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The two-part paper presents the development and implementation of robust, efficient and accurate
numerical algorithms for hydrofoil cascade design, analysis and optimization. In this second part we
analyze in the incompressible, inviscid and irrotational flow in thin hydrofoil turbine cascades using
two numerical methods. We briefly present our Finite Element methodology for analyzing cascade
flows with streamfunction formulation. We evaluate the accuracy of our CASCADExpert code for
two thin hydrofoil cascades designed with the quasi-analytical approach. Then, the same test cases are
analyzed with the Finite Volume approach for the primary variables formulation using the
commercial code FLUENT. The numerical accuracy is again assessed in comparison with quasi-
analytical test cases, and the numerical mechanism that replaces the Kutta-Joukowsky condition is
revealed. Both numerical methods investigated in this paper are shown to be robust and accurate, thus
providing a valuable set of numerical tools for design, analysis and optimization of hydrofoil
cascades, to be used in modern hydraulic turbomachinery design and optimization.
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1. INTRODUCTION

In the first part of this paper [15] we have presented
the quasi-analytical method for designing thin hydrofoil
cascades, based on the non-linear integral equation given by
Hawthorne et al. [8], and an iterative algorithm which uses a
piecewise cubic, with continuous derivatives, of the thin
blade shape. Two thin blade turbine cascades have been
designed, and are used as reference cases within this paper
to assess the accuracy and robustness of both Finite Element
and Finite Volume numerical methods for analyzing the
flow field.

The notations employed in this paper are shown in
Fig.1. The starting point for the thin hydrofoil cascade
design is the schedule of the pitch-averaged velocity,
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Since the pitch-wise averaged meridional component of the
velocity, xV , is constant for blades with vanishing thickness,

we actually prescribe the schedule of the pitch-wise averaged tangential velocity,
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Fig. 1. Thin hydrofoil cascade notations.
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With the pressure coefficient defined with respect to the upstream conditions, using Eqs. 16…19 from [15]
one can easily show that the pressure jump from the pressure side to the suction side of the thin foil can be
written as

( ) ( ) ( )bl 2
12 cosx

p
x

V x
c x s x

V
γ α∆ = , (3)

where ( )blxV x  is the meridional component of the average tangential velocity on the blade, and ( )xγ  is the

pitchwise averaged boundary velocity. Eq. (3) clearly shows that ( )xγ  is directly related to the blade
loading distribution ( )pc x∆ . Two turbine cascades have been designed in [15] for a vortex strength

distribution ( ) ( ) ( )2 1tan tan 1 15/ 4x x xγ α α= − −  and two spacing values, 1s = and 2s = , respectively.
Both cascades have the upstream flow angle 1 35α = ! and downstream flow angle 2 55α = ! . These
benchmark cases are used as reference in this paper to assess the accuracy of flow field numerical solutions.

The present paper presents the authors ongoing efforts to develop a robust and efficient numerical
methodology, and the associated expert software, for analysis, design and optimization of hydrofoil cascades.
The main goal is to automatically optimize the hydrofoil shape for best efficiency as well as for best
cavitational characteristics. So far, we have developed a Finite Element solver for incompressible, inviscid
and irrotational cascade flow [14], using a modern software infrastructure [1], and efficient implementation
of boundary conditions [12] or solution postprocessing techniques [7]. Numerical results were validated with
experimental data [2], [13] or with other numerical results. In this paper we present a more difficult test case
corresponding to the thin hydrofoil cascade, where the robustness of our Kutta-Joukowski condition
implementation is verified. By using the latest implementation techniques and efficient iterative solvers for
large sparse systems of linear equations, we achieve the same performances as methods based on integral
equation solution [10], with the additional benefit of obtaining the hydrodynamic field in the whole
computational domain and not only on the blade surface.

Section 2 summarizes the mathematical and numerical foundation of our computer code
CASCADExpert, and assesses the accuracy of our code for the two test cases designed in the first part of this
paper [15]. Section 3 solves the two turbine cascades using the FLUENT expert code, and reveals the
numerical mechanism which replaces the explicit Kutta-Joukowsky condition when a primary variable Euler
solver is employed. The paper conclusions are summarized in Section 4.

