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Let (Xn)n≥0 be  a sequence of i.i.d. nondegenerate integrable random variables and let q ∈ [0,1] . Let
S(n,q) = X0 + qX1 + … + qnXn. If │q│< 1 the sequence (S(n,q))n≥0 is almost surely convergent to a
integrable random variable S(q) which has a distribution denoted by µ(q). Even in the most simple
case when Xn ∼  Binomial(1, ½ ) behaves mysteriously erratic when q ∈  (½ ,1). We prove that there
still exists a regularity, namely
                0 < q < ½ ⇒  Uniform(0,L) !cx µ(q)
and

                ½ < q < 1  ⇒  µ(q) !cx Uniform(0,L),

where 1/L = 1 – q and “!cx” is the Choquet convex domination. The problem has a clear financiary
motivation: if q is an actualization factor, then S(q) is the actual value of the infinite sum X0 + X1 +
….

1. THE PROBLEM

Let (Xn)n ≥ 0 be a sequence of i.i.d. random variables and S(n,q) = X0 + qX1 + … + qnXn , with q a real
number. As

S(n+k,q) – S(n,q) ∼  qn + 1 S(k – 1,q) (1.1)

 (the notation X ∼  Y means that X and Y have the same distribution), it is obvious that the sequence (S(n,q))n ≥

0 diverges for any q ∈  (- ∞, -1] ∪  [1, ∞).
What does happen if q ∈  (-1,1) ?
If the random variables Xn are not integrable, it is possible that the sequence (S(n,q))n ≥ 0 diverge. However, if
they are integrable, that is not possible since
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meaning that (S(n,q))n ≥ 0 is Cauchy in L1, hence convergent in L1. It is easy to check that it is also

convergent a.s. since the series S(q) =∑
∞

=0n
n

n Xq  converges a.s. If Xn ∈  L∞, the convergence is even uniform.

The real problem is to compute the distribution of S(q). Let Fq and Fn,q be the distribution functions of
S(q) and S(n,q). Let also ν be the distribution of Xn and µ(q), µ(n,q) the distributions of S(q) and S(n,q).

If  Xn≤  M a.s. (that is, Xn are essentially bounded), it is easy to see that
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Therefore, a coarse evaluation of Fq would be
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which, for great n, is good enough for continuity points of Fn,q.
Anyway, estimation (1.4) is useless if we want to know the type of the distribution µ(q). According to

the Lebesgue – Nikodym theorem any probability distribution µ  on the real line can be written as a mixture

µ = αµD + βµSC + γµAC, (1.5)

where α,β,γ ≥ 0, α + β + γ + 1, µD is a discrete distribution, µSC is continuous but singular (i.e. there exists a
Borel set A ⊂  ℜ  such that λ(A) = 0 but µSC(A) = 1; here λ is the Lebesgue measure on the real line) and,
finally, µAC is absolutely continuous with respect to λ.

Definition. A distribution of the form (1.5) is called a distribution of type (α,β,γ). A distribution of
type (1,0,0) or (0,1,0) or (0,0,1) is called pure , otherwise it  is called a mixture.

A remarkable result of Jessen and Wintner [3] (see [5], page 64, Theorem 3.7.7) is the so called purity
theorem (see [2]).

Purity Theorem . Let (Xn)n≥0 be a sequence of independent random variables such that the sequence
(X0 + ….+ Xn)n is convergent in distribution to some real random variable S. Then the distribution of S is
pure.

In our one case can say more. The distribution of S(q) is always continuous (see [5], page 65). Is it
absolutely continuous? If ν is absolutely continuous, then it is clear that µ(q) is absolutely continuous, too.
The reason is that the convolution of ν and any other probability distribution σ is absolutely continuous: if g
is the density of ν, then

∫ σ−= )(d)()( yyxgxh (1.6)

is a version for the density of ν∗σ .
If ν is continuous, then it is also easy to see that S(q) has a continuous distribution, too. For, if F is the

distribution function of ν, the distribution function G of ν∗σ  is given by

∫ σ−= )(d)()( yyxFxG , (1.7)

that is, it is continuous, too.
A delicate problem is when ν is discrete. This time is by no means obvious why µ(q) should be

continuous. It is proved in [5], page 85 that this is indeed the case. The most difficult question is to give a
criterion to decide if µ(q) is absolutely continuous.

