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The paper is concerned with the focusing of ultrasonic waves in nanostructured media at the
femtosecond temporal and nanometer spatial scale. Focusing and self-focusing are properties of
waves experimentally observed, and their balance depends on the nanoscale properties of the
medium. These properties are investigated by using the couple stresses theory and the double couple
radiation pattern.
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1. INTRODUCTION

Classical elasto-dynamics is based on the idea that material bodies posses continuous mass densities
and laws of motion and axioms of constitution are valid for every part of the body no matter how small they
may be. The classical continuum theory is believed to be inadequate for the treatment of propagation of
waves in materials with nanostructure the characteristic length scale of which is in the order of a few
nanometers. They include the nanocrystalline materials such as ceramic, carbon nanotubes, nanofibers and
wires, etc. These materials, be metal, ceramic or polymers, are nanometer size particles, and can be
engineered by controlling the sizes of the building blocks in the 1-100nm size range and their assembly. The
microstructure refers to the arrangement of the atoms and the size of a solid in 1D, 2D and 3D. Effects
controlling the properties of nanostructured materials include size effects, where critical length scales of
physical phenomena become comparable with the characteristic size of the building blocks of the
microstructure (Drexler [1–4]).

In the last decades a class of materials with a nanometer-sized microstructure have been synthesized
and studied. These materials are nanocomposites that improve the macroscopic properties of products.
Typically, nanocomposites are clay, polymer or carbon, or a combination of these materials with
nanoparticle building blocks (Drexler, Peterson, and Pergamit [5]). By integrating nanotubes into traditional
materials (epoxy matrices) it is possible to improve their strength and damping properties. Nanocomposites
have a reduced weight and volume, in comparison to polymeric damping materials, and have a high damping
capabilities. Since their discovery in 1991, the carbon nanotubes offer an interesting combination of light
and stiff, of high strength and damping. Since the carbon nanotubes are so thin, they possess a big amount of
surface area for the volume they occupy ( 3 210 m /gm ), giving them a great capacity to dissipate energy (Ko
et al.[6]). Carbon nanotubes are up to 100 times stronger than steel at only a sixth the weight, and have
attracted much research as potential to improve the strength of composite materials. The effect of structure
in nanocomposites becomes important in transmitting waves of small wavelength and high frequency. When
the wavelength is comparable with the average grain size, the motion of the grains must be taken into
account (Chiroiu et al. [7]). Models of media with couple stresses (Eringen [8], Eringen and Jafadar [9],
Erofeev and Potapov [10], Potapov [11], Bagdoev and Shekoyan [12], Parfitt and Eringen [13]) and the
double couple radiation pattern (Chiroiu and Nicolae [14], Chiroiu, Nicolae and Munteanu [15] can be used
to describe this category of materials with extra independent internal degrees of freedom for the local
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rotations. The radiation force acts upon the body likewise a friction force. The rate of work of this force is
equals to the radiation of energy that leaves acoustically the body per unit time.

The constituents like grains and molecules are allowed to rotate independently without stretch. The
behavior of waves in such media exhibits new features as dispersion, concentration and focusing (Chiroiu
and Munteanu [16], Munteanu [17]).

The waves interact with matter inducing a wide range of nonlinear effects, experimentally observed
such as generation of high energy local fields by focusing and self-focusing phenomena (Stockman [18]).

The paper is concerned with the focusing of ultrasonic waves in nanostructured media at the
femtosecond ( 1510 s− ) temporal and nanometer spatial scale ( 910 m− ). The media considered are dissipative.
The focusing phenomenon consists in a nano narrow beam of nonlinear ultrasonic wave, which can focus.
The self-focusing consists in a generation of new waves, which is appearing at some distances, due to
interaction between stable and unstable waves. Self-focusing could be observed in nano-piezo-
semiconductors (Stockman [18]). These properties are investigated in this work by using the couple
stresses theory and the double couple radiation pattern.

2. GENERAL THEORY

Since size is important in nanoelastodynamics, the ratio of surface area to volume is large for small
systems, that means 2/ 3 1/ 3( / ) 1/V V V=  becomes smaller and smaller as V  grows. The surface effects
dominate in the nanostructures in contrast to the macroscopic state. In cristalography for example, the
transition to the nanoscale appears for 6/ 10cV V < , where V is the volume of crystallites in the solid and cV
is the unit cell volume. This volume ratio can be converted in to a ratio for the number of particles by
substituting the number of atoms per unit cell. In Bravais lattices, this number rarely exceeds four. It leads to
the ratio of 4/ 10cN N < , which seems to be obeyed by Bose-Einstein condensates that occur only when

410N ≥ . The transition to bulk behavior can be taken for 5/ 10cN N >  (Ghanashyam Krishna and
Srinivasan [19]).

