ON INFINTE BERNOULLI CONVOLUTIONS

Gheorghiță ZBĂGANU

"Gheorghe Mihoc - Caius Iacob" Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy Casa Academiei Române, Calea 13 Septembrie no. 13, 050711 Bucharest, Romania. Email:gheorghitazbaganu@yahoo.ro

$$
\begin{aligned}
& \text { still exists a regularity, namely } \\
& \text { and } \quad 0<q<1 / 2 \Rightarrow \operatorname{Uniform}(0, L) \prec_{\mathrm{cx}} \mu(q) \\
& \\
& \qquad 1 / 2<q<1 \Rightarrow \mu(q) \prec_{\mathrm{cx}} \operatorname{Uniform}(0, L),
\end{aligned}
$$

Let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of i.i.d. nondegenerate integrable random variables and let $q \in[0,1]$. Let $S(n, q)=X_{0}+q X_{1}+\ldots+q^{n} X_{n}$. If $|q|<1$ the sequence $(S(n, q))_{n \geq 0}$ is almost surely convergent to a integrable random variable $S(q)$ which has a distribution denoted by $\mu(q)$. Even in the most simple case when $X_{n} \sim \operatorname{Binomial}(1,1 / 2)$ behaves mysteriously erratic when $q \in(1 / 2,1)$. We prove that there
where $1 / L=1-q$ and " $\prec_{c x}$ " is the Choquet convex domination. The problem has a clear financiary motivation: if q is an actualization factor, then $S(q)$ is the actual value of the infinite sum $X_{0}+X_{1}+$

1. THE PROBLEM

Let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of i.i.d. random variables and $S(n, q)=X_{0}+q X_{1}+\ldots+q^{n} X_{n}$, with q a real number. As

$$
\begin{equation*}
S(n+k, q)-S(n, q) \sim q^{n+1} S(k-1, q) \tag{1.1}
\end{equation*}
$$

(the notation $\mathrm{X} \sim Y$ means that X and Y have the same distribution), it is obvious that the sequence $(S(n, q))_{n} \geq$ ${ }_{0}$ diverges for any $q \in(-\infty,-1] \cup[1, \infty)$.
What does happen if $q \in(-1,1)$?
If the random variables X_{n} are not integrable, it is possible that the sequence $(S(n, q))_{n} \geq 0$ diverge. However, if they are integrable, that is not possible since

$$
\begin{equation*}
\|S(n+k, q)-S(n, q)\|_{1} \leq|q|^{n+1} \sum_{j \geq 0}|q|^{j} E\left|X_{n}\right|=\frac{|q|^{n+1}}{1-|q|}\left\|X_{1}\right\|_{1} \tag{1.2}
\end{equation*}
$$

meaning that $(S(n, q))_{n} \geq 0$ is Cauchy in L^{1}, hence convergent in L^{1}. It is easy to check that it is also convergent a.s. since the series $S(q)=\sum_{n=0}^{\infty} q^{n} X_{n}$ converges a.s. If $X_{n} \in \mathrm{~L}^{\infty}$, the convergence is even uniform.

The real problem is to compute the distribution of $S(q)$. Let F_{q} and $F_{n, q}$ be the distribution functions of $S(q)$ and $S(n, q)$. Let also v be the distribution of X_{n} and $\mu(q), \mu(n, q)$ the distributions of $S(q)$ and $S(n, q)$.

If $\left|X_{n}\right| \leq M$ a.s. (that is, X_{n} are essentially bounded), it is easy to see that

$$
\begin{equation*}
S(n, q)-\frac{|q|^{n+1} M}{1-|q|} \leq S(q) \leq S(n, q)+\frac{|q|^{n+1} M}{1-|q|} \tag{1.3}
\end{equation*}
$$

Therefore, a coarse evaluation of F_{q} would be

$$
\begin{equation*}
F_{n, q}\left(x-\frac{|q|^{n+1} M}{1-|q|}\right) \leq F_{q}(x) \leq F_{n, q}\left(x+\frac{|q|^{n+1} M}{1-|q|}\right) \tag{1.4}
\end{equation*}
$$

which, for great n, is good enough for continuity points of $F_{n, q}$.
Anyway, estimation (1.4) is useless if we want to know the type of the distribution $\mu(q)$. According to the Lebesgue - Nikodym theorem any probability distribution μ on the real line can be written as a mixture

$$
\begin{equation*}
\mu=\alpha \mu_{\mathrm{D}}+\beta \mu_{\mathrm{SC}}+\gamma \mu_{\mathrm{AC}} \tag{1.5}
\end{equation*}
$$

where $\alpha, \beta, \gamma \geq 0, \alpha+\beta+\gamma+1, \mu_{D}$ is a discrete distribution, μ_{SC} is continuous but singular (i.e. there exists a Borel set $A \subset \mathfrak{R}$ such that $\lambda(A)=0$ but $\mu_{\mathrm{SC}}(A)=1$; here λ is the Lebesgue measure on the real line) and, finally, μ_{AC} is absolutely continuous with respect to λ.

