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In the present paper we shall give the numerical values of the classical entropy of some quantum
states of a given spin 2j. These calculations support the idea that the states with the most spread
Majorana configurations have the maximal values of classical entropy.

1 INTRODUCTION

In the Majorana’s sphere representation [1, 10], a spin state of definite spin j is represented by

j2 points on the Riemann sphere, generalizing the Bloch representation for spin
2
1=j . Majorana introduced

this sphere representation to aid the calculations of transition probabilities in quantum mechanics. In the
paper [2], Lieb have made the conjecture that the states with minimum value of the classical entropy are the
coherent states associated with the representations of the rotations group [3, 4].  In the paper [5] we have
proved this conjecture for the states with spin 1=j . Because the fact that the classical entropy of a spin state
is a functional which is invariant with respect to the rotations, and as a consequence of the L. Michel
conjecture [6, 7], we try to “prove” that the states which give the maximum value for the classical entropy
are the states which correspond to the critical orbits.

2. THE MAJORANA SPHERE

In order to give a classification of the orbits of the unitary action jU of the rotation group )3(SO in

the −+12 j dimensional Hilbert space jH  we shall use the Majorana representation of the spin states. In this
representation there is a one-to-one, covariant correspondence between the vectors from the Hilbert space

jH  and the sets of −j2 points on the two-dimensional Majorana’s sphere 2S . Let jHu ∈  denotes an
abstract quantum state with definite integer or half integer spin j i.e. it is an eigenvector of the total angular

momentum 2J
!

. With respect to a certain coordinate frame u  may be written ∑
−=

=

>=
jm

jm
mmvcu|  where mv is an

eigenvector of the angular momentum component operator zJ
!

with eigenvalue m . The phase convention
used is the standard Condon-Shortley convention given by applying successive raising operators to the
vector jv− .  In order to describe this correspondence let us consider the two-dimensional sphere 2S as the

                                                
1 This paper is the internal report in the NIPNE contract Nr. 63-78-45 (1978). The conjecture of L. Michel was the principal
motivation of these calculations. The above result where presented at a seminar held at the Theoretical
Physics Department of the Physics Faculty of the University from Bucharest Professor Louis Michel was one of the participants. I
dedicate this paper to the memory of   Louis Michel.
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Riemann’s sphere with the complex coordinate 
2

tan)exp(),( θφφθ iz = obtained by the stereographic

projection. The action of the rotation group )3(SO on the coordinate z is given by the homographic
transformations. Let jK  be the Hilbert space of the polynomials in −z variable of degree smaller or equal
with j2 and square-integrable with respect to the invariant measure on sphere

122 )||1(2
12),( ++

Λ+= jz
zddz

i
jzzd
π

ν . On the Hilbert space jK  with dimension equal with 12 +j  and the

canonical orthonormal basis given by the polynomials

},1,...,1,,
)!()!(

)!2({ jjjjmz
mjmj

j mj −+−−=





−+

+  the rotation group )3(SO  acts by unitary

operators defined in the following way:

j
j azb

azb
bazPzPgV 2))(())()(( +−

+−
+= (2.1)

Then the following theorem holds:

THEOREM: The intertwining operator jj KHT →:  for the equivalent irreducible unitary

representations jU  and  jV   of )3(SO  is given by:

j
jju zvgUuzPzTu )||1)()(,()())(( 2+== (2.2)

where  
a
bz =  and jHu ∈ .

