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A CLASS OF EXACT SOLUTIONS OF THE SYSTEM
OF ISENTROPIC TWO-DIMENSIONAL GAS DYNAMICS
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A class of exact solutions of the system of isentropic two-dimensional gas dynamics is presented
exhaustively. The elements of this class are characterized to be one-dimensional or multidimensional
simple waves solutions or regular interactions of simple waves solutions.

1. INTRODUCTION

We consider in this paper the homogeneous quasilinear system
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together with its concrete two-dimensional gasdynamic version
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corresponding to an isentropic description [in usual notations: c is the sound velocity, yx vv ,  are fluid
velocities].

Teminology 1.1 [M.Burnat]. For the system (1.1) we say that at a point *u  of the hodograph space,  a real
vector κ  is a hodograph dual of a real exceptional vector β  defined at the point if this vector satisfies at

*u  the duality condition:

1 0
( ) 0, 1

n m

ijk k j
j k

a u i n∗

= =
β κ = ≤ ≤∑∑  (1.3)

We also say that a dual direction κ  is a hodograph characteristic direction. In certain cases, for defining a
dual vector κ  we could ignore, in a first step, the duality relation which is implicit in the terminology above.
Such a case corresponds to 1n m= + (see (1.2)]. It is easy to be seen, cf.(1.3), that a dual direction κ  at a
point *u  of the hodograph space satisfies in this case the condition:
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1
det ( ) 0     ;     , 1,...,

n

ijk j
j

a u i k n∗

=

 
κ = = 

 
∑  (1.4)

which is formally independent of (1.3). In case of the system (1.2) the restriction (1.4) takes the form

( )
2

2 2 2 2
1 1 2 3

2 0
1

c
  κ κ − κ + κ =  γ −   

 (1.5)

We notice that in case of the system (1.2) each dual pair associates at the mentioned point *u to a vector κ  a
single dual vector β .

Definition 1.2 [M. Burnat, Z. Peradzynski].  A smooth curve in the hodograph space is said to be a
hodograph characteristic if it is tangent at each point of it to a characteristic direction κ .
•  A nonconstant continuous solution of the system (1.1) whose hodograph is a genuinely nonlinear ([4],

[5]) arc of characteristic curve is said to be a simple waves solution.
•  A nonconstant continuous solution of the system (1.1) with the hodograph on a hypersurface with a

system of genuinely nonlinear characteristic coordinates is said to be a regular interaction of simple
waves solutions. Given a hypersurface in a hodograph space of (1.2) we could eventualy construct such
system of characteristics coordinates by intersecting this hypersurface with a cone (1.5) (see exemples in
[5]).

2. A CLASS OF EXACT SOLUTIONS OF THE ISENTROPIC GAS DYNAMICS

In order to obtain (local) solutions of the system (1.2) of the isentropic two-dimensional gas dynamics
we put around the point ( )000 ,, tyx  of the physical space

0 0

0 0

,x x y y
t t t t
− −ξ = η =
− −  (2.1)

and present the mentioned system in the form
2 2

2

2

2

( ) ( ) ( 1) 0

( 1)( ) ( 1)( ) 0

( 1)( ) ( 1)( ) 0.

yx
x y

x x
x y

y y
x y

vvc cv v c

v vc v v

v vc v v

 ∂ ∂∂ ∂−ξ + − η + γ− + =  ∂ξ ∂η ∂ξ ∂η 
 ∂ ∂∂ + γ − − ξ + γ − −η = ∂ξ ∂ξ ∂η
 ∂ ∂∂ + γ − − ξ + γ − −η =

∂η ∂ξ ∂η

 (2.2)

We consider for the system (2.2) local solutions for which

ˆˆ ˆ,x yv v=Φξ +Ψη+Ξ =Φξ +Ψη+ Ξ ,    real constant ˆˆ ˆ, , , , ,Φ Φ Ψ Ψ Ξ Ξ  (2.3)

