A CLASS OF EXACT SOLUTIONS OF THE SYSTEM OF ISENTROPIC TWO-DIMENSIONAL GAS DYNAMICS

Liviu-Florin DINU * , Marina-Ileana DINU **
* Institute of Mathematics of the Romanian Academy, P.O.Box 1-764, Bucharest, RO-014700
** Polytechnical University of Bucharest, Faculty of Appl. Sci., Dept. of Mathematics III

A class of exact solutions of the system of isentropic two-dimensional gas dynamics is presented exhaustively. The elements of this class are characterized to be one-dimensional or multidimensional simple waves solutions or regular interactions of simple waves solutions.

1. INTRODUCTION

We consider in this paper the homogeneous quasilinear system

$$
\begin{equation*}
\sum_{j=1}^{n} \sum_{k=0}^{m} a_{i j k}(u) \frac{\partial u_{j}}{\partial x_{k}}=0, \quad 1 \leq i \leq n \tag{1.1}
\end{equation*}
$$

together with its concrete two-dimensional gasdynamic version

$$
\left\{\begin{array}{c}
\frac{\partial c}{\partial t}+v_{x} \frac{\partial c}{\partial x}+v_{y} \frac{\partial c}{\partial y}+\frac{\gamma-1}{2} c\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}\right)=0 \\
\frac{\partial v_{x}}{\partial t}+v_{x} \frac{\partial v_{x}}{\partial x}+v_{y} \frac{\partial v_{x}}{\partial y}+\frac{2}{\gamma-1} c \frac{\partial c}{\partial x}=0 \tag{1.2}\\
\frac{\partial v_{y}}{\partial t}+v_{x} \frac{\partial v_{y}}{\partial x}+v_{y} \frac{\partial v_{y}}{\partial y}+\frac{2}{\gamma-1} c \frac{\partial c}{\partial y}=0
\end{array}\right.
$$

corresponding to an isentropic description [in usual notations: c is the sound velocity, v_{x}, v_{y} are fluid velocities].

Teminology 1.1 [M.Burnat]. For the system (1.1) we say that at a point u^{*} of the hodograph space, a real vector $\bar{\kappa}$ is a hodograph dual of a real exceptional vector $\bar{\beta}$ defined at the point if this vector satisfies at $u *$ the duality condition:

$$
\begin{equation*}
\sum_{j=1}^{n} \sum_{k=0}^{m} a_{i j k}\left(u^{*}\right) \beta_{k} \kappa_{j}=0,1 \leq i \leq n \tag{1.3}
\end{equation*}
$$

We also say that a dual direction $\bar{\kappa}$ is a hodograph characteristic direction. In certain cases, for defining a dual vector $\bar{\kappa}$ we could ignore, in a first step, the duality relation which is implicit in the terminology above. Such a case corresponds to $n=m+1$ (see (1.2)]. It is easy to be seen, cf.(1.3), that a dual direction $\bar{\kappa}$ at a point $u *$ of the hodograph space satisfies in this case the condition:

$$
\begin{equation*}
\operatorname{det}\left[\sum_{j=1}^{n} a_{i j k}\left(u^{*}\right) \kappa_{j}\right]=0 \quad ; \quad i, k=1, \ldots, n \tag{1.4}
\end{equation*}
$$

which is formally independent of (1.3). In case of the system (1.2) the restriction (1.4) takes the form

$$
\begin{equation*}
c^{2} \kappa_{1}\left[\left(\frac{2}{\gamma-1}\right)^{2} \kappa_{1}^{2}-\left(\kappa_{2}^{2}+\kappa_{3}^{2}\right)\right]=0 \tag{1.5}
\end{equation*}
$$

We notice that in case of the system (1.2) each dual pair associates at the mentioned point u * to a vector $\bar{\kappa}$ a single dual vector $\bar{\beta}$.

Definition 1.2 [M. Burnat, Z. Peradzynski]. A smooth curve in the hodograph space is said to be a hodograph characteristic if it is tangent at each point of it to a characteristic direction $\bar{\kappa}$.

- A nonconstant continuous solution of the system (1.1) whose hodograph is a genuinely nonlinear ([4], [5]) arc of characteristic curve is said to be a simple waves solution.
- A nonconstant continuous solution of the system (1.1) with the hodograph on a hypersurface with a system of genuinely nonlinear characteristic coordinates is said to be a regular interaction of simple waves solutions. Given a hypersurface in a hodograph space of (1.2) we could eventualy construct such system of characteristics coordinates by intersecting this hypersurface with a cone (1.5) (see exemples in [5]).

