, and to evidentiate a time decay of
amplitude of solutions, and also the resonant interactions between the fast and slow waves.

The model of neo-Hookean solid assumes that the extra stresses due to deformation are proportional to
Finger tensor (the left Cauchy-Green deformation tensor)

p G= − +T I B , (1.1)
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where T  is the stress tensor, p  the pressure, I  the unity tensor, G  the shear modulus, and T=B FF  the
Finger tensor, with = ∇F x  the deformation gradient tensor. This model is used for modelling materials, for
which the deformation is not small.

2. FORMULATION OF THE PROBLEM

Consider an incompressible, conductor of electricity and thermally non-conducting medium, with
constant entropy. Consider that the medium is isotropic in its underformed state. The system of equations in
Eulerian coordinates are consisted from two Maxwell equations of the infinitely conducting medium, the
balance of elastic momentum equation and the mass balance equation [7]

div 0=B , (2.1a)

, rot( ) 0t + × =B B u , (2.1b)

,( grad ) div div 0tρ + ⋅ − − =v v v T M , (2.1c)

, div( ) 0tρ ρ+ =v , (2.1d)

where  v  the velocity vector, ρ  density, B  is the magnetic induction vector, T elastic stress tensor and M
magnetic stress tensor. The term divM represents the action of the magnetic stresses. The comma represents
the differentiation with respect to the specified variable, and the dot is the scalar product.

In the Lagrangian coordinates, with considering only the 1D transverse wave motion (with 1e  the unit
vector in the coordinate direction x ), the system (2.1) yields

1, 0xB = , (2.2a)

, 1 ,( ) 0t xB− =B v , (2.2b)

, 1 , 1 ,( ) ( ) 0t x xρ − ⋅ − ⋅ =v e T e M , (2.2c)

, 0tρ = , (2.2d)

where the components of the magnetic stress tensor M  are ( µ  is the permiability)

2 2 2
11 1 2 3

1 ( )
2

M B B B
µ

= − − , 12 1 2
1M B B
µ

= , 13 1 3
1M B B
µ

= . (2.3)

So, the sytem of  equations (2.2) becomes

, 1 ,( ) 0i t i xB v B− = , 1, 2,3i = . (2.4a)

, , 1 ,
1(2 ) 0i t N i i xv w B Bρ φ
µ

− + = , 1, 2,3i = , (2.4b)

, , 0i t i xw v− = , 1, 2,3i = . (2.4c)



3 On the propagation of magnetoelastic waves

In (2.4) w is the transverse strain vector of components iw  ( 1w , 2w  and 3w ), ( )Nφ  is the internal

energy function of 2 2
2 3N w w= + . The magnetoelastic coupling in a magnetoelastic material couples the

mechanical strain in a material to the magnetic field.
The total energy of a magnetoelastic material in a magnetic field is a sum
H anis me elas stressφ φ φ φ φ φ= + + + + , where Hφ  is the energy due to the interaction between the applied

magnetic field and the magnetization of the material, anisφ  is the energy due to the magnetic anisotropy of the
material (the tendency of the magnetization to have a preferred direction), meφ  is the magnetoelastic coupling
energy, elasφ  is the energy due to the intrinsic stiffness of the material, and stressφ  is the energy due to an
externally applied stress. For 1D neo-Hookean solid, isotropic n its underformed state, the internal energy

depends on two independent invariants 1
1
2

I N=  and 2
2
1 1
2 4

I N N= + , 2 2
2 3N w w= + .