Hence, this theorem ascribes to any vector, jHu ∈ , a  polynomial ju KzP ∈)( .   If

∑
−=

=

>=
jm

jm
mmvcu| then:

mj
m

jm

jm

mj
u z

mjmj
jczP +

=

−=

+

−+
−= ∑ )!()!(

)!2()1()( (2.3)

Since 1|| 2∑
=

−=

=
jm

jm
mc  every polynomial )(zPu  is uniquely determined up to a phase by its j2 roots

jkkz 2,...,2,1}{ = of which are j2 points on the Riemann’s sphere. This representation is called the Majorana
representation. The Majorana representation is covariant with respect of the actions of the rotation group

)3(SO  on the Hilbert space jK and the sphere 2S respectively. This means that to the vector ugU j )(  the

Majorana representation ascribes the set jkkz 2,...,2,1}{ =  of j2 points. This property is a consequence of the

fact that the operator T  is an intertwining operator i.e. TgVgTU jj )()( =  and of the fact that:

)()())()(( gzPazbzPgV j +−= (2.4)

As a consequence the problem of the classification of the orbits of the rotation group )3(SO in jH  is
reduced to the problem of the classification of the orbits of the action of the rotation group on the
configurations of j2 points on the Majorana’s sphere 2S .
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3. THE SUBGROUPS OF THE ROTATIONS GROUP WHICH LEAVE UNCHANGED SOME
MAJORANA’S CONFIGURATIONS OF j2  POINTS

The subgroups of the rotations group which leave unchanged some configurations of j2 points on the
Majorana’s sphere are the following subgroups: IOTjnnDnCOSO ,,,)2(,)(,)(,)2(,)2( ≤ .

The constellations which describe the critical orbits [6, 8] are given in the following table:
Table 1

The
constellations

The
associated

vectors

The
symmetry

group

2

),0,(

SN

SN

nn
m

nn
−

= m

m

v
v

−

)2(SO

),0,( jj 0v )2(O
),2,( mjmmj −− )(

2
1

mm vv −+
)2( mD

,...2,1,2
,0)22( 3

==
=−

kkj
zz kk

2
3
2

3
1

12

=

+ −

jforonly

vv
T

tetrahedral

,...2,1,43

,01)1( 4

==

=−

kkorkj
z

zz k
kk

3

)(
2

1
22

=

+ −

jforonly

vv
O

octahedral

,...2,1,106

,01))
15

2(())
2

15(( 5555

==

=
−

+−−

kkorkj
z

zzz k
kk

I
icosahedral

We have used the following notations for the configurations of j2 points which describe the  critical
orbits:  ),,( SEN nnn , where Nn  is the number of points which are placed at the north pole, En  is the
number of points which are placed on the equator and Sn  is the number of points which are placed at the
south pole. Evidently we must have jnnn SEN 2=++ .

4. THE CLASSICAL ENTROPY OF THE STATES DESCRIBED BY THE VECTORS OF THE
TYPE nnmm vcvc +

In this section, we shall give the analytic formulae for the classical entropy )(uS j of the spin system
state nnmm vcvcu +=  with real components nm cc ,  and with nm > , as a function of the positive real
parameter r  defined by:
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),0(
)!()!(
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=
−nm

n

m

mjmjc
njnjc

r (4.1)

In order to simplify the exposition we shall not give the calculations which are somewhat laborious.
Because the vector  nnmm vcvcu +=  is completely determined by rnm ,,  we shall denote by );,( rnmS j

the classical entropy of this quantum state.
In the following we shall give the concrete values of this general formula for the classical entropy for

the states enumerate in the Table1:

12
2

)!()!(
)!2(ln

)
2
1...

1
1)(()

2
1...

!
1)(()(

+
+

−+

−++
+−

++++
++

+=

j
j

mjmj
j

jmj
mj

jmj
mjvS m

j

(4.2)

and

]1397851795

29414850633449802040336[
)1)(41(30

1
2)41ln()1ln(32ln2);1,2(

2

345678
53

3

++

++++++
++

+−+++−−=−

rr

rrrrrr
rr

rrrS j

(4.3)

From the formula for );,( rmmS j −  we obtain that

0|);,( 1 =− =r
j rmmS

dr
d

(4.4)

and

0|);,( 12

2

<− =r
j rmmS

dr
d

(4.5)