2. A CLASS OF EXACT SOLUTIONS OF THE ISENTROPIC GAS DYNAMICS

In order to obtain (local) solutions of the system (1.2) of the isentropic two-dimensional gas dynamics we put around the point $\left(x_{0}, y_{0}, t_{0}\right)$ of the physical space

$$
\begin{equation*}
\xi=\frac{x-x_{0}}{t-t_{0}}, \eta=\frac{y-y_{0}}{t-t_{0}} \tag{2.1}
\end{equation*}
$$

and present the mentioned system in the form

$$
\left\{\begin{array}{c}
\left(v_{x}-\xi\right) \frac{\partial c^{2}}{\partial \xi}+\left(v_{y}-\eta\right) \frac{\partial c^{2}}{\partial \eta}+(\gamma-1) c^{2}\left(\frac{\partial v_{x}}{\partial \xi}+\frac{\partial v_{y}}{\partial \eta}\right)=0 \tag{2.2}\\
\frac{\partial c^{2}}{\partial \xi}+(\gamma-1)\left(v_{x}-\xi\right) \frac{\partial v_{x}}{\partial \xi}+(\gamma-1)\left(v_{y}-\eta\right) \frac{\partial v_{x}}{\partial \eta}=0 \\
\frac{\partial c^{2}}{\partial \eta}+(\gamma-1)\left(v_{x}-\xi\right) \frac{\partial v_{y}}{\partial \xi}+(\gamma-1)\left(v_{y}-\eta\right) \frac{\partial v_{y}}{\partial \eta}=0 .
\end{array}\right.
$$

We consider for the system (2.2) local solutions for which

$$
\begin{equation*}
v_{x}=\Phi \xi+\Psi \eta+\Xi, v_{y}=\hat{\Phi} \xi+\hat{\Psi} \eta+\hat{\Xi}, \quad \text { real constant } \Phi, \hat{\Phi}, \Psi, \hat{\Psi}, \Xi, \hat{\Xi} \tag{2.3}
\end{equation*}
$$

3. AN EXHAUSTIVE LIST OF SOLUTIONS IN THE CLASS CONSIDERED ABOVE

In paragraph 5 we get the folowing exhaustive list of the mentioned solutions to (2.2):

$$
\begin{equation*}
v_{x} \equiv \Xi, v_{y} \equiv \hat{\Xi}, c^{2} \equiv K \quad ; \quad \text { arbitrary } K \tag{5.12}
\end{equation*}
$$

[cf. (5.13)]
[cf. (5.14)]
[cf. (5.15)]
[cf. (5.16)]
[cf. (5.17)]
[cf. (5.18)]
[cf. (5.19)]
[cf. (5.20)]
[cf. (5.30)]
[cf. (5.31)]

$$
\begin{gathered}
v_{y}= \pm \xi \sqrt{\Phi(1-\Phi)}+\eta(1-\Phi) \mp K \sqrt{\Phi,} \\
c^{2} \equiv 0, \\
v_{x}=\sqrt{\Phi}\left(\xi \sqrt{\Phi} \pm \eta \sqrt{\frac{2}{\gamma+1}-\Phi}\right)+\Xi \\
v_{y}= \pm \sqrt{\frac{2}{\gamma+1}-\Phi}\left(\xi \sqrt{\Phi} \pm \eta \sqrt{\frac{2}{\gamma+1}-\Phi}\right)+\hat{\Xi} \\
c^{2}=\frac{\gamma+1}{2}\left[\frac{\gamma-1}{\gamma+1}\left(\xi \sqrt{\Phi} \pm \eta \sqrt{\frac{2}{\gamma+1}-\Phi}\right)-\left(\Xi \sqrt{\Phi} \pm \hat{\Xi} \sqrt{\frac{2}{\gamma+1}-\Phi}\right)\right]^{2}
\end{gathered}
$$

$$
v_{x}=\Phi \xi \pm \eta \sqrt{(1-\Phi)\left(\Phi-\frac{3-\gamma}{\gamma+1}\right)}+K \sqrt{1-\Phi}, K=\frac{\Xi}{\sqrt{1-\Phi}}=\mp \frac{\hat{\Xi}}{\sqrt{\Phi-\frac{3-\gamma}{\gamma+1}}}
$$