Considering 1ρ = , we have 1 0v = , and from (2.1a), 1 const.B = . Also, 1 0w = .  The dependent
nonzero variables  are 2B , 3B , 2v , 3v , 2w  and 3w . The initial conditions are

0
2 2( ,0) ( )B x B x= , 0

3 3( ,0) ( )B x B x= , 0
2 2( ,0) ( )v x v x= , 0

3 3( ,0) ( )v x v x= ,

0
2 2( ,0) ( )w x w x= , 0

3 3( ,0) ( )w x w x= .
(2.5)

3. SOLUTIONS AND RESULTS

To solve the problem (2.4) –(2.5) we see that these nonlinear hyperbolic equations have the form

, ,( ) 0k t kj j xu A u+ =u , 1, 2...,6k = (3.1)

where 2 3 2 3 2 3{ , , , , , }ku B B v v w w≡ and

13 24 1A A B= = ,  1
31 42

BA A
µρ

= − = − , 2
35 , 2 ,2 4N NNA wφ φ= + , 45 2 3 ,4 NNA w w φ= ,

2
46 , 3 ,2 4N NNA wφ φ= + , 53 64 1A A= = .

(3.2)

The characteristic eqyation of (3.1)  det( ) 0λ − =I A has the solutions (Domanski [7]):

•  Case.1.

1 2 0λ λ= = , 
2
1

3 4 , ,2 4N NN
B Nλ λ φ φ
µρ

= − = + + ,  
2
1

5 6 ,2 N
Bλ λ φ
µρ

= − = + , (3.3a)

if    , 0NNφ >  and 
2
1

,
1 0
2N

Bφ
µρ

+ > , and

•  Case 2.

1 2 0λ λ= = , 
2
1

3 4 ,2 N
Bλ λ φ
µρ

= − = +  ,  
2
1

5 6 , ,2 4N NN
B Nλ λ φ φ
µρ

= − = + + , (3.3b)
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if    , 0NNφ <  and 
2
1

, ,
1 2 0

4NN N
B

N
φ φ

µρ
 

+ + > 
 

.

The relation of the internal energy ( )Nφ  to the first Piolla-Kirchhoff stress tensor is obtained from
(1.1)

11 ,2 NT pφ= − ,  1 ,2k k NT w φ= ,  2,3k = . (3.4)

The calculations are carried out for cnoidal periodical variation of the initial data

2 2( ,0) cn( )B x b x= , 3 3( ,0) cn( )B x b x= , 0
2 2( ,0) cn( )v x v x= , 0

3 3( ,0) cn( )v x v x= ,

0
2 2( ,0) cn( )w x w x= , 0

3 2( ,0) cn( )w x w x= ,
(3.5)

where 0
2 3 2, , ,...b b v are known constants.

To solve the system (3.1) and (3.5) we apply the cnoidal method (Munteanu and Donescu [13])
consider the solution u  of the form  of cnoidal waves

2

1
( )cn ( )

M

i ij ij ij
j

u c t k x a t
=

= −∑ , 1, 2,...,6i = , (3.6)

where ( )ijc t  are the amplitude functions, ijk are the wave numbers, and ija  the angular frequencies,
1, 2,...,6i = , 1, 2,...,j M= , and

0 0

( ) 1 exp
p

ij
t tc t b
t t

−     = + + −        
. (3.7)

The parameters ijk , ija , 1, 2,...,6i = , 1, 2,...,j M= , and 0 ,t p and b  are determined  by a
numerically inverse problem based on a genetic algortirhm (Chiroiu et Chiroiu [14]), through the condition
to satisfy the equations (3.1) and (3.5). The critical time 0t marks the moment of time from which the decay
of amplitude  is acting.

Similar time decay functions ares found in the modeling of liquid crystal in the isotropic phase from
very short to very long time (Gottke et al.  [15]). The calculations show that two kinds of waves exist : a fast
wave of velocity 1c , and a slow wave of velocity 2c  (Domanski [7])

Case 1    
2
1

1 , ,2 4N NN
Bc Nφ φ
µρ

= + + , 
2
1

2 ,2 N
Bc φ
µρ

= + , (3.8a)

Case 2    
2
1

1 ,2 N
Bc φ
µρ

= + , 
2
1

1 , ,2 4N NN
Bc Nφ φ
µρ

= + + . (3.8b)

For nonzero initial conditions (3.5), the propagation of waves are characterized by two new effects : a
decay in time of the amplitudes and a resonant interactions between the fast and slow waves.