Definition. A distribution of the form (1.5) is called a distribution of type (α, β, γ). A distribution of type $(1,0,0)$ or $(0,1,0)$ or $(0,0,1)$ is called pure , otherwise it is called a mixture.

A remarkable result of Jessen and Wintner [3] (see [5], page 64, Theorem 3.7.7) is the so called purity theorem (see [2]).

Purity Theorem. Let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of independent random variables such that the sequence $\left(X_{0}+\ldots+X_{n}\right)_{n}$ is convergent in distribution to some real random variable S. Then the distribution of S is pure.

In our one case can say more. The distribution of $S(q)$ is always continuous (see [5], page 65). Is it absolutely continuous? If v is absolutely continuous, then it is clear that $\mu(q)$ is absolutely continuous, too. The reason is that the convolution of v and any other probability distribution σ is absolutely continuous: if g is the density of v, then

$$
\begin{equation*}
h(x)=\int g(x-y) \mathrm{d} \sigma(y) \tag{1.6}
\end{equation*}
$$

is a version for the density of $v * \sigma$.
If v is continuous, then it is also easy to see that $S(q)$ has a continuous distribution, too. For, if F is the distribution function of v, the distribution function G of $v * \sigma$ is given by

$$
\begin{equation*}
G(x)=\int F(x-y) \mathrm{d} \sigma(y) \tag{1.7}
\end{equation*}
$$

that is, it is continuous, too.
A delicate problem is when v is discrete. This time is by no means obvious why $\mu(q)$ should be continuous. It is proved in [5], page 85 that this is indeed the case. The most difficult question is to give a criterion to decide if $\mu(q)$ is absolutely continuous.

The simplest case is when $v=\operatorname{Binomial}(1,1 / 2)$. Now, the distribution of $S(q)$ is called an infinite Bernoulli convolution (see [2], [3], [4], [5], [7], [8]). It is known that if $|q|<1 / 2$ then $\mu(q)$ is singular (in this case this is almost obvious, since the support of $\mu(q)$ is negligible), that if $q=1 / 2$ then $\mu(q)=$ Uniform $(0,2)$, and if $q \in(1 / 2,1) \backslash M$ then $\mu(q)$ is absolutely continuous, where $M \subset(1 / 2,1)$ is a negligible set (see [7]). Little is known about the set M. We think that M is countable. The only q from M which is positively known (see [7]) is $q=(\sqrt{5}-1) / 2$, i.e. the solution of the equation $q+q^{2}=1$. If $q \in(-1,-1 / 2)$, the situation is similar: we can work with the random variables $Y_{n}=2 X_{n}-1$ instead of X_{n}. They are symmetrical, therefore $a Y_{n}$ and $-a Y_{n}$ have the same distribution.

Trying to approximate the distribution functions F_{q} by $F_{n, q}$ on the computer we remarked an intriguing regularity of the distribution functions $F_{n, q}$: compared with the corresponding uniform distribution function $G_{n}(x)=x / L_{n}$ on $\left[0, L_{n}\right]$ (here $\left.\left.L_{n}=1+q+\ldots+q^{n}\right]\right)$ they seemed to behave as follows:

- for $q<1 / 2: F_{n, q}(x)>G_{n}(x)$ if $x \in\left(0, L_{n} / 2\right)$ and $F_{n, q}(x)<G_{n}(x)$ if $x \in\left(L_{n} / 2,1\right)$
- for $q>1 / 2: F_{n, q}(x)<G_{n}(x)$ if $x \in\left(0, L_{n} / 2\right)$ and $F_{n, q}(x)>G_{n}(x)$ if $x \in\left(L_{n} / 2,1\right)$.

This is remarkable because intersection at one point only of two distribution functions is the Karlin Novikov criterion for convex domination (see [9] or [10]).