[cf. (5.32)]

$$
\begin{align*}
&\left.v_{y}= \pm \xi \sqrt{(1-\Phi)\left(\Phi-\frac{3-\gamma}{\gamma+1}\right.}\right)+\eta\left(\frac{4}{\gamma+1}-\Phi\right) \mp K \sqrt{\Phi-\frac{3-\gamma}{\gamma+1}}, \quad \frac{3-\gamma}{\gamma+1}<\Phi<1, \tag{3.12}\\
& c^{2}=\frac{(3-\gamma)(\gamma-1)}{2(\gamma+1)}\left(\xi \sqrt{1-\Phi} \mp \eta \sqrt{\Phi-\frac{3-\gamma}{\gamma+1}}-K\right)^{2},
\end{align*}
$$

[cf. (5.36)]

$$
\begin{equation*}
v_{x} \equiv \Xi, v_{y} \equiv \hat{\Phi} \xi+\eta+\hat{\Xi}, c^{2} \equiv 0 \tag{3.13}
\end{equation*}
$$

[cf. (5.37)]

$$
\begin{equation*}
v_{x} \equiv \xi, v_{y} \equiv \hat{\Phi} \xi+\hat{\Xi}, c^{2} \equiv 0 \tag{3.14}
\end{equation*}
$$

[cf. (5.38)]

$$
\begin{equation*}
v_{x} \equiv \Phi \xi+\Psi \eta+\Xi, v_{y} \equiv \frac{\Phi(1-\Phi)}{\Psi} \xi+\eta(1-\Phi)-\frac{\Phi}{\Psi} \Xi, c^{2} \equiv 0 . \tag{3.15}
\end{equation*}
$$

4. NATURE OF SOLUTIONS ON THE EXHAUSTIVE LIST

Incidentally, and remarkably, all the solutions on the exhaustive list could be characterized according to the facts of paragraph 1 .

- Solutions (3.3), (3.7) and (3.11) are one-dimensional simple waves solutions.
- Solution (3.9) is a regular interaction of multidimensional simple waves solutions. This solution is considered in every detail in [5]. Its conical hodograph is endowed with three characteristic genuinely nonlinear coordinate fields [two conical helicoidal fields and a family of horizontal circles].
- Solutions (3.6), (3.8) and (3.12) are regular interactions of one-dimensional simple waves solutions.
- Solution (3.12) is taken into account in every detail in [5] too. A linearly degenerate coordinate field is present in this case requiring a criterion of admiossibility guaranteeing the (genuinely nonlinear) nondegeneracy.
- Solutions (3.2), (3.4), (3.5), (3.10), (3.13), (3.14), (3.15) are constitutively inadmissible because of the requirement $c^{2} \equiv 0$.
- In [6] some nondegenerate solutions are still presented which are not regular interactions.

5. DETAILS CONCERNING THE CLASS MENTIONED ABOVE

From (2.2) 2,3 we obtain cf. (2.3)

$$
\begin{gather*}
\frac{\partial v_{x}}{\partial \xi}+\frac{\partial v_{y}}{\partial \eta}=\Phi+\hat{\Psi} \tag{5.1}\\
\left\{\begin{array}{l}
-\frac{\partial c^{2}}{\partial \xi}=(\gamma-1) \Phi[(\Phi-1) \xi+\Psi \eta+\Xi]+(\gamma-1) \Psi[\hat{\Phi} \xi+(\hat{\Psi}-1) \eta+\hat{\Xi}] \\
-\frac{\partial c^{2}}{\partial \eta}=(\gamma-1) \hat{\Phi}[(\Phi-1) \xi+\Psi \eta+\Xi]+(\gamma-1) \hat{\Psi}[\hat{\Phi} \xi+(\hat{\Psi}-1) \eta+\hat{\Xi}]
\end{array}\right. \tag{5.2}
\end{gather*}
$$

The requirement $\frac{\partial c^{2}}{\partial \xi \partial \eta}=\frac{\partial c^{2}}{\partial \eta \partial \xi}$ takes, cf. (5.2), the form

$$
\begin{equation*}
(\Psi-\hat{\Phi})(\Phi+\hat{\Psi}-1)=0 . \tag{5.3}
\end{equation*}
$$

