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Let (Xy)nzo be a sequence of i.i.d. nondegenerate integrable random variables and let q 0[0,1] . Let
S(n,g) = Xo + gX; + ... + q"X,.. If | q | < 1 the sequence (S(N,q))nso is almost surely convergent to a
integrable random variable S(q) which has a distribution denoted by p(q). Even in the most simple
case when X, O Binomial(1, % ) behaves mysteriously erratic when q O (% ,1). We prove that there
still exists a regularity, namely

0<q<%0 Uniform(0,L) <., H(q)

and

2<q<1 0O p(q) <cx Uniform(0,L),

where 1/L =1 — g and “<.,” is the Choquet convex domination. The problem has a clear financiary
motivation: if ¢ is an actualization factor, then S(q) is the actual value of the infinite sum X, + X; +

1. THE PROBLEM

Let (Xy)n s o be a sequence of i.i.d. random variables and S(n,q) = Xo + gX; + ... + "X, , with g a real
number. As

S(n+k,q) — S(n,a) Og"* 'Sk — 1,0) (1.1)

(the notation X Y means that X and Y have the same distribution), it is obvious that the sequence (S(n,q))n >
o diverges for any q [ (- c0, -1] 0 [1, 0).

What does happen if q U (-1,1) ?

If the random variables X, are not integrable, it is possible that the sequence (S(n,q)), > o diverge. However, if
they are integrable, that is not possible since

_ n+l j :|q|
[s(n +k,a) = s(n, a), < J;)Iql Bl = g Xl (12)

meaning that (S(n,q)), > ¢ 1S Cauchy in L', hence convergent in L' It is easy to check that it is also

convergent a.s. since the series S(q) = Z q"X, converges a.s. If X, O L%, the convergence is even uniform.
n=0
The real problem is to compute the distribution of S(q). Let Fy and F, 4 be the distribution functions of
S(q) and S(n,q). Let also v be the distribution of X, and p(q), (n,q) the distributions of S(q) and S(n,q).
If [X,[€ M as. (that is, X, are essentially bounded), it is easy to see that
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|q|n+1 M |q|n+1
S(n,g) = ———=3(q)=S(n,q) + (1.3)
1=l 1=l
Therefore, a coarse evaluation of F, would be
q|n+1 |q|n+1 M
Fn’q(x_ 1_|q| )S Fq(X)S Fn’q(x+1_—|q|) (14)

which, for great n, is good enough for continuity points of F .
Anyway, estimation (1.4) is useless if we want to know the type of the distribution p(q). According to
the Lebesgue — Nikodym theorem any probability distribution iU on the real line can be written as a mixture

M= aMp + BHsc + Yhac, (1.5)

where a,,y=2 0,0+ +y+ 1, Up is a discrete distribution, Hsc is continuous but singular (i.e. there exists a
Borel set A [J [0 such that A(A) = 0 but Psc(A) = 1; here A is the Lebesgue measure on the real line) and,
finally, pac is absolutely continuous with respect to A.

Definition. A distribution of the form (1.5) is called a distribution of type (a,B,y). A distribution of
type (1,0,0) or (0,1,0) or (0,0,1) is called pure , otherwise it is called a mixture.

A remarkable result of Jessen and Wintner [3] (see [5], page 64, Theorem 3.7.7) is the so called purity
theorem (see [2]).

Purity Theorem . Let (X,).x0 be a sequence of independent random variables such that the sequence
(Xo + ...+ Xy)n is convergent in distribution to some real random variable S. Then the distribution of S is
pure.

In our one case can say more. The distribution of S(q) is always continuous (see [5], page 65). Is it
absolutely continuous? If v is absolutely continuous, then it is clear that p(q) is absolutely continuous, too.
The reason is that the convolution of vV and any other probability distribution O is absolutely continuous: if ¢
is the density of v, then

h(x) =jg (x - y)do(y) (1.6)

is a version for the density of VId .
If v is continuous, then it is also easy to see that S(q) has a continuous distribution, too. For, if F is the
distribution function of v, the distribution function G of VId is given by

G(X) = [F(x = y)do(y). (1.7

that is, it is continuous, too.