Definition. Let v and σ be two probabilities on the real line. We say that v is convex dominated by σ-and write $v \prec_{\mathrm{cx}} \sigma$ if $\int u \mathrm{~d} v \leq \int u \mathrm{~d} \sigma$ for all convex functions $u: \Re \rightarrow \Re$ for which the integrals do exist.

If μ and v have the same finite expectation and their distribution functions F_{v} and F_{σ} have the property that there exists x_{0} such that $x<x_{0} \Rightarrow F_{v}(x) \leq F_{\sigma}(x)$ and $x \geq x_{0} \Rightarrow F_{v}(x) \geq F_{\sigma}(x)$, then $v \prec_{c x} \sigma$. This is the Karlin - Novikov criterion. Unfortunatel, it is not equivalent to convex domination.

We intend to prove a weaker result than our empirical remark, namely
Theorem. Let $L=1+q+q^{2}+\ldots$.
If $q<1 / 2$ then $\mu(q) \prec_{\mathrm{cx}} \operatorname{Uniform}(0, L)$
If $q \in(1 / 2,1)$ then $\operatorname{Uniform}(0, L) \prec_{\mathrm{cx}} \mu(q)$.

2. A MAJORIZATION LEMMA

If $A \subset \mathfrak{R}$ is a finite set, we shall denote by $U(A)$ the uniform distribution on A, precisely

$$
\begin{equation*}
U(A)=\frac{1}{|A|} \sum_{a \in A} \varepsilon_{a} \tag{2.1}
\end{equation*}
$$

where $\varepsilon_{a}(B)=1_{B}(a)$ is the Dirac probability at a. Notice that if $|A|=|B|=n, A=\left\{a_{0}<a_{1}<\ldots<a_{n}\right\}$ and B $=\left\{b_{0}<b_{1}<\ldots<b_{n}\right\}$, then the definition of convex domination becomes

$$
\begin{equation*}
U(A) \prec_{\mathrm{cx}} U(B) \quad \Leftrightarrow u\left(a_{0}\right)+u\left(a_{1}\right)+\ldots+u\left(a_{n}\right) \leq u\left(b_{0}\right)+u\left(b_{1}\right)+\ldots+u\left(b_{n}\right) \tag{2.2}
\end{equation*}
$$

for any convex function u. Letting $u(x)=x$ and $u(x)=-x$ we see that $a_{0}+a_{1}+\ldots+a_{n}=b_{0}+b_{1}+\ldots+b_{n}$. It is well known (and easy to check) that the second inequality is equivalent to

$$
\begin{equation*}
\left|x-a_{0}\right|+\left|x-a_{1}\right|+\ldots+\left|x-a_{n}\right| \leq\left|x-b_{0}\right|+\left|x-b_{1}\right|+\ldots+\left|x-b_{n}\right| \forall x \in \Re \tag{2.3}
\end{equation*}
$$

It can be proved (see for instance [1] or [6]) that inequality (2.3) is equivalent to

$$
\begin{equation*}
a_{0} \geq b_{0}, a_{0}+a_{1} \geq b_{0}+b_{1}, \ldots, a_{0}+\ldots+a_{n-1} \geq b_{0}+\ldots+b_{n-1}, a_{0}+a_{1}+\ldots+a_{n}=b_{0}+b_{1}+\ldots+b_{n} \tag{2.4}
\end{equation*}
$$

(Sometimes this is called Karamata's theorem.) Inequality (2.4) is then written $a \prec b$ (b majorizes a). It is important that in (2.4) we do not need that the numbers $\left(a_{k}\right)_{k}$ and $\left(b_{k}\right)_{k}$ be all distinct. A result we need is

Karamata's theorem. Let $a_{0} \leq a_{1} \leq \ldots \leq a_{n}$ and $b_{0} \leq b_{1} \leq \ldots \leq b_{n}$. Let $a=\left(a_{k}\right)_{k}$ and $b=\left(a_{k}\right)_{k}$. Then

$$
\begin{equation*}
\sum_{k=0}^{n} \varepsilon_{a_{i}} \prec_{\mathbf{c x}} \sum_{k=0}^{n} \varepsilon_{a_{i}} \Leftrightarrow a \prec b \tag{2.5}
\end{equation*}
$$