The simplest case is when ν = Binomial(1, ½ ). Now, the distribution of S(q) is called an infinite
Bernoulli convolution (see [2], [3], [4], [5], [7], [8]). It is known that if │q│ < ½ then µ(q) is singular (in
this case this is almost obvious, since the support of µ(q) is negligible), that if  q = ½  then µ(q) =
Uniform(0,2), and if q ∈  ( ½,1) \ M then µ(q) is absolutely continuous, where M ⊂  ( ½ , 1) is a negligible set
(see [7]). Little is known about the set M. We think that M is countable. The only q from M which is
positively known (see [7]) is ( ) 2/15 −=q , i.e. the solution of the equation q + q2 = 1. If q ∈  (-1, - ½ ), the
situation is similar: we can work with the random variables Yn = 2Xn – 1 instead of Xn. They are symmetrical,
therefore aYn and  –aYn have the same distribution.

Trying to approximate the distribution functions Fq by Fn,q on the computer we remarked an intriguing
regularity of the distribution functions Fn,q : compared with the corresponding uniform distribution function
Gn(x) = x/Ln on [0, Ln] (here Ln = 1 + q + …+ qn] ) they seemed to behave as follows:
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- for q < ½ : Fn,q(x) > Gn(x) if x ∈  (0, Ln/2) and Fn,q(x) < Gn(x) if x ∈  (Ln/2, 1)

- for q > ½ : Fn,q(x) < Gn(x) if x ∈  (0, Ln/2) and Fn,q(x) > Gn(x) if x ∈  (Ln/2, 1).
This is remarkable because intersection at one point only of two distribution functions is the Karlin –

Novikov criterion for convex domination (see [9] or [10]).
Definition. Let ν and σ be two probabilities on the real line. We say that ν is convex dominated by

σ−and write ν !!!!cx σ   if  ∫∫ σ≤ν dd uu for all convex functions u : ℜ  → ℜ  for which the integrals do exist.

If µ and ν have the same finite expectation and their distribution functions Fν and Fσ have the property
that there exists x0 such that x < x0 ⇒  Fν(x) ≤ Fσ(x) and x ≥ x0 ⇒  Fν(x) ≥ Fσ(x), then ν !!!!cx σ. This is the
Karlin – Novikov  criterion. Unfortunatel, it is not equivalent to convex domination.

We intend to prove a weaker result than our empirical remark, namely

Theorem. Let L = 1 + q + q2 + ….
If q < ½  then µ(q) !!!!cx Uniform(0,L)

If  q ∈  ( ½ , 1) then Uniform(0,L) !!!!cx µ(q).

2. A MAJORIZATION LEMMA

If A ⊂  ℜ  is a finite set, we shall denote by U(A) the uniform distribution on A, precisely

∑
∈
ε=

Aa
aA

AU 1)( , (2.1)

where εa(B) = 1B(a) is the Dirac probability at a. Notice that if │A│=│B│ = n,  A = {a0 < a1 <…< an} and  B
= {b0 < b1 < … < bn},  then the definition of convex domination becomes

U(A) !!!!cx U(B)     ⇔  u(a0) + u(a1) + …+ u(an) ≤  u(b0) + u(b1) + …+ u(bn) (2.2)

for any convex function u. Letting u(x) = x  and u(x) = - x we see that a0 + a1 + …+ an = b0 + b1 +…+ bn.
It is well known (and easy to check) that the second inequality is equivalent to

│x - a0│ + │x - a1│ + …+ │x - an│ ≤  │x - b0│ + │x - b1│ + …+ │x - bn│ ∀  x ∈  ℜ , (2.3)

It can be proved (see for instance [1] or [6]) that inequality (2.3) is equivalent to

a0 ≥ b0, a0 + a1 ≥ b0 + b1,…., a0 + …+ an-1 ≥ b0 + …+ bn-1, a0 + a1+ …+an = b0 + b1+ …+bn (2.4)

 (Sometimes this is called Karamata’s theorem.) Inequality (2.4) is then written a ! b ( b majorizes a). It is
important that in (2.4) we do not need that the numbers (ak)k and (bk)k be all distinct. A result we need is

Karamata’s theorem. Let a0 ≤ a1 ≤ …≤ an and b0 ≤ b1 ≤ … ≤ bn . Let a = (ak)k and b =(ak)k. Then
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The proof of our result will rely on
Lemma 2.1. Let q > 0, n ≥ 1 , α = (n+q)/(2n+1). Then

q ∈  (½, n+1)                ⇒   U({0,1,…,n}) ∗  U({0,q}) !!!!cx U({0,α,2α,…,(2n+1)α}) (2.6)

q ∈  (0, ½) ∪ (n+1, ∞)  ⇒  U({0,α,2α,…,(2n+1)α}) !!!!cx U({0,1,…,n}) ∗  U({0,q}) . (2.7)
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Proof. Notice that