A delicate problem is when V is discrete. This time is by no means obvious why H(q) should be
continuous. It is proved in [5], page 85 that this is indeed the case. The most difficult question is to give a
criterion to decide if p(q) is absolutely continuous.

The simplest case is when v = Binomial(1, % ). Now, the distribution of S(q) is called an infinite
Bernoulli convolution (see [2], [3], [4], [5], [7], [8]). It is known that if | q | < % then pu(q) is singular (in
this case this is almost obvious, since the support of W(q) is negligible), that if q = 2 then p(q) =
Uniform(0,2), and if q U ( /2,1) \ M then p(q) is absolutely continuous, where M U ( %2, 1) is a negligible set
(see [7]). Little is known about the set M. We think that M is countable. The only q from M which is
positively known (see [7]) is = (\/g - 1)/ 2, i.e. the solution of the equation q + q° = 1. If q O (-1, - %), the
situation is similar: we can work with the random variables Y, = 2X, — 1 instead of X,. They are symmetrical,
therefore aY, and —aY, have the same distribution.

Trying to approximate the distribution functions Fq by F 4 on the computer we remarked an intriguing
regularity of the distribution functions F : compared with the corresponding uniform distribution function
Gn(X) = X/L, on [0, L] (here L, =1+ q+ ...+ "] ) they seemed to behave as follows:
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-~ for <% Fog(X) > Go(X) if X 0 (0, Ly/2) and Fog(X) < Go(X) if X O (Ly/2, 1)
= for > Y41 Fag(X) < Go(X) if X 0 (0, Ly/2) and Fog(X) > Ga(X) if X O (Lo/2, 1).

This is remarkable because intersection at one point only of two distribution functions is the Karlin —
Novikov criterion for convex domination (see [9] or [10]).
Definition. Let v and o be two probabilities on the real line. We say that v is convex dominated by

o—-and write v <, 0 if Iudv sjudo for all convex functions u : 0 — O for which the integrals do exist.

If i and v have the same finite expectation and their distribution functions F, and F; have the property
that there exists Xy such that X < X, [ Fy(X) £ Fg(X) and x = Xo O F,(X) = F4(X), then v <« 0. This is the

Karlin — Novikov criterion. Unfortunatel, it is not equivalent to convex domination.
We intend to prove a weaker result than our empirical remark, namely

Theorem. LetL=1+q+q’+....
If g <'% then pu(g) <cx Uniform(0,L)

If qO(%, 1) then Uniform(0,L) < 1(Q).

2. AMAJORIZATION LEMMA

If A0 O is a finite set, we shall denote by U(A) the uniform distribution on A, precisely
1
D Eas 2.1

|A| alJA

where &,(B) = 15(a) is the Dirac probability at a. Notice that if |A|=|B| =n, A={ay<a, <...<a,} and B
= {by<b; <... <bp}, then the definition of convex domination becomes

U(A) =

UA) <xUB) <= u(ay) +u(a))+...+u@an) < u(by) + ulby) + ...+ u(by) (2.2)

for any convex function u. Letting u(x) =X and u(x) = - X we see that ao + a, + ...+ a,=bo + b, +...+ by.
It is well known (and easy to check) that the second inequality is equivalent to

|x-a0| + |x-ai| +..+ |x-a]| < |x-bo| + |x-bi| +..4 |x-by| OxOO, (2.3)
It can be proved (see for instance [1] or [6]) that inequality (2.3) is equivalent to
ap = bo, apt+a; 2 b()"’ bl,...., Qo+ ...ta = bo + ...+ bn_1, Qo+t at+...Ha,= b() + b1+ ...+bn (24)