We consider the case of a ferrite characterized by 34800kg/mρ = , 510−µ = H/m and modulus of
elasticity 11 21.2 10 N/m× .

Figs. 3.1 and 3.2 illustrates the spatial variation profiles of the fast and slow strain waves 2w  and
respectively, 3w  for 0t t=  in the case 1. An interesting feature of the solutions (3.6) and (3.7) consists in a
decay of amplitudes for t → ∞ , for nonzero initial conditions (3.5). The decay of the waves amplitudes 2w
and respectively, 3w  as t → ∞ , for the case 1 are represented in figs. 3.3 and 3.4.
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Fig. 3.1. The space variation profiles of fast and slow strain waves 2w  for 0t t=  (case 1)

Fig. 3.2. The space variation profiles of fast and slow strain waves 3w  for 0t t=  (case 1).

Fig. 3.3. The decay of the wave amplitudes 2w  as t → ∞  (case 1).

Fig. 3.4. The decay of the wave amplitudes 3w  as t → ∞  (case 1).
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By the interaction of two waves, the fast or/and slow waves, the resonance phenomenon can appear.
Resonance occurs when two waves share the same vibrational frequency, or a very closed range of
frequencies. When one of the wave is propagating, it forces the second wave with the same natural
frequency,  into vibrational motion. New resonant waves are produced and propagate with the same
frequency or with the frequencies being a linear combination of the frequencies of the previous waves. The
result of resonance is a large amplitude that may cause damage in the material.

Different patterns of resonance interaction between two waves, e.g. the fast-fast, the slow-slow and the
fast-slow strain waves 2w  in the case 1, which share the same vibrational frequency 1ω  are shown in fig. 3.5.
A new resonant wave is produced at the colission of the previous two waves. For n  waves which interact
resonantly with frequencies and wave numbers ( , )i ikω , 1, 2,...,i n= , satisfying i i ikω λ= , 1, 2,...,i n= , a

new resonant wave is produced with the frequency and wavenumber ( , )kω being linear combinations of the
previous waves.

The resonant conditions are

1 2 ... 0nω ω ω ω+ + + = , (3.9a)

1 2 ... 0nk k k k+ + + = , (3.9b)

2 0b ≠ , 3 0b ≠ , 0
2 0v ≠ , 0

3 0v ≠ , 0
2 0w ≠ , 0

3 0w ≠ . (3.9c)

So, for zero initial conditions, the resonant interaction between waves does not exists.

Fig. 3.5. Different patterns of resonance interaction between the fast and/or slow strain waves 2w  (case 1).
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Fig. 3.6. The evolution of a new resonant strain wave 2w  during the interaction between two fast waves (case 1).

The time and spatial evolution of the new resonant strain wave 2w  resulted during the interaction
between two fast strain waves 2w  (case 1) with different frequencies and wave numbers ( , )i ikω , 1, 2i = ,  is
shown in fig. 3.6. A larger amplitude is observed in this case then before.

4. CONCLUSIONS

The behavior of magnetoelastic waves are of interest in various acoustic devices design, in which the
time decay of wave amplitudes and the resonance intercation between waves are important. In this paper we
study the motion of magnetoelastic waves in an incompressible, neo-Hookean solid which interacts with a
magnetic field. In contrast to the known results in elastodynamics, where no decay of elastic waves is
proved, the interaction between elastic and magnetic effects determine a time decay of wave  amplitudes for

0t t> , where the critical time 0t marks the moment of time from which the decay of amplitude is acting.
. Also, a resonant interaction between waves, e..g. between the fast-fast, the slow-slow and the fast-

slow waves are observed, for nonzero initial conditions. Resonance occurs when two or more waves waves
share the same vibrational frequency, or a very closed range of frequencies. New resonant waves with large
amplitudes are formed, which propagate with the same frequency or with the frequencies being a linear
combination of the frequencies of the previous waves.
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