This proves that );,( rmmS j −  takes the maximum value on the vectors )(
2

1
mm vv −+  which gives

the critical orbits with the symmetries )2( mD in general and with the symmetry O  for 3=j  and 2=m .
Also it is easy to shown that:

0|);1,2(
2
1

2 =−
=r

rS
dr
d

(4.6)

and

0|);1,2(
2
12

2

<−
=r

j rS
dr
d

(4.7)

i.e. among the vectors 1122 −−+= vcvcu the maximum value of the classical entropy is attained on the vector

)2(
3

1
12 −+ vv  with the symmetry T .  For the “crown states” [9] jjjj vcvcu −−+=  we have:
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2
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)1(1
2

)1ln(2)1ln(
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2
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jj
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jj
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j
j
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+

+
−

+
+

+
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+

=−

∑
+

=

(4.8)

In the particular case of the vectors )(
2

1
jj vvu −+=  becomes:

)2ln
2

1(22ln
12

2)1;,(
12

1
−++

+
=− ∑

−

=

j

k
k

j

k
j

j
jjjS (4.9)

We remark that

12
2)1;,(

+
>−

j
jjjS j (4.10)

is a consequence of the fact that always:

0)2ln
2

1(22ln
12

1
>−+ ∑

−

=

j

k
k k

j (4.11)

In the case 1=j we obtain for the states of type )2(
2

1
10 −+

+
vvr

r

)
2

1ln(
23

2);1,0(1

+
+−

+
+>−

r
r

r
rrS (4.12)

Hence );1,0(1 rS −  is a monotone increasing function of ),0( ∞∈r with minimum value 
3
2)0;1,0(1 =−S

attained for the vector 1v and any rotationally related other vector.  Because in the case 1=j  we have only

three strata generated by vectors 1v , 1v  and )2(
2

1
10 −+

+
vvr

r
 it follows that the Lieb’s conjecture is

valid [5]. In the table 2 we shall give numerical values of the classical entropy. We remark that in the case

2=j  the vectors )(
2

1
11 −+ vv  and )(

2
1

22 −+ vv  are in the same orbits.
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Table 2

j u
12

2)(
+

−
j

juS j
The symmetry group of u

1 2 3 4

2
3

2
3v

2
1v

)(
2

1

2
1

2
1

−
+ vv

)(
2

1

2
3

2
3

−
+ vv

0

0.40139

0.27632

0.48870

SO(2)

SO(2)

D(1)

D(2)

2 2v
1v

0v

)(
2

1
11 −+ vv

)(
2

1
22 −+ vv

)2(
3

1
12 −+ vv

0
0.44703

0.54157

0.58721

0.58721

0.69166

SO(2)
SO(2)

O(2)

D(4)

D(4)

T

2
5

2
3v

2
3v

2
1v

)(
2

1

2
1

2
1

−
+ vv

)(
2

1

2
3

2
3

−
+ vv

)(
2

1

2
5

2
5

−
+ vv

0

0.47389

0.61408

0.68698

0.82195

0.63880

SO(2)

SO(2)

SO(2)

D(1)

D(3)

D(5)
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1 2 3 4
3 3v

2v

1v

0v

)(
2

1
11 −+ vv

)(
2

1
22 −+ vv

)(
2

1
33 −+ vv

0

0.49157
0.65861
0.70426

0.70505

0.97879

0.66550

SO(2)

SO(2)
SO(2)
O(2)

D(2)

O

D(6)

2
7

2
3v

2
3v

2
3v

2
1v

)(
2

1

2
1

2
1

−
+ vv

)(
2

1

2
3

2
3

−
+ vv

)(
2

1

2
5

2
5

−
+ vv

)(
2

1

2
7

2
7

−
+ vv

0

0.50408

0.68820

0.76131

0.89933

0.93844

1.07783

0.67901

SO(2)

SO(2)

SO(2)

SO(2)

D(1)

D(2)

D(3)

D(7)
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