(Sometimes this is called Karamata’s theorem.) Inequality (2.4) is then written a < b ( b majorizes a). It is

important that in (2.4) we do not need that the numbers (ay)x and (by) be all distinct. A result we need is
Karamata’s theorem. Letap<a; < ...<a,and by <b; < ... <D, . Let a = (a)x and b =(ay)x. Then

n n
Zsai *cxzsai = a<b (2.5)
k=0 k=0

The proof of our result will rely on
Lemma2.1. Letq>0,n=1,a=(n+q)/(2n+1). Then

q O (%, n+1) O U{0,1,...,n}) OU{0,q}) <ex U(10,0,201,...,(2n+1)ar}) (2.6)

q 0(0, %) O(n+1, ) O U{0,0,20,...,2n+1)a}) <o U({0,1,...,n1) DU0,q}) - 2.7)
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Proof. Notice that
(2n+2) U({0,1,...,n}) LU({0,q}) =& + & + € + €j1q ...+ €1+ Ensq (2.8)

Let us arrange ascendingly the numbers 0,9, 1, 1+q, ....,n,n+q in the vector a = (&) < i < 2n+1 from 02,
Consider also the vector b 0 0°™ defined by b = (i0)p < < 2n+1. Let Ai =(2n + 1)( @y + a; + ...+ a;) and B;
=2n + 1)( b+ b, + ...+ bi), 0 <i<2n+l. Let also &, = A; — B; . Of course Ay = Nypey = 0. ACCOI'diIlg to
Karamata’s theorem we have to check that

qU(,n+1)0 Aiz001<i<2nandq (0, %) On+1,0) 0 AI<OO1<i<2n (2.9)
In order to make the computations easier, we shall remark the symmetry
An+1-i @i = Dope1 i i = n+q (2.10)

which further implies the remarkable equality A = Ay, i [ 1 < i <2n. Consequently, it is enough to prove
that

g0 n+1) 0 A2001<i<nandqO(0,%) On+1,0)0 A<001<i<n 2.11)

Case 1. The easiest one: g [ (0,1]. Then (&)o<i<2n+1 = (0, q, 1, 140, 2, 2+q, ..., N, n+q). It is easy to
check that

Aoict = (29-1) (i+1) (n-i) and Ay = (2g-D[(i+1)(n-i) + i] (2.12)

hence (2.9) holds.
Case 2. Another easy case: g [ [n,0). Now, (@)o<i<an+1 = (0, 1,2,...,n, q,1+q, 2+q, ..., n+q), and for i
< n the reader may check that

20, = i(i+1)(n+1- q), (2.13)

making obvious claim (2.9).
Case 3. 1< g<n+ 1. We have to check that A; =0 [J 1 <i < n. Now, we write

n=k+m,q=k+¢,withkm=1land0<e<l. (2.14)

Notice that (2n + 1)a =2k + m + € and (2n+1)(1 — o ) =m + 1 — €. This case is more difficult because of
the ascending order of the numbers i,i+q which now becomes

(@)o<ison+1 =(0, 1,2,..,k k+ g Kk + 1, k+1+€, k+ 2, k+2+g k+ m, k+ m+e, k+m+1+¢€,..., kK+m+k+g).

For i £ n = k+m the rule is

a=il0dl<isk a=k au =k+ €.,k = K+i, aaoj 1 =k +1i+ E,... (215)
Remark that if k + 2i <n =k + m (hence 2i <m) then
O :(2n+1)[(ak+2i + 8yis1) — (bk+2i + bk+2i+1)] = (m - 2I)(2k -1+28)>0 (2.16)

(recall thatk =10 2k —1+2€>1 +2¢!). On the other hand, as A+ 2j+1 =D1 + & + & + ...+ &, by (2.16)
we arrive at

Dy ioivg =D +(Op +...+ ) =@(m +1-¢)+ 2k —1+2e)(m—i)(i +1) (2.17)
making obvious that Ay.i+ 1 = Ay = 0. Moreover, as kK= 1, m = 2i and € = 0, we have the inequality

Do = k(kz_ Dm+1-8)+Q0-DQi-i)i+1) =, +i2 +] (2.18)