2. THIN HYDROFOIL CASCADE ANALYSIS USING FINITE ELEMENT METHOD FOR
STREAMFUNCTION FORMULATION

The inviscid, incompressible and irrotational flow model employed by our software CASCADExpert is
based on the streamfunction formulation [14]. For incompressible flows the divergence of the velocity
vanishes everywhere. Vectors satisfying this condition are called solenoidal (or divergence free), i.e.

0∇ ⋅ =V . Any solenoidal vector can be written as the curl of another vector, called the vector potential,
= ∇ ×V β . For 2D plane flow, the vector potential is zψ=β e , where ze  is the unit vector in the direction

normal to the plane of flow. The velocity components in the x - and y -directions are
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∂

(4)

Since the gradient of ψ is normal to the velocity vector, along a streamline we have constantψ = , thus the
name streamfunction. A flow that is both irrotational and incompressible must satisfy both the conditions of
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zero curl ∇ × =V 0  and zero divergence. The second is automatically satisfied by introducing the
streamfunction (5), and enforcing the irrotationality condition leads to the 2D Laplace equation

( ) ( )2 2

2 2

, ,
0

x y x y
x y

ψ ψ∂ ∂
+ =

∂ ∂
(5)

In order to define the boundary value problem for ψ  we introduce the appropriate cascade boundary
conditions.  First, the computational domain is chosen as a periodic strip, resulting in a double connected
domain as in Fig. 2, with the following boundary segments:
•  Fluid boundary (inlet, outlet, periodic); the periodic boundary segments are obtained by translation with

the cascade pitch in the direction of the cascade frontline; the inlet/outlet boundaries are aligned with the
cascade front line. Note that the shape of the periodic boundary segments is arbitrary, the only constraint
being the constant width of the strip.

•  Solid boundary (hydrofoil surface), with a unit-length chordline and stagger angle sα . In order to perform
a numerical analysis of the thin hydrofoil, a small thickness of ( )310O −  is added to discriminate between
the nodes on the upper and lower side of the foil.
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Fig. 2. Double-connected computational domain for finite element analysis.

In specifying the following boundary conditions we consider a unit axial velocity component upstream
and downstream the cascade, and a unit chord length. As a result, the cascade pitch is made dimensionless by
the hydrofoil chord, i.e. we use /s c , while in the previous section the unit length has been chosen the axial
extent of the cascade. Obviously, in design problems we cannot use the chord as reference length since
neither the hydrofoil, nor the stagger angle, are known apriori.

On each boundary point only one condition can be specified since we have only one unknown function.
On the inlet section, only the tangential velocity component is specified as

1tan
n
ψ α∂ =

∂
 on inlet. (6)

On the outlet section we are using the same type of condition, but in this case the flow direction is not known
apriori. As a result we have

2tan 0
n
ψ α∂ + =

∂
 on outlet, (7)

where the outflow direction 2tanα  is an additional unknown of the problem. For a pair of points from the
upper and lower periodic boundaries, having the same abscissa, the velocity vector must be the same. The
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periodicity of the velocity tangent to the periodic boundary leads to the following periodic Neumann
condition,

0
up lon n

ψ ψ∂ ∂   + =   ∂ ∂   
 on periodic boundary. (8a)

On the other hand, since on inlet/outlet sections we have specified only the direction of the flow, we must
prescribe the flowrate as well. This can be done via the Dirichlet-type condition for any pair of points on the
periodic boundaries,

up lo
s
c

ψ ψ− =  on periodic boundary. (8b)

Condition (8b) also implies the periodicity of the velocity normal to the periodic boundaries, i.e.

0
up lo

ψ ψ
τ τ

∂ ∂   + =   ∂ ∂   
 on periodic boundary.