To model the behavior of a nanocrystalline medium, we start with considering that the micromedium
is composed from microvolumes mV  enclosed within its surface in the medium, and each microvolume
contains discrete nanovolumes nV , with 6/ 10m nV V < . The nanovolumes are similar to what is observed
experimentally, i.e. 8–64 grains in a 10.6 3nm  of material, with a grain modeled as a sphere with diameter of
3.3–6.6 nm. Consider that the medium has the initial volume 0V and surface 0S  in its undeformed and
unstressed state, and the properties of mV  are averaged discrete microvolumes properties. If the physical
phenomenon under study has a certain characteristic length such as wavelength, comparable with the size of

nV  in the body, then the nanostructure of the material must be taken into consideration. The state of
deformation of such a body in the rectangular frame of reference , 1,2,3kx k =  is described by two tensors

, , , ,
1 ( )
2kl k l l k i k i le u u u u= + + , (2.1)

,klm l kmuΓ = − ,  , , , 1,2,3i k l m = , (2.2)

where kle  are components of the Green’s strain tensor which  characterizes relative displacements of centers
of mass of microvolumes mV , klmΓ components of the nanodeformation gradient which  characterizes relative
displacements of nanovolumes of the  same microvolume, and ( , )k ku x t′  components of the displacement
vector, in Lagrangian variables.  A subscript after a comma means differentiation with respect to the
indicated coordinate.

To derive basic equations of nanoelastodynamics we define the action functional
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= ∫ ∫ , (2.3)

where the Lagrangian  L  of the medium is given by

0L K U= −ρ , (2.4)

with the kinetic energy K and the potential energy 0Uρ  expressed as

2
0

1
2 iK u= ρ ! , (2.5)

2 2 2 2 2 3
0 2 ( )

2 3 3kk ik klm kim ikm ik il kl ik ll kk
A CU e e M e e e Be e eλρ = +µ + µ Γ + νΓ Γ + + + , (2.6a)

with  , , , 1,2,3i k l m = , and 0ρ  the density of the body in the initial state.  Here λ , µ  are Lame second-order
elastic constants, , ,A B C  third-order Landau constants, and ,M ν  nanostructure constants (characterize the
rotation and the gradient of rotation of internal degree of freedom), which can be positive or negative.
Determination of elastic constants can be performed directly, from their definition as second and third order
derivatives of the total energy per unit cell or nanovolume with respect to strain.  The calculations are based
on the Berruti and Delsanto approach (Berruti, Delsanto et al .[20]). The pseudopotential energy consists in
writing the total crystal energy as a sum of several contributions (Delsanto, Provenzano and Uberal [21])

0 es fe be rE U E E E E=ρ = + + + , (2.6b)

where esE  represents the electrostatic Coulomb energy of positive point charges in the uniform negative
charge background (the Madelung energy), feE  is the free electron energy, which depends on the crystal
volume, beE  is the band structure energy and rE the ion-core (Born-Mayer) repulsive energy. From
calculations, it was conclude that rE  (expressed as ( )0.5 exp( )n

r
n

E R= α −β∑ , where α  is the repulsive

energy parameter and β  is the repulsive range parameter) is the predominant term for calculations of the
material constants (Jankowski and Tsakalakos [22]. The sum is extended to all the nearest neighbors, which
are located ar distances ( )nR .

We assume that nanostrain effects are weak and only squared terms in klmΓ  are included in (2.6). The
balance of momentum, the balance of moment of momentum and the conservation of energy are obtained
from extremum conditions of the functional (2.3). The equation of motion including the mechanical
radiation has the form

0 0
0

, ,

( )i i
k i k m i km

U Uu u
x u x u
  ∂ρ ∂ρ∂ ∂ρ + τ = −   ∂ ∂ ∂ ∂   

!! !!! , (2.7)

where τ  is the radiation time  0 1≤ τ ≤ .  The state of stresses of the medium is given by

0

,
kl

l k

U
u

∂ρσ =
∂

,  0
kl

klm

U∂ρσ =
∂Γ

  ,   , , 1,2,3k l m = , (2.8)

where klσ  is the microstress tensor and klmσ the nanostress tensor. The antisymmetric part of klmσ  is the
tensor of couple stresses. The energy transport equation is

div 0W S+ =! , 2
0 0

1
2 iW u U= ρ −ρ! , (2.9)

where  W is the internal energy density, and
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0 0 0
,