(2n+2) U({0,1,…,n}) ∗  U({0,q}) = ε0 + εq + ε1 + ε1+q +…+ εn + εn+q (2.8)

Let us arrange ascendingly the numbers 0,q, 1, 1+q, ….,n,n+q in the vector a = (ai)0 ≤ i ≤ 2n+1 from ℜ 2n+2.
Consider also the vector b ∈  ℜ 2n+2 defined by b = (iα)0 ≤ i ≤ 2n+1. Let Ai =(2n + 1)( a0 + a1 + …+ ai) and Bi

=(2n + 1)( b0 + b1 + …+ bi), 0 ≤ i ≤ 2n+1. Let also ∆i = Ai – Bi . Of course ∆0 = ∆2n+1 = 0.  According to
Karamata’s theorem we have to check that

q ∈  (½, n+1) ⇒  ∆i ≥ 0 ∀  1 ≤ i ≤ 2n and q ∈  (0, ½) ∪ (n+1, ∞) ⇒  ∆i ≤ 0 ∀  1 ≤ i ≤ 2n (2.9)

In order to make the computations easier, we shall remark the symmetry

a2n+1 - i + ai = b2n+1 - i + bi =  n+q (2.10)

which further implies the remarkable equality ∆i = ∆2n – i ∀  1 ≤ i ≤ 2n. Consequently, it is enough to prove
that

q ∈  (½, n+1) ⇒  ∆i ≥ 0 ∀  1 ≤ i ≤ n and q ∈  (0, ½) ∪ (n+1, ∞) ⇒  ∆i ≤ 0 ∀  1 ≤ i ≤ n (2.11)

Case 1. The easiest one: q ∈  (0,1]. Then (ai)0 ≤ i ≤ 2n+1  = (0, q, 1, 1+q, 2, 2+q, …, n, n+q). It is easy to
check that

∆2i+1 = (2q-1) (i+1) (n-i) and ∆2i = (2q-1)[(i+1)(n-i) + i] (2.12)

hence (2.9) holds.
Case 2. Another easy case: q ∈  [n,∞). Now, (ai)0 ≤ i ≤ 2n+1  = (0, 1,2,…, n, q,1+q, 2+q, …, n+q), and for i

≤ n the reader may check that

2∆i = i(i+1)(n+1– q), (2.13)

making obvious claim (2.9).
Case 3. 1 ≤  q < n + 1. We have to check that ∆i ≥ 0 ∀  1 ≤ i ≤ n. Now, we write

n = k + m, q = k + ε , with k,m ≥ 1 and 0 ≤ ε < 1. (2.14)

Notice that (2n + 1)α = 2k + m + ε and (2n+1)(1 –  α ) = m + 1 – ε. This case is more difficult because of
the ascending order of the numbers i,i+q which now becomes
(ai)0 ≤ i ≤ 2n+1  = (0, 1, 2,…, k, k+ ε, k + 1, k+1+ε, k+ 2, k+2+ε,k+ m, k+ m+ε, k+m+1+ε,…, k+m+k+ε).
For i ≤ n = k+m the rule is

ai  = i ∀  1 ≤ i ≤ k, ak = k, ak+1 = k +  ε,…,ak+2i = k+i, ak+2i + 1 = k + i + ε,… (2.15)

Remark that if k + 2i < n = k + m (hence 2i < m)   then

δi : =(2n+1)[(ak+2i + ak+2i+1) – (bk+2i + bk+2i+1)] = (m – 2i)(2k – 1 + 2ε) > 0 (2.16)

 (recall that k ≥ 1 ⇒  2k – 1 + 2ε ≥ 1 + 2ε!). On the other hand, as ∆k + 2i + 1 = ∆k-1 + δ0 + δ1 + …+ δi, by (2.16)
we arrive at

)1)()(212()1(
2

)1()...( 0112 +−ε+−+ε−+−=δ++δ+∆=∆ −++ iimkmkk
ikik (2.17)

making obvious that ∆k+2i + 1 ≥ ∆k-1 ≥ 0. Moreover, as k ≥ 1, m ≥ 2i and ε ≥ 0 , we have the inequality

iiiiimkk
kik ++∆=+−−⋅+ε−+−≥∆ −++

2
112 )1)(2)(112()1(

2
)1( (2.18)

Now, write
∆k+2i = ∆k+2i – 1 + (2n+1)[k + i – (k + 2i)α] = ∆k+2i - 1 + k(m – 2i) + k + i - ε(k + 2i) . As ε < 1, we have ∆k+2i ≥
∆k+2i - 1 + k(m – 2i) + k + i - (k + 2i) = ∆k+2i - 1 + k(m – 2i) – i = ∆k+2i + 1– i . By (2.18), we see that ∆k+2i ≥ ∆k-1 +
i2 . Consequently, ∆t ≥ ∆k-1 > 0 ∀  t = k,k+1,…, n. This completes the proof. 