On the hydrofoil surface the inviscid flow condition corresponds to vanishing normal velocity. In other
words the hydrofoil is a streamline, and without loosing generality we can set

0ψ =  on hydrofoil. (9)

In order to close the problem we need an additional condition for the unknown flow direction downstream
2tanα . This condition is derived from Joukowsky’s hypothesis [11, §7.40]: the circulation in the case of a

properly designed aerofoil always adjusts itself so that the velocity at the trailing edge is finite. This
condition appears to be satisfied with reasonable exactness within the working range of well designed
aerofoils. Within the present formulation the Joukowski’s condition is implemented by formally setting the
trailing edge to be a stagnation point,

0
n
ψ∂ =

∂
 at the trailing edge. (10)

It is obvious that (10) has no meaning for sharp trailing edges, or for foils with zero thickness. However,
within the weak formulation of the finite element the actual implementation of (10) agrees with the physical
considerations leading to the Joukowsky’s condition.

The problem (5), with conditions (6…10) is well defined and allows the computation of the
streamfunction as well as the direction of the flow downstream the cascade. Once the streamfunction known,
the velocity field can be recovered using (4), and the pressure field follows from the Bernoulli’s theorem.
The elliptic boundary value problem for the streamfunction is solved with the Finite Element Method [9]
using our CASCADExpert code [6].

The starting point in the Finite Element Method is the variational formulation. We introduce the
following functional,

( )
221 d d d

2
N

NF x y f
x y
ψ ψψ ψ

Ω Γ

  ∂ ∂ = + − Γ    ∂ ∂     
∫∫ ∫ , (11)

where Ω  denotes the two-dimensional computational domain, and NΓ  is the part of the domain boundary
where Neumann conditions are imposed, with Neumann data / Nn fψ∂ ∂ = . The solution of the original
boundary value problem (5…10) will be the one that corresponds to the extremum of functional (11) while
satisfying the Dirichlet conditions. Note that by using this approach we have only first order partial
derivatives instead of second order ones in the original Laplace equation (5).

The computational domain is discretized with triangular elements, resulting in an unstructured mesh.
Then, the streamfunction is approximated using its nodal values jψ  and the finite element shape functions

( ),jN x y , as follows:
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( ) ( ), ,j j
j

x y N x yψ ψ≅ ∑ . (12)

Introducing the finite element approximation (12) in (11) transforms the functional into a function depending
on the streamfunction nodal values,
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2 2

1 2
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j j
j j j j N

j j j

N N
F x y N f

x y
ψ ψ ψ ψ ψ

Ω Γ
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 = + − Γ     ∂ ∂       

∑ ∑ ∑∫∫ ∫" . (13)

The extremum of the above function is found by cancelling all partial derivatives with respect to the nodal
values, leading to the following system of equations:

d d d 0
N

j ji i
j i N

ji

N NF N N x y N f
x x y y

ψ
ψ Ω Γ

∂ ∂ ∂ ∂ ∂= + − Γ = ∂ ∂ ∂ ∂ ∂ 
∑ ∫∫ ∫ . (14)

The main advantage in using FEM is found in the implementation of Neumann conditions. For example, at
the trailing edge where both impenetrability and the Joukowski conditions must be imposed we have the
following two equations in the system

0TEψ = , impenetrability condition (9),

d d 0j jTE TE
j

j

N NN N x y
x x y y

ψ
Ω

∂ ∂ ∂ ∂+ = ∂ ∂ ∂ ∂ 
∑ ∫∫ , Joukowski’s condition (10).

(15)

We immediately note that there is no need to actually compute the normal derivative at the sharp trailing
edge. In fact, instead of cancelling the normal derivative point-wise as would be required by (10), we are
cancelling the local flux. The periodic Neumann condition (8a) is simply implemented by adding up two
rows from the assembled matrix [12]. Once again, there is no need to evaluate the normal derivative, which
is an important advantage in terms of accuracy (especially on unstructured meshes) and robustness:

d d d d 0up j up j j jlo lo
j j

j j

N N N N N NN Nx y x y
x x y y x x y y

ψ ψ
Ω Ω

∂ ∂ ∂ ∂ ∂ ∂   ∂ ∂+ + + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
∑ ∑∫∫ ∫∫ . (16)

The actual implementation [5,6] of our finite element solver CASCADExpert is done using the Portable
Extensible Toolkit for Scientific Computation (PETSc) [1]. The linear system of equations, with sparse
matrix, is solved iteratively using the preconditioned BiConjugate Gradient Method, with Incomplete LU
factorization as preconditioner.