3. AN EXHAUSTIVE LIST OF SOLUTIONS IN THE CLASS CONSIDERED ABOVE

In paragraph 5 we get the folowing exhaustive list of the mentioned solutions to (2.2):

[cf. (5.12)] 2ˆ, ,x yv v c K≡ Ξ ≡ Ξ ≡      ;         arbitrary K  (3.1)
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[cf. (5.13)] 0,, 2 ≡≡Ξ≡ cvv yx η  (3.2)

[cf. (5.14)]
2

22 1ˆ ˆ, ,
1 1x yv v c  γ −≡ Ξ ≡ η+ Ξ ≡ η−Ξ γ + γ + 

 (3.3)

[cf. (5.15)] 2ˆ, , 0x yv v c≡ ξ ≡ Ξ ≡  (3.4)

[cf. (5.16)] 2, , 0x yv v c≡ ξ ≡ η ≡  (3.5)

[cf. (5.17)]
2

23 3 1ˆ ˆ, , 2
1 4 1x yv v c  − γ − γ γ −≡ ξ ≡ η+ Ξ ≡ η−Ξ γ + γ + 

 (3.6)

[cf. (5.18)]
2

22 1ˆ, ,
1 1x yv v c  γ −≡ ξ + Ξ ≡ Ξ ≡ ξ −Ξ γ + γ + 

 (3.7)

[cf. (5.19)]
2

23 3 1, , 2
1 4 1x yv v c  − γ − γ γ −≡ ξ + Ξ ≡ η ≡ ξ −Ξ γ + γ + 

 (3.8)

[cf. (5.20)] 2 2
2

1 1 ˆ, ,

1 1 1 ˆ
2

x yv v

c

= ξ +Ξ = η+ Ξ
γ γ

    γ − γ −= ξ −Ξ + η−Ξ    γ γ     

 (3.9)

[cf. (5.30)]

2

ˆ
(1 ) 1 , ,

1
(1 ) (1 ) , 0 1

0,          

x

y

v K K

v K
c

Ξ Ξ=Φξ ± η Φ −Φ + −Φ = =
−Φ Φ

= ±ξ Φ −Φ + η −Φ Φ <Φ <
≡

!

! (3.10)

[cf. (5.31)]

2

2

2
1

2 2 2ˆ 0
1 1 1

1 1 2 2ˆ
2 1 1 1

x

y

v

v

c

 
= Φ ξ Φ ± η −Φ +Ξ  γ + 

 
= ± −Φ ξ Φ ± η −Φ +Ξ <Φ <  γ+ γ+ γ+ 

    γ + γ −= ξ Φ ± η −Φ − Ξ Φ ±Ξ −Φ       γ + γ + γ +     

(3.11)
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[cf. (5.32)]

2

2

ˆ3(1 ) 1 , ,
1 1 3

1

3 4 3 3(1 ) , 1,
1 1 1 1

(3 )( 1) 31 ,
2( 1) 1

x

y

v K K

v K

c K

 − γ Ξ Ξ=Φξ ± η −Φ Φ − + −Φ = = γ + −Φ − γ  Φ −
γ +

   − γ − γ − γ= ±ξ −Φ Φ − + η −Φ Φ − <Φ <   γ + γ + γ + γ +   

 − γ γ − − γ= ξ −Φ η Φ − −  γ + γ + 

!

!

!

(3.12)

 [cf. (5.36)] 2ˆ ˆ, , 0x yv v c≡ Ξ ≡Φξ + η+Ξ ≡  (3.13)

[cf. (5.37)] 2ˆ ˆ, , 0x yv v c≡ ξ ≡Φξ +Ξ ≡  (3.14)

[cf. (5.38)] 2(1 ), (1 ) , 0.x yv v cΦ −Φ Φ≡Φξ +Ψη+Ξ ≡ ξ + η −Φ − Ξ ≡
Ψ Ψ

 (3.15)

4. NATURE OF SOLUTIONS ON THE EXHAUSTIVE LIST

Incidentally, and remarkably, all the solutions on the exhaustive list could be characterized according
to the facts of paragraph 1.
•  Solutions (3.3), (3.7) and (3.11) are one-dimensional simple waves solutions.
•  Solution (3.9) is a regular interaction of multidimensional simple waves solutions. This solution is

considered in every detail in [5].  Its conical hodograph is endowed with three characteristic genuinely
nonlinear coordinate fields [two conical helicoidal fields and a family of horizontal circles].