The proof of our result will rely on
Lemma 2.1. Let $q>0, n \geq 1, \alpha=(n+q) /(2 n+1)$. Then

$$
\begin{array}{ll}
q \in(1 / 2, n+1) & \Rightarrow U(\{0,1, \ldots, n\}) * U(\{0, q\}) \prec_{\mathrm{cx}} U(\{0, \alpha, 2 \alpha, \ldots,(2 n+1) \alpha\}) \\
q \in(0,1 / 2) \cup(n+1, \infty) & \Rightarrow U(\{0, \alpha, 2 \alpha, \ldots,(2 n+1) \alpha\}) \prec_{\mathrm{cx}} U(\{0,1, \ldots, n\}) * U(\{0, q\}) \tag{2.7}
\end{array}
$$

Proof. Notice that

$$
\begin{equation*}
(2 n+2) U(\{0,1, \ldots, n\}) * U(\{0, q\})=\varepsilon_{0}+\varepsilon_{q}+\varepsilon_{1}+\varepsilon_{1+q}+\ldots+\varepsilon_{n}+\varepsilon_{n+q} \tag{2.8}
\end{equation*}
$$

Let us arrange ascendingly the numbers $0, q, 1,1+q, \ldots ., n, n+q$ in the vector $a=\left(a_{i}\right)_{0 \leq i \leq 2 n+1}$ from $\mathfrak{R}^{2 n+2}$. Consider also the vector $b \in \mathfrak{R}^{2 n+2}$ defined by $b=(i \alpha)_{0 \leq i \leq 2 n+1}$. Let $A_{i}=(2 n+1)\left(a_{0}+a_{1}+\ldots+a_{i}\right)$ and B_{i} $=(2 n+1)\left(b_{0}+b_{1}+\ldots+b_{i}\right), 0 \leq i \leq 2 n+1$. Let also $\Delta_{i}=A_{i}-B_{i}$. Of course $\Delta_{0}=\Delta_{2 n+1}=0$. According to Karamata's theorem we have to check that

$$
\begin{equation*}
q \in(1 / 2, n+1) \Rightarrow \Delta_{i} \geq 0 \forall 1 \leq i \leq 2 n \text { and } q \in(0,1 / 2) \cup(n+1, \infty) \Rightarrow \Delta_{i} \leq 0 \forall 1 \leq i \leq 2 n \tag{2.9}
\end{equation*}
$$

In order to make the computations easier, we shall remark the symmetry

$$
\begin{equation*}
a_{2 n+1-i}+a_{i}=b_{2 n+1-i}+b_{i}=n+q \tag{2.10}
\end{equation*}
$$

which further implies the remarkable equality $\Delta_{i}=\Delta_{2 n-i} \forall 1 \leq i \leq 2 n$. Consequently, it is enough to prove that

$$
\begin{equation*}
q \in(1 / 2, n+1) \Rightarrow \Delta_{i} \geq 0 \forall 1 \leq i \leq n \text { and } q \in(0,1 / 2) \cup(n+1, \infty) \Rightarrow \Delta_{i} \leq 0 \forall 1 \leq i \leq n \tag{2.11}
\end{equation*}
$$

Case 1. The easiest one: $q \in(0,1]$. Then $\left(a_{i}\right)_{0 \leq i \leq 2 n+1}=(0, q, 1,1+q, 2,2+q, \ldots, n, n+q)$. It is easy to check that

$$
\begin{equation*}
\Delta_{2 i+1}=(2 q-1)(i+1)(n-i) \text { and } \Delta_{2 i}=(2 q-1)[(i+1)(n-i)+i] \tag{2.12}
\end{equation*}
$$

hence (2.9) holds.
Case 2. Another easy case: $q \in[n, \infty)$. Now, $\left(a_{i}\right)_{0 \leq i \leq 2 n+1}=(0,1,2, \ldots, n, q, 1+q, 2+q, \ldots, n+q)$, and for i $\leq n$ the reader may check that

$$
\begin{equation*}
2 \Delta_{i}=i(i+1)(n+1-q), \tag{2.13}
\end{equation*}
$$

making obvious claim (2.9).
Case 3. $1 \leq q<n+1$. We have to check that $\Delta_{i} \geq 0 \forall 1 \leq i \leq n$. Now, we write

$$
\begin{equation*}
n=k+m, q=k+\varepsilon \text {, with } k, m \geq 1 \text { and } 0 \leq \varepsilon<1 \text {. } \tag{2.14}
\end{equation*}
$$