Once the nodal values for the streamfunction found, the velocity on the hydrofoil can be computed
using the same weak form for the normal derivative.

V
nτ
ψ∂= −

∂
, or the weak form d dj jF F

j
j

N NN NV s x y
x x y yτ ψ

Ω

∂ ∂ ∂ ∂∆ = − + ∂ ∂ ∂ ∂ 
∑ ∫∫ , (17)

where F  denotes a point on the foil where the velocity Vτ  is computed, and s∆  is the average length of two
boundary segments adjacent to the node F .  Note that the right-hand side in (17) is readily obtained by
assembling the finite element matrices into the global matrix. The global matrix rows are saved before
altering them for implementing the Dirichlet condition (9), then used in the post-processing step. The right-
hand side of (17) is simply computed by multiplying the saved matrix rows with the solution vector.

In conclusion, using the variational formulation of the original boundary value problem within the
finite element framework offers essential advantages for implementing the boundary conditions as well as
for computing the velocity on the hydrofoil surface.

Let us examine the two turbine cascades designed in the first part of this paper [15]. Since the
CASCADExpert code solves the boundary value problem for the streamfunction, we can directly plot the
streamline pattern. Figures 3.a) and 3.b) show the streamlines for a periodic strip. One can easily observe the
“shock-free” inlet on the blade corresponding to the continuous slope of the streamline 0ψ =  that passes
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through the origin. This streamline includes the thin blade, and it can be seen the rather large curvature just
upstream the blade leading edge (coordinate origin) that aligns the velocity vector to the camberline tangent
direction. Once again, we emphasize that the “shock-free” condition is not at all met by simply aligning the
far upstream flow with the camberline at leading edge. This would be the case only for an infinite number of
blades in the limit 0s → , which is only a theoretical asympthotic hypothesis.

Once the streamfunction computed, the velocity on the blade is computed using (17). Then, the
pressure coefficient is evaluated with respect to the upstream conditions. The exact solution computed in
[15] is compared with the FEM solution obtained with our code CASCADExpert in Figures 3.c) and 3.d).
The agreement is very good, proving not only the accuracy of the streamfunction solution but also the
accuracy of the normal derivative computation (17) required for the tangential velocity on the blade.
Although the implementation Kutta-Joukowsky condition (10) leads to the correct overall flow deflection, as
well as to the correct pressure distribution on the blade, a few points in the neighborhood of the trailing edge
display a small velocity dispersion in comparison with the exact solution. It is not yet clear if this numerical
problem is caused by the accuracy of the streamfunction computation in the trailing edge neighborhood or by
the evaluation of the normal derivative. However, this minor numerical problem does not alter the overall
accuracy of the FEM solution.

a) Streamlines for / 0.6614532s c = . b) Streamlines for / 1.270120s c = .
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Figure 3. Streamlines and pressure coefficient for turbine cascade with 1 35α = ! and 2 55α = ! and two pitch/chord ratio values.
Streamlines are computed with FEM. Pressure coefficient is computed both analytically (solid line) and numerically from FEM

solution (dots).

3. THIN HYDROFOIL CASCADE ANALYSIS USING FINITE VOLUME METHOD FOR EULER
EQUATIONS

The cascade flow can be analyzed using the primary variables formulation, i.e. by solving the Euler
equations for incompressible steady flow,

0∇ ⋅ =V ,  continuity equation,

( ) 1 p
ρ

⋅ ∇ = − ∇V V , momentum equation.
(18a)

(18b)

In this paper we are using the Finite Volume Method solver from the FLUENT [16] commercial software.
The computational domain is chosen single connected, as shown in Fig. 4, and a mesh of quadrilateral cells
is generated with the GAMBIT pre-processor.
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Figure 4. Computational domain for finite volume analysis.