, , ,
j i i k i

i j i kj k i kj

U U US u u u
u u x u

 ∂ρ ∂ρ ∂ρ∂= − +  ∂ ∂ ∂ ∂  
! ! ! , (2.10)

are components of the energy flux density or Poynting vector. The momentum transport equation is given by

div 0G T+ =!  ,  ,m i i mG u u= −! , (2.11)

where mG  are components of the wave momentum vector, and

2 0 0 0
0 , , ,

, , ,

1
2mj mj i i m i lm i m

i j i lj k i lj

U U UT u U u u u
u u x u

 ∂ρ ∂ρ ∂ρ∂ = δ −ρ + + −    ∂ ∂ ∂ ∂    
! , (2.12)

are components of the momentum flux density tensor or the radiation stress tensor. Equations (2.9) and
(2.11) are important dynamic characteristics of waves. Summation is made over repeated subscripts and

njδ is the Kronecker delta symbol.
As an example, if consider the plane longitudinal elastic waves in the 1x  direction with vanishing body

loads, described by (2.7) with [ ( , ),0,0]u u x= τ . By substituting (2.1), (2.2), (2.6) into (2.7) we obtain the
motion equation in displacements

xx xxxx x xxu u u u u u+ τ − +β = α!! !!! (2.13)

where

1 1 1

0

, ,u x c tu x t
d d d

′
= = =
ε Λ Λ Λ (2.14)

are dimensionless variables. Here 7 6
0 [10 ,10 ]− −ε ∈  is a characteristic value of the elastic strains, 2

1
0

2c λ + µ=
ρ

the characteristic longitudinal wave velocity in the material, L
d

Λ =  the dimensionless wave scale, d  the

grain diameter, and L  the wavelength.  Parameters β  and α  characterize the dispersion and nonlinearity of
the medium and are given by

3
2 2

14
( 2 )

M
d

+ νβ = µ
λ + µ Λ

, 0
3 2( 3 )

2
A B C+ + +α = ε
λ + µ

. (2.15)

We anticipate that for (2.13) the dispersive effects are given by terms uτ!!!  and xxxxuβ , and
concentrating effects by x xxu uα . We shall examine the balance between these effects.

For 0α =  and 0τ =  any solution of (2.13) can be represented as a superposition of Fourier
components. Using the method of normal modes with harmonic independent components

0 expi( )u u t kx= ω − , with k  the wave-number, ω the angular frequency and 0α = in (2.13) we obtain the
dispersion relation which gives the frequency ω as a function of the wave-number k

2 2 4 0k kω − −β = . (2.16)

From it we deduce the phase velocity / kω
2 2 2/ 1k kω = +β . (2.17)

The dispersion of longitudinal waves can be either positive for 0β >  or negative for 0β< . This
depends on the nanostructure constant  i.e. 1ν > −  for the first case and 1ν < −  for the second. In negative-
dispersion media the phase velocity / kω  decreases with increasing wave number and in positive-dispersion
media the phase velocity increases with increasing the wave number. The presence of nonlinear term in
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(2.13) and the nonvanishing parameter τ  change the aspect of the waves.  In contrast to dispersion,
nonlinearity leads to the concentration of the wave energy. For 0τ =  and a strong dispersion

4 1 , 1kβ >> Λ <<  we are seeking for (2.13) waves of permanent shape and size by trying solutions such that

( , ) ( ) ,u x t u x ct= ψ ψ= − , (2.18)

with constant wave velocity c . Solutions of (2.13) are given by
1/ 22 23( 1) 1( , ) tanh ( )

4
c cu x t a x ct − −= + − α − β 

, (2.19)

where a  and 1c > are arbitrary constants that can be determined from the initial or/and boundary conditions
attached to (2.13). For a negative-dispersion media equation (2.19) is equivalent to the solution used by
Taylor to describe the structure of a weak shock wave in a real fluid. This solution is a kink because its
derivative with respect to the variable ψ  is the known Boussinesq soliton expresssed as a sech-squared
solution (Munteanu and Donescu [23]). The solution (2.19) is a localized entity, which may keep its entity in
the field of propagation. The concentration of wave energy is described by the nonlinear term of (2.13). The
balance or non-balance between the dispersion and the concentration effects depend on the mechanical
property of the medium.