Notice that $(2 n+1) \alpha=2 k+m+\varepsilon$ and $(2 n+1)(1-\alpha)=m+1-\varepsilon$. This case is more difficult because of the ascending order of the numbers $i, i+q$ which now becomes
$\left(a_{i}\right)_{0 \leq i \leq 2 n+1}=(0,1,2, \ldots, k, k+\varepsilon, k+1, k+1+\varepsilon, k+2, k+2+\varepsilon, k+m, k+m+\varepsilon, k+m+1+\varepsilon, \ldots, k+m+k+\varepsilon)$.
For $i \leq n=k+m$ the rule is

$$
\begin{equation*}
a_{i}=i \forall 1 \leq i \leq k, a_{k}=k, a_{k+1}=k+\varepsilon, \ldots, a_{k+2 i}=k+i, a_{k+2 i+1}=k+i+\varepsilon, \ldots \tag{2.15}
\end{equation*}
$$

Remark that if $k+2 i<n=k+m$ (hence $2 i<m$) then

$$
\begin{equation*}
\delta_{i}:=(2 n+1)\left[\left(a_{k+2 i}+a_{k+2 i+1}\right)-\left(b_{k+2 i}+b_{k+2 i+1}\right)\right]=(m-2 i)(2 k-1+2 \varepsilon)>0 \tag{2.16}
\end{equation*}
$$

(recall that $k \geq 1 \Rightarrow 2 k-1+2 \varepsilon \geq 1+2 \varepsilon!$). On the other hand, as $\Delta_{k+2 i+1}=\Delta_{k-1}+\delta_{0}+\delta_{1}+\ldots+\delta_{i}$, by (2.16) we arrive at

$$
\begin{equation*}
\Delta_{k+2 i+1}=\Delta_{k-1}+\left(\delta_{0}+\ldots+\delta_{i}\right)=\frac{k(k-1)}{2}(m+1-\varepsilon)+(2 k-1+2 \varepsilon)(m-i)(i+1) \tag{2.17}
\end{equation*}
$$

making obvious that $\Delta_{k+2 i+1} \geq \Delta_{k-1} \geq 0$. Moreover, as $k \geq 1, m \geq 2 i$ and $\varepsilon \geq 0$, we have the inequality

$$
\begin{equation*}
\Delta_{k+2 i+1} \geq \frac{k(k-1)}{2}(m+1-\varepsilon)+(2 \cdot 1-1)(2 i-i)(i+1)=\Delta_{k-1}+i^{2}+i \tag{2.18}
\end{equation*}
$$

Now, write
$\Delta_{k+2 i}=\Delta_{k+2 i-1}+(2 n+1)[k+i-(k+2 i) \alpha]=\Delta_{k+2 i-1}+k(m-2 i)+k+i-\varepsilon(k+2 i)$. As $\varepsilon<1$, we have $\Delta_{k+2 i} \geq$ $\Delta_{k+2 i-1}+k(m-2 i)+k+i-(k+2 i)=\Delta_{k+2 i-1}+k(m-2 i)-i=\Delta_{k+2 i+1}-i$. By (2.18), we see that $\Delta_{k+2 i} \geq \Delta_{k-1}+$ i^{2}. Consequently, $\Delta_{t} \geq \Delta_{k-1}>0 \forall t=k, k+1, \ldots, n$. This completes the proof.

Actually we shall use an obvious generalization of Lemma 2.1, namely

Corollary 2.2. Let $N \geq 1, \delta, r>0$ and $\alpha=\delta(N+r) /(2 N+1)$. Then

$$
\begin{equation*}
r \in(1 / 2, N+1) \Rightarrow U(\{0, \delta, \ldots, N \delta\}) * U(\{0, r \delta\}) \prec_{\mathrm{cx}} U(\{0, \alpha, 2 \alpha, \ldots,(2 N+1) \alpha\}) \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
q \in(0,1 / 2) \cup(N+1, \infty) \Rightarrow U(\{0, \alpha, 2 \alpha, \ldots,(2 N+1) \alpha\}) \prec_{\mathrm{cx}} U(\{0, \delta, \ldots, N \delta\}) * U(\{0, r \delta\}) \tag{2.20}
\end{equation*}
$$

3. THE PROOF OF THE THEOREM

Clearly, the distribution $\mu(n, q)$ can be written as

$$
\begin{equation*}
\mu(n, q)=U(\{0,1\}) * U(\{0, q\}) * \ldots * U\left(\left\{0, q^{n}\right\}\right) \tag{3.1}
\end{equation*}
$$