•  Solutions (3.6), (3.8) and (3.12) are regular interactions of one-dimensional simple waves solutions.
•  Solution (3.12) is taken into account in every detail in [5] too. A linearly degenerate coordinate field is

present in this case requiring a criterion of admiossibility guaranteeing the (genuinely nonlinear)
nondegeneracy.

•  Solutions (3.2), (3.4), (3.5), (3.10), (3.13), (3.14), (3.15) are constitutively inadmissible because of the
requirement .02 ≡c

•  In [6] some nondegenerate solutions are still presented which are not regular interactions.

5. DETAILS CONCERNING THE CLASS MENTIONED ABOVE

From (2.2) 3,2  we obtain cf. (2.3)

Ψ+Φ=
∂
∂

+
∂
∂ ˆ

ηξ
yx vv

 (5.1)
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∂
∂−

]ˆ)1ˆ(ˆ[ˆ)1(])1[(ˆ)1(

]ˆ)1ˆ(ˆ[)1(])1[()1(
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The requirement 
2 2c c∂ ∂=

∂ξ∂η ∂η∂ξ
 takes, cf. (5.2), the form

.0)1ˆ)(ˆ( =−Ψ+ΦΦ−Ψ  (5.3)

Now, the expression of 2c  could be calculated in two ways. On one hand, an expression of  2c  results from
(5.2) and (5.3). On the other hand, an expression of 2c  results from (2.2)1 , (5.1) and (5.2). Since the two
expressions obtained for 2c  are identical we get, by identifying the coefficients of ηξηξηξ ,,,, 22

respectively:

0)1ˆ(ˆ]2ˆ)1()1][(ˆ)1([
2
1 2 =−Ψ+ΦΦ+−Ψ−+Φ+ΦΨ+−ΦΦ γγ  (5.4)

0)1ˆ)(ˆ()1()1ˆ(ˆˆ2)ˆ(ˆ)1ˆ)(1)(ˆ()1(2 =−Ψ+ΦΨ+ΦΨ−+−ΨΨΦ+Φ+ΨΦΨ+−Ψ−ΦΦ+Ψ+−ΦΦΨ γ  (5.5)

0)1ˆ(]2ˆ)1()1][(ˆ)1ˆ(ˆ[
2
1 2 =−Ψ+ΦΨ+−Ψ++Φ−ΦΨ+−ΨΨ γγ  (5.6)

ΞΨΦ+−ΦΞΦ+ΦΞ+ΦΨΞ+−ΦΞΨ+−ΦΦΞ ˆˆˆ2)1(ˆˆˆˆ)1(ˆ)1(2 2  (5.7)

.0)ˆˆˆ)(ˆ)(1(2)1ˆ(ˆˆˆ)1ˆ(ˆˆ)1ˆ(ˆˆ2 2 =ΞΨ+ΞΦΨ+Φ−+ΦΨΞ+−ΨΨΞ+ΨΞ+ΞΦΨ+−ΨΞΦ+−ΨΞΨ γ  (5.8)

Therefore we have a nonlinear algebraic system (5.3)-(5.8) with six equations for six coefficients
ΞΞΨΨΦΦ ˆ,,ˆ,,ˆ,  in (2.3). We begin by presenting an exhaustive list of solutions for the system (5.3)-(5.8).