The boundary conditions for the primary variable formulation are as follows:
•  On inlet we specify the axial, xV , and tangential, 1yV , velocity components;
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•  On outlet we impose a constant pressure condition;
•  On the thin hydrofoil the normal velocity component vanishes;
•  Velocity and pressure periodicity is enforced on the upstream and downstream periodic boundary

segments.
Note that the Kutta-Joukowsky condition is missing from the above problem setup. Since an inviscid flow is
assumed, one may ask why the pressure on the upper and lower sides of the thin hydrofoil would reach the
same value as we approach the trailing edge from both sides?

Let us examine first the numerical results obtained with the FLUENT Finite Volume code for the two
turbine cascades from [15]. The pressure distributions on the blade, shown in Figures 5 and 6, are in good
agreement with the exact solution, with a small underestimation of the pressure magnitude on the suction
side close to the leading edge. However, the thin blade design procedure for a shock-free flow is once again
confirmed by the numerical results. For completeness we also present in Figures 5 and 6 the more qualitative
pressure distribution in the computational domain.
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Figure 5. Pressure coefficient computed with FLUENT on the blade and in the inter-blade channel for a turbine cascade with

1 35α = ! and 2 55α = ! and / 0.6614532s c = .
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Figure 6. Pressure coefficient computed with FLUENT on the blade and in the inter-blade channel for a turbine cascade with

1 35α = ! and 2 55α = ! and / 1.270120s c = .

Going back to the absence of explicit Kutta-Joukowsky condition, we first see that there is a gap
between the pressure on the suction/pressure sides at the trailing edge. It is interesting that the pressure on
the pressure side matches almost perfectly the exact solution. However, on the suction side the numerical
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values slightly depart from the exact solution close to the trailing edge. To elucidate this aspect, let us
examine the total pressure field expressed by the total pressure coefficient defined similarly to the pressure
coefficient (19),

1

2
1

1
2

T

T T
p

p pc
Vρ

−= , where the total pressure is 21
2Tp p Vρ= + . (19)

According to the Bernoulli’s theorem, 
Tpc should vanish in the whole computational domain. However, as

shown in Fig. 7 there is a total pressure defect on the foil suction side, as well as in an artificial wake
downstream the hydrofoil. This is the implicit effect of the numerical viscosity embedded in the Euler solver,
and it is not explicitly specified or controlled in the problem setup. Obviously, this numerical diffusion
depends on the finite volume discretization scheme, as well as on the mesh refinement, but nevertheless it
helps getting the almost correct velocity and pressure fields for the cascade flow. This feature of the Euler
solvers is implicitly used also in more complex three-dimensional inviscid flow simulation in turbomachines,
with surprisingly good results. The correct approach, however, is to consider the viscous turbulent flow with
the physical boundary layer development on solid surfaces instead of relying on a rather ad-hoc numerical
dissipation embedded in a numerical scheme that solves an inviscid flow.
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Figure 7. Total pressure deficit in spurious boundary layers and wakes for Euler flow simulation.

4. CONCLUSIONS

This paper presents the numerical analysis of thin hydrofoil cascades designed in the first part of the
paper [15], using both Finite Element and Finite Volume methods.

First, the CASCADExpert finite element code developed by the authors is shown to produce accurate
results for the pressure distribution on the blade, as well as for the streamline pattern. The original
implementation of the Kutta-Joukovsky condition is validated for the difficult test case of thin hydrofoils.
Second, the FLUENT finite volume code is used for solving the inviscid cascade flow in velocity/pressure
formulation. It is shown that in this case the Kutta-Joukovsky condition is replaced by the numerical
viscosity embedded in the numerical scheme used to discretize the Euler equations.

Both numerical methods confirm the shock-free flow at leading edge, and predict the correct flow
deflection, or the outflow angle. The numerical analysis approaches developed and validated in this paper are
going to be included in a complex cascade optimization methodology.
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