Actually we shall use an obvious generalization of Lemma 2.1, namely
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Corollary 2.2. Let  N ≥ 1, δ, r >0 and  α = δ(N+r)/(2N+1). Then

r ∈  (½, N+1)  ⇒   U({0,δ,…,Nδ}) ∗  U({0,rδ}) !!!!cx U({0,α,2α,…,(2N+1)α})
(2.19)

and

q ∈  (0, ½) ∪ (N+1, ∞)  ⇒  U({0,α,2α,…,(2N+1)α}) !!!!cx U({0,δ,…,Nδ}) ∗  U({0,rδ}) . (2.20)

3.   THE PROOF OF THE THEOREM

Clearly, the distribution µ(n,q) can be written as

µ(n,q) = U({0,1})∗ U({0,q})∗ …∗ U({0,qn}) (3.1)

Suppose that q > ½ . According  to Lemma 2.1, µ(2,q) !!!!cx U({0,δ, 2δ, 3δ})  where  3δ = 1 + q. Now,
we want to apply Corollary 2.2. with rδ = q2. In order to do that, we should check that ½ ≤ r ≤ 3+1 ⇔ ½ ≤
q2/δ ≤ 4 ⇔  ½ ≤ 3q2/(1+q) ≤ 4 or, in other words, that 1 + q ≤ 6q2 ≤ 8. As ½ < q < 1, this is obvious. Thus,
applying the monotonicity property of the convex domination (i.e. µ !!!!cx ν, µ’ !!!!cx ν’ ⇒  µ∗µ ’ !!!!cx ν∗ν ’, see for

instance [8], [9] ) we get µ(3,q) = µ(2,q)∗ U({0,q2})  !!!!cx U({0,δ, 2δ, 3δ})∗  U({0,q2}) ! U({0,α,2α,…,7α})
with α =(1+q+q2) / 7.

Suppose that  we proved that µ(n-1,q) !!!!cx U({0, δ,2δ,…, (2n-1)δ}) where (2n-1)δ = 1 + q+…+ qn-1.

Next, we know that µ(n,q) = µ(n-1,q)∗ U({0,qn}) !!!!cx U({0, δ,2δ,…, (2n-1)δ})∗ U({0,qn}) . In order to apply
Corollary 2.2, we check that  ½ ≤  qn/ δ ≤ 2n – 1 + 1 or,  explicitely, that
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As 1 / q < 2, we have
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hence the left inequality is clear. We have to prove the right one, which can be written as
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or

(2n – 1)(qn – qn+1) ≤ 2n(1 – qn)  ∀  q ∈  (0,1). (3.3)

But the function f(q) = (2n – 1)(qn – qn+1) –  2n(1 – qn) has the properties: f(0) =  – 2n , f(1) = 0, and  is
increasing on the interval [0,1], thus it is negative. It means that
U({0, δ,2δ,…, (2n-1)δ})∗ U({0,qn}) !!!!cx U({0, αn,2αn,…, (2n+1-1)αn}) with (2n+1-1)αn = 1 + q + …+ qn.

Consequenly, we proved the domination µ(n,q) !!!!cx U({0, δ,2δ,…, (2n+1-1)δ}) for any n ≥ 1 where (2n+1-1)δ =
1 + q+…+ qn .

If q < ½ , then 1 / q > 2 hence
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By Corollary 2.2 the domination goes into the opposite direction.
The rest of the proof is routine: µ(n,q)  converges to  µ(q), U({0, αn,2αn,…, (2n+1-1)αn}) converges to

Uniform(0, L) with 1/L = 1 – q and the convergence is dominated, in the sense that the supports of all these
measureas is included in [0,L]. But it is well known – and easy to check – that if

µn ⇒  µ, νn ⇒  ν, µn !!!!cx νn  Supp(µn) ∪  Supp(νn) ⊂  K , K compact, then µ !!!!cx ν.
Corollary 3.2 (Moments and moment generatig function). Let q ∈ ( ½, 1) , n ≥ 2, t ≥ 0 and 1/L = 1 - q.
Then
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Proof. The functions x " xn ant x " etx , x ≥ 0, are convex and the distribution of S(q) is dominated by
the uniform one. The second inequality can also be written as
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If q = ½ (thus L = 2) we get a strange equality.
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