The requirements (5.3) suggests the importance of two cases.
Case 1. This case takes into account  the circumstance

0ˆ =Φ−Ψ  (5.9)

in (5.3). From (5.4)-(5.6) and (5.9) we obtain the following system for ΨΨΦ ˆ,, :









=Ψ+Φ−+−Ψ−ΨΨ+Ψ+Φ−+Φ+−ΨΨ
=−Ψ+ΦΨ+Φ−+−ΨΨ+−Ψ−Φ+−ΦΦ+ΨΨ

=Ψ+Φ−+−Φ−ΦΦ+Ψ+Φ−+Ψ+−ΦΨ

.0)]ˆ)(1()1ˆ(2)[1ˆ(ˆ2)}ˆ)(1(])1ˆ(2[2{
0)]}1ˆ)(ˆ)(1()1ˆ(ˆ2)1ˆ)(1(2)1(2[2{

0)]ˆ)(1()1(2)[1()}ˆ)(1(]ˆ)1(2[2{

2

2

2

γγ
γ

γγ
 (5.10)

Next, we have to distinguish, cf. (5.10) 2 , between the possibilities 0=Ψ  or 0Ψ ≠ .
We begin our analysis with the subcase 0=Ψ . In this subcase, from (5.10 3,1)  we obtain for ΨΦ ˆ, the system





=−Ψ++Φ−−ΨΨ
=−Ψ−+Φ+−ΦΦ

.0]2ˆ)1()1)[(1ˆ(ˆ
0]2ˆ)1()1)[(1(

γγ
γγ

 (5.11)

Therefore we get the following exhaustive list of solutions of (5.10) corresponding to the mentioned subcase
[we complete this list with the information concerning ;ˆ,,ˆ ΞΞΦ  cf. (5.7), (5.8), (5.9)]

,0=Φ            ,0=Ψ        ,0ˆ =Ψ               ,ˆ Ψ=Φ            arbitrary  ΞΞ ˆ,  (5.12)

,0=Φ            ,0=Ψ        ,1ˆ =Ψ                ,ˆ Ψ=Φ           arbitrary  0ˆ; =ΞΞ  (5.13)
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,0=Φ            ,0=Ψ        ,
1

2ˆ
+

=Ψ
γ

        ,ˆ Ψ=Φ           arbitrary  ΞΞ ˆ,  (5.14)

,1=Φ             ,0=Ψ        ,0ˆ =Ψ               ,ˆ Ψ=Φ           ,0=Ξ  arbitrary Ξ̂  (5.15)

,1=Φ             ,0=Ψ        ,1ˆ =Ψ                ,ˆ Ψ=Φ           0ˆ,0 =Ξ=Ξ  (5.16)

,1=Φ             ,0=Ψ        3ˆ ,
1
− γΨ =
γ+

        ,ˆ Ψ=Φ           ,0=Ξ   arbitrary Ξ̂  (5.17)

,
1

2
+

=Φ
γ

    ,0=Ψ        ,0ˆ =Ψ               ,ˆ Ψ=Φ             arbitrary  ΞΞ ˆ,  (5.18)

,
1

3
+
−=Φ
γ
γ     ,0=Ψ        ,1ˆ =Ψ               ,ˆ Ψ=Φ             arbitrary ;Ξ  0ˆ =Ξ (5.19)

,1
γ

=Φ           ,0=Ψ        ,1ˆ
γ

=Ψ             ,ˆ Ψ=Φ             arbitrary  ΞΞ ˆ, (5.20)

We extend our analysis by considering the subcase .0≠Ψ  In this subcase we use (5.10) 2  in order to
eliminate 2Ψ  from (5.10) 3,1 . We notice that the equations (5.10) 3,1  are not distinct in this subcase. In fact,
we denote

2ˆ,1ˆ,1 −Ψ+Φ=+=−Ψ=−Φ= YXZYX  (5.21)

and obtain the following common form of equations (5.10) 3,1

0)1(4)14(2)15)(1()1( 2232 =−+−−+−+++ γγγγγγγ ZZZ  (5.22)

with the roots

.
1

)1(2,1,
1

2
321 +

−−=−=
+

−=
γ
γ

γ
γ ZZZ  (5.23)

Finally we put (5.23) in the form

1
2ˆ
+

=Ψ+Φ
γ

     ;      [cf. (5.23)1 ]  (5.24)