Suppose that $q>1 / 2$. According to Lemma $2.1, \mu(2, q) \prec_{c x} U(\{0, \delta, 2 \delta, 3 \delta\})$ where $3 \delta=1+q$. Now, we want to apply Corollary 2.2. with $r \delta=q^{2}$. In order to do that, we should check that $1 / 2 \leq r \leq 3+1 \Leftrightarrow 1 / 2 \leq$ $q^{2} / \delta \leq 4 \Leftrightarrow 1 / 2 \leq 3 q^{2} /(1+q) \leq 4$ or, in other words, that $1+q \leq 6 q^{2} \leq 8$. As $1 / 2<q<1$, this is obvious. Thus, applying the monotonicity property of the convex domination (i.e. $\mu \prec_{\mathrm{cx}} \nu, \mu^{\prime} \prec_{\mathrm{cx}} \nu^{\prime} \Rightarrow \mu * \mu^{\prime} \prec_{\mathrm{cx}} \nu * \nu^{\prime}$, see for instance [8], [9]) we get $\mu(3, q)=\mu(2, q) * U\left(\left\{0, q^{2}\right\}\right) \prec_{\text {cx }} U(\{0, \delta, 2 \delta, 3 \delta\}) * U\left(\left\{0, q^{2}\right\}\right) \prec U(\{0, \alpha, 2 \alpha, \ldots, 7 \alpha\})$ with $\alpha=\left(1+q+q^{2}\right) / 7$.

Suppose that we proved that $\mu(n-1, q) \prec_{\mathrm{cx}} U\left(\left\{0, \delta, 2 \delta, \ldots,\left(2^{n}-1\right) \delta\right\}\right)$ where $\left(2^{n}-1\right) \delta=1+q+\ldots+q^{n-1}$. Next, we know that $\mu(n, q)=\mu(n-1, q) * U\left(\left\{0, q^{n}\right\}\right) \prec_{\text {cx }} U\left(\left\{0, \delta, 2 \delta, \ldots,\left(2^{n}-1\right) \delta\right\}\right) * U\left(\left\{0, q^{n}\right\}\right)$. In order to apply Corollary 2.2, we check that $1 / 2 \leq q^{n} / \delta \leq 2^{n}-1+1$ or, explicitely, that

$$
\begin{equation*}
\frac{1}{2} \leq q \frac{1+2+2^{2}+\ldots+2^{n-1}}{1+\frac{1}{q}+\left(\frac{1}{q}\right)^{2}+\ldots+\left(\frac{1}{q}\right)^{n-1}} \leq 2^{n} \tag{3.2}
\end{equation*}
$$

As $1 / q<2$, we have

$$
q \frac{1+2+2^{2}+\ldots+2^{n-1}}{1+\frac{1}{q}+\left(\frac{1}{q}\right)^{2}+\ldots+\left(\frac{1}{q}\right)^{n-1}} \geq q \frac{1+2+2^{2}+\ldots+2^{n-1}}{1+2+2^{2}+\ldots+2^{n-1}}
$$

hence the left inequality is clear. We have to prove the right one, which can be written as

$$
\frac{q^{n}\left(2^{n}-1\right)}{1+q+q^{2}+\ldots+q^{n-1}} \leq 2^{n}
$$

or

$$
\begin{equation*}
\left(2^{n}-1\right)\left(q^{n}-q^{n+1}\right) \leq 2^{n}\left(1-q^{n}\right) \forall q \in(0,1) \tag{3.3}
\end{equation*}
$$

But the function $f(q)=\left(2^{n}-1\right)\left(q^{n}-q^{n+1}\right)-2^{n}\left(1-q^{n}\right)$ has the properties: $f(0)=-2^{n}, f(1)=0$, and is increasing on the interval $[0,1]$, thus it is negative. It means that $U\left(\left\{0, \delta, 2 \delta, \ldots,\left(2^{n}-1\right) \delta\right\}\right) * U\left(\left\{0, q^{n}\right\}\right) \prec_{\text {cx }} U\left(\left\{0, \alpha_{n}, 2 \alpha_{n}, \ldots,\left(2^{n+1}-1\right) \alpha_{n}\right\}\right)$ with $\left(2^{n+1}-1\right) \alpha_{n}=1+q+\ldots+q^{n}$. Consequenly, we proved the domination $\mu(n, q) \prec_{\mathrm{cx}} U\left(\left\{0, \delta, 2 \delta, \ldots,\left(2^{n+1}-1\right) \delta\right\}\right)$ for any $n \geq 1$ where $\left(2^{n+1}-1\right) \delta=$ $1+q+\ldots+q^{n}$.