3. STATEMENT OF THE FOCUSING

We assume the longitudinal wave propagation in nanostructured medium so that in the 3 0x =  plane
the displacements 1 2 0u u= =  and 3 0u ≠  within a limited domain. Also we assume that in the medium we
have 1,2 3| | | |u u<< . For simplicity, we investigate the wave propagation in the half-space 3 0x >  medium with
randomly distributed spherical grains. When the waves are propagating inside the half-space along the 3x -
axis, the dissipation and dispersion effects with the presence of grains modeled as spherules, do not give a
high order contribution to the equations for 1u  and 2u , so we will consider only the equation for the
longitudinal displacement 3u (Bagdoev and Sheroyan [12]).

 Let assume here that the general solution of (2.7) is a superposition of solitons

u U x x x n t k xi n
n

n= − +
=
∑

1
1 2 3

2
3( , , ) ( )sech ω γ , 1,2,3i = , (3.1)

where amplitudes nU  are functions of coordinates, ω the cyclic frequency and k  the wave number. For
studying the focusing we consider the first-order approximations as

1 1 2 3 1 2 3( , , )exp [ ( , , )]U U x x x kV x x x= (3.2)

It is convenient to work in cylindrical coordinates , ,r zθ  (suppose all functions are uniform with
respect to θ ). Substituting (3.1) for 1n =  with (3.2) into (2.7) and neglecting the high order differentiation
of U  and V , we obtain

2 2 1 3
, , , ,2 ( )z r rr rk V U V U U r U U−+ α −α + = −β , (3.3a)

2 1 4
, , , , ,2 2 ( )z r r rr rkUU V UU U V r V U−+ α + α + =β , (3.3b)

where ,α β  are given by

2 2 (1 )k
αα =

ω + τ
, 2 2 (1 )k

ββ =
ω + τ

. (3.4)
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For 0τ = , equations (3.3) have the same form with similar equations found by Bagdoev and
Shekoyan [12]. The solutions of (3.3) are sought in the form

2 ˆ0.5 ( )V r R z= ,  
2 2

2 0
2 2 2

0

expU rU
L L L

−=  , (3.5)

where ( )L z  is the dimensionless width of the wave, 0 (0)L L=  the dimensionless initial width of the wave,
1ˆ ( )R z−  the variable radius of curvature of the wave front, and 0U  the amplitude 30 ( )z x z= ≡ . Boundary

conditions are
1ˆ (0)R R−= , (0) 1L = . (3.6)

Substituting (3.5) into (3.3) we obtain
3

,zzL L = γ , (3.7a)

2
0

,
ˆ

2z
UL R L
kL

β= α + , (3.7b)

2 22
0

2 4 2 2
0 0 0

416
4

k L
k L U L
αγ = −

− α
, 2

02 0Uα + β = . (3.7c)

From (3.6) and (3.7a) we obtain
2
0

, (0)
2z
UL

R k
βα= − , (3.8)

1/ 22 2
, , (0) (1 )z zL L L− = − + γ −  . (3.9)

The focusing is observed only for negative values of ,zL . If  0γ<  and 0β <  the function L  does not
have an extremum. The function of wavelengh L  continuously decreases with z  until it vanishes at a
distance fz  called the focal point given by

1
, (0)f zz L− = −γ − . (3.10a)

If  0γ >  and 0β <  the function L  has a minimum. Therefore, the width of the wave is minimal at the
focal point given by

,
2
,

(0)
(0)

z
f

z

L
z

L
= −

γ +
. (3.10b)

The width of the wave is

2
2
, (0)f
z

L
L
γ=

γ +
. (3.11)

When R →∞ , we see from (3.8) that , 0zL <  if 0β > , so the self-focusing takes place.  In conclusion,
the solution 3u is obtained from (3.1)
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2
3 0

1/ 22 2
2 20

02 2 2
0

( , , ) exp ( )sech ( )

ˆexp exp [0.5 ]sech ( ),

u r z t U kV t k z

U r k r R t k z
L L L

ω γ

ω γ

= − + =

 −= − + 
 

(3.12)

where ( )L z  and ˆ( )R z verify (3.7a) and (3.7b).

4. SUMMARY

In this paper the effect of nanostructure in the ultrasonic wave propagation field is investigated using
the couple stress theory, which incorporates the local deformations and rotations of internal grains, and the
double couple radiation pattern, which introduce the radiation force which acts upon the body likewise a
friction force. The rate of work of this force is equals to the radiation of energy that leaves acoustically the
body per unit time.

In a natural way this theory gives rise the desired effects missing in the classical theory i.e.
concentration of energy by focusing and self-focusing waves phenomena. It is found that the focusing
depends directly on the sign of parameters describing dispersion and nonlinearity. In negative-dispersion
media waves are stable, while in positive-dispersion media they are unstable.
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