1ˆ =Ψ+Φ      ;     [cf. (5.23) 2 ]  (5.25)

1
4ˆ
+

=Ψ+Φ
γ

     ;     [cf. (5.23) 3 ].  (5.26)

For (5.25) we obtain cf. (5.10) 2

)1(2 Φ−Φ=Ψ

and therefore
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10 ≤Φ≤    and   .)1( Φ−Φ±=Ψ  (5.27)

Similarly, we get, cf. (5.10) 2 ,







Φ−

+
Φ=Ψ

1
22

γ

hence

1
20
+

≤Φ≤
γ

  and   





Φ−

+
Φ±=Ψ

1
2
γ

 (5.28)

for (5.24), and

)1(
1

32 Φ−





+
−−Φ=Ψ
γ
γ

or, equivalently,

1
1

3 ≤Φ≤
+
−
γ
γ    and    )1(

1
3 Φ−





+
−−Φ±=Ψ
γ
γ  (5.29)

for (5.26).
Consequently, we complete the list (5.12)-(5.20) which corresponds, for 0=Ψ , to the case (5.9) with

the following circumstances [which take into account (5.7), (5.8) and (5.24)-(5.26)]:

,10 <Φ<  ,)1( Φ−Φ±=Ψ   ,ˆ Ψ=Φ   ,1ˆ Φ−=Ψ    arbitrary ;Ξ  
Φ−
ΦΞ=Ξ

1
ˆ m  (5.30)

1
20
+

<Φ<
γ

, ,
1

2






Φ−

+
Φ±=Ψ
γ

  ,ˆ Ψ=Φ   ,
1

2ˆ Φ−
+

=Ψ
γ

   arbitrary ΞΞ ˆ,  (5.31)

,1
1

3 <Φ<
+
−
γ
γ  )1(

1
3 Φ−





+
−−Φ±=Ψ
γ
γ ,  ,ˆ Ψ=Φ   ,

1
2ˆ Φ−
+

=Ψ
γ

   arbitrary ;Ξ

Φ−
+
−−Φ

Ξ=Ξ
1

1
3

ˆ γ
γ

m

 (5.32)

Case 2. This case considers in (5.3) the circumstance

.01ˆ =−Ψ+Φ  (5.33)

We use (5.33) in order to give to (5.4)-(5.6) the form









=−ΦΦ+ΦΨ−−Φ
=−ΦΦ+ΦΨΦ+Ψ

=−ΦΦ+ΦΨ−+−Φ

0)]1(ˆ)][1(2[
0)]1(ˆ)[ˆ(

0)]1(ˆ)][1()1(2[

γ

γ
 (5.34)

of a system for .ˆ,, ΦΨΦ
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A single relation results from (5.34) for :ˆ,, ΦΨΦ

.0)1(ˆ =−ΦΦ+ΦΨ  (5.35)

Now, the circumstance (5.33) could be completely described by the following list of possibilities [which also
considers the contribution of equations (5.7), (5.8) for ΞΞ ˆ, ]:

,0=Φ       ,0=Ψ      arbitrary ,Φ̂      ,1ˆ =Ψ       arbitrary ;Ξ  ΞΦ−=Ξ ˆˆ  (5.36)

,1=Φ       ,0=Ψ       arbitrary ,Φ̂      ,0ˆ =Ψ       ,0=Ξ  arbitrary Ξ̂  (5.37)

arbitrary ,Φ  arbitrary ,0≠Ψ    
Ψ
−ΦΦ=Φ )1(ˆ ,    ,1ˆ Φ−=Ψ    arbitrary ,Ξ  Ξ

Ψ
Φ−=Ξ̂  (5.38)

We notice that (5.12)-(5.20), (5.30)-(5.32), (5.36)-(5.38) represents an exhaustive list of possibilities.
An exhaustive list of local solutions of the form (2.3) for the system (2.2) of the isentropic gas dynamics
results from the above mentioned list; cf. paragraph 3.
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