Now, write
Divoi = Disoi 1+ N+D K+ i = (K+2DA] = Dysaior Thk(M=20) + Kk + i - gk + 2i) . As € < 1, we have Ay =
D1+ k(m - 2|) +k+i- (k + 2|) =N+ k(m - 2|) —i=Naojr1—1. By (218), we see that Mo = A +
i’ . Consequently, A= A, >0 Ot=kk+1,..., n. This completes the proof.
Actually we shall use an obvious generalization of Lemma 2.1, namely
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Corollary 2.2. Let N> 1,8, r>0and a=&N+r)/(2N+1). Then

r (%, N+1) O U{0,3,....N8}) OU({0,r8}) <ex U({0,0,201,...,2N+1)art)
(2.19)

and

q 0(0, %) O(N+1, ) O U({0,a,20,....2N+1)a}) <ex U(£0,5,...,N8}) DU{0,r8}) . (2.20)

3. THE PROOF OF THE THEOREM

Clearly, the distribution [i(n,q) can be written as
H(n,g) = U({0,1)U({0,g1)d..0U({0,9"}) (3.1

Suppose that q > % . According to Lemma 2.1, H(2,q) <cx U({0,0, 28, 30}) where 30 =1 + g. Now,
we want to apply Corollary 2.2. with rd = g°. In order to do that, we should check that 4 < r < 341 = %4 <
Q<4 - Y% <30/(1+q) < 4 or, in other words, that 1 + q < 6q° < 8. As ¥4 < q < I, this is obvious. Thus,
applying the monotonicity property of the convex domination (i.e. [ <cx V, I <ex V' O UL * <« VIV °, see for
instance [8], [9] ) we get M(3,0) = M2,DU({0,07}) <o U({0,3, 28, 38)OU({0,9°}) < U({0,0.20,...,7a})
with o =(1+q+q*) / 7.

Suppose that we proved that p(n-1,q) <o U({0, 8,.25,..., (2"-1)8}) where 2"-1)d =1 + g+...+ q"".
Next, we know that p(n,q) = p(n-1,q)U({0,9"}) <ex U({0, 3,23,..., (2"-1)d})J({0,g"}) . In order to apply
Corollary 2.2, we check that %4 < "/ 8<2"— 1+ 1 or, explicitely, that

2 n-1
lsq 1+2+2%+..+2 <o

2 3.2
%g%g 62)
q
1+2+2% +. 42" . 142+2% 4. +2"!

| 1 1% IE"‘I_ql+2+22+...+2”‘1
1++% +...+%
q

hence the left inequality is clear. We have to prove the right one, which can be written as

q"@2" -1
1+q+qg? +..+q""!

As 1/q<2, we have

<2"

or

Q"-D(@"-q")<2"(1-q" Oq0(O,D). (3.3)
But the function f(q) = (2" - 1)(q" - g™") — 2"(1 — q") has the properties: f(0) = — 2", f(1) = 0, and is
increasing on the interval [0,1], thus it is negative. It means that
U({0, 8,23,..., 2™-D3HU{0,"}) <ex U({0, €n,200,..., 2™-1)atn}) with @™oy = 1 + g + ...+ .
Consequenly, we proved the domination p(n,q) < U({0, 8,25,..., (2""'-1)8}) for any n = 1 where 2""'-1)8 =
1+g+..+q".
Ifq<',then 1/q> 2 hence
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1+2+2% +. 42! Py 142+2% 4. +2"!

| 1 1% IE"‘I_ql+2+22+...+2”‘1
1++% +...+%
q

By Corollary 2.2 the domination goes into the opposite direction.

The rest of the proof is routine: i(n,q) converges to [(q), U({0, an,2d,..., Q"™-Dog}) converges to
Uniform(0, L) with 1/L = 1 — q and the convergence is dominated, in the sense that the supports of all these
measureas is included in [0,L]. But it is well known — and easy to check — that if

Mo O M, Vo OV, Uy <ex Vo Supp(Mn) O Supp(vn) U K, K compact, then L <4 V.

Corollary 3.2 (Moments and moment generatig function). Let q [I( %, 1) ,n=2,t=0and 1/L=1 -q.
Then

o
ES"(q) < b and peS@<® 7t
(n+H1-g)" tL

Proof. The functions X - X" ant X > €%, X = 0, are convex and the distribution of S(q) is dominated by
the uniform one. The second inequality can also be written as
el —1ef -1 9t -] et -l
Nnoo 2 2 2 tL
If g = 2 (thus L = 2) we get a strange equality.
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