If $q<1 / 2$, then $1 / q>2$ hence

$$
q \frac{1+2+2^{2}+\ldots+2^{n-1}}{1+\frac{1}{q}+\left(\frac{1}{q}\right)^{2}+\ldots+\left(\frac{1}{q}\right)^{n-1}} \leq q \frac{1+2+2^{2}+\ldots+2^{n-1}}{1+2+2^{2}+\ldots+2^{n-1}}
$$

By Corollary 2.2 the domination goes into the opposite direction.
The rest of the proof is routine: $\mu(n, q)$ converges to $\mu(q), U\left(\left\{0, \alpha_{n}, 2 \alpha_{n}, \ldots,\left(2^{n+1}-1\right) \alpha_{n}\right\}\right)$ converges to $\operatorname{Uniform}(0, L)$ with $1 / L=1-q$ and the convergence is dominated, in the sense that the supports of all these measureas is included in [0,L]. But it is well known - and easy to check - that if
$\mu_{n} \Rightarrow \mu, \nu_{n} \Rightarrow v, \mu_{n} \prec_{\mathrm{cx}} v_{n} \operatorname{Supp}\left(\mu_{n}\right) \cup \operatorname{Supp}\left(v_{n}\right) \subset K, K$ compact, then $\mu \prec_{\mathrm{cx}} v$.
Corollary 3.2 (Moments and moment generatig function). Let $q \in(1 / 2,1), n \geq 2, t \geq 0$ and $1 / L=1-q$. Then

$$
\mathrm{E}^{n}(q) \leq \frac{1}{(n+1)(1-q)^{n}} \quad \text { and } \quad \mathrm{E} e^{t S(q)} \leq \frac{e^{t L}-1}{t L}
$$

Proof. The functions $x \mapsto x^{n}$ ant $x \mapsto e^{t x}, x \geq 0$, are convex and the distribution of $S(q)$ is dominated by the uniform one. The second inequality can also be written as

$$
\lim _{n \rightarrow \infty} \frac{e^{t}-1}{2} \frac{e^{q t}-1}{2} \ldots . . \frac{e^{q^{n} t}-1}{2} \leq \frac{e^{t L}-1}{t L}
$$

If $q=1 / 2$ (thus $L=2$) we get a strange equality.

ACKNOWLEDGEMENTS.

This paper was partially supported by an action of the program ECO-NET 2006 financed by the French government.

REFERENCES

. ARNOLD, B., Majorization and the Lorenz Order: a Brief Introduction, Lecture Notes in Statistics 43, Berlin, Springer, 1987.
2. DIACONIS, P., FREEDMAN, D., Iterated random function., SIAM Review, 41, 1, pp. 45-76, 1999.
3. JESSEN, W., WINTNER, A., Distribution functions and the Riemann Zeta function, Trans. Amer. Math. Soc. 38, pp. 48-88, 1935.
4. HERKENRATH, U., IOSIFESCU, M., On positive Harris recurrence for a class of Markov chains, Math. Reports 7 (57), 4 , pp. $305-313,2005$.
5. LUKACS, E., Characteristic Functions. London, Griffin \&Co, 1970.
6. MARSHALL, A. W., OLKIN, I., Inequalities: Theory of Majorization and its Applications, New York, Academic Press, 1979.
7. PERES, Y., SOLOMYAK, B., Absolute continuity of Bernoulli convolutions, a simple proof, Math. Research Letters 3, pp. 231 - 239, 1996.
8. PERES, Y., SCHLAG, W.,SOLOMYAK, B., Sixty years of Berrnoulli convolutions. In: Fractal Geometry and Stochastic II (Greifswald/Keserow 1998), pp. 39-45, Progr. Probab., 46, Basel, Birkhauser, 2000.
9. SZEKLI, R., Stochastic Ordering and Dependence in Applied Probability, Berlin, Springer, 1995.
10. ZBĂGANU, G., Mathematical Methods in Risk Theory and Actuaries. Bucharest, Ed. Univ. Bucharest, 2004. (Romanian)