Now, the expression of c^{2} could be calculated in two ways. On one hand, an expression of c^{2} results from (5.2) and (5.3). On the other hand, an expression of c^{2} results from (2.2) $)_{1}$, (5.1) and (5.2). Since the two expressions obtained for c^{2} are identical we get, by identifying the coefficients of $\xi^{2}, \xi \eta, \eta^{2}, \xi, \eta$ respectively:

$$
\begin{equation*}
\frac{1}{2}[\Phi(\Phi-1)+\Psi \hat{\Phi}][(\gamma+1) \Phi+(\gamma-1) \hat{\Psi}-2]+\hat{\Phi}^{2}(\Phi+\hat{\Psi}-1)=0 \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
2 \Phi \Psi(\Phi-1)+(\Psi+\hat{\Phi})(\Phi-1)(\hat{\Psi}-1)+\Psi \hat{\Phi}(\Psi+\hat{\Phi})+2 \hat{\Phi} \hat{\Psi}(\hat{\Psi}-1)+(\gamma-1) \Psi(\Phi+\hat{\Psi})(\Phi+\hat{\Psi}-1)=0 \tag{5.5}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1}{2}[\hat{\Psi}(\hat{\Psi}-1)+\Psi \hat{\Phi}][(\gamma-1) \Phi+(\gamma+1) \hat{\Psi}-2]+\Psi^{2}(\Phi+\hat{\Psi}-1)=0 \tag{5.6}\\
& 2 \Phi \Xi(\Phi-1)+\Psi \hat{\Xi}(\Phi-1)+\Psi \Xi \hat{\Phi}+\Xi \hat{\Phi}^{2}+\hat{\Phi} \hat{\Xi}(\Phi-1)+2 \hat{\Phi} \hat{\Psi} \hat{\Xi} \tag{5.7}
\end{align*}
$$

$$
\begin{equation*}
2 \hat{\Psi} \hat{\Xi}(\hat{\Psi}-1)+\hat{\Phi} \hat{\Xi}(\hat{\Psi}-1)+\Psi \hat{\Phi} \hat{\Xi}+\hat{\Xi} \Psi^{2}+\Psi \Xi(\hat{\Psi}-1)+2 \Phi \Psi \Xi+(\gamma-1)(\Phi+\hat{\Psi})(\hat{\Phi} \Xi+\hat{\Psi} \hat{\Xi})=0 . \tag{5.8}
\end{equation*}
$$

Therefore we have a nonlinear algebraic system (5.3)-(5.8) with six equations for six coefficients $\Phi, \hat{\Phi}, \Psi, \hat{\Psi}, \Xi, \hat{\Xi}$ in (2.3). We begin by presenting an exhaustive list of solutions for the system (5.3)-(5.8).

The requirements (5.3) suggests the importance of two cases.
Case 1. This case takes into account the circumstance

$$
\begin{equation*}
\Psi-\hat{\Phi}=0 \tag{5.9}
\end{equation*}
$$

in (5.3). From (5.4)-(5.6) and (5.9) we obtain the following system for $\Phi, \Psi, \hat{\Psi}$:

$$
\left\{\begin{array}{c}
\Psi^{2}\{2[2(\Phi-1)+\hat{\Psi}]+(\gamma-1)(\Phi+\hat{\Psi})\}+\Phi(\Phi-1)[2(\Phi-1)+(\gamma-1)(\Phi+\hat{\Psi})]=0 \tag{5.10}\\
\Psi\left\{2 \Psi^{2}+[2 \Phi(\Phi-1)+2(\Phi-1)(\hat{\Psi}-1)+2 \hat{\Psi}(\hat{\Psi}-1)+(\gamma-1)(\Phi+\hat{\Psi})(\Phi+\hat{\Psi}-1)]\right\}=0 \\
\Psi^{2}\{2[2(\hat{\Psi}-1)+\Phi]+(\gamma-1)(\Phi+\hat{\Psi})\}+2 \hat{\Psi}(\hat{\Psi}-1)[2(\hat{\Psi}-1)+(\gamma-1)(\Phi+\hat{\Psi})]=0
\end{array}\right.
$$

Next, we have to distinguish, cf. (5.10) ${ }_{2}$, between the possibilities $\Psi=0$ or $\Psi \neq 0$.
We begin our analysis with the subcase $\Psi=0$. In this subcase, from (5.10) $)_{1,3}$ we obtain for $\Phi, \hat{\Psi}$ the system

$$
\left\{\begin{array}{l}
\Phi(\Phi-1)[(\gamma+1) \Phi+(\gamma-1) \hat{\Psi}-2]=0 \tag{5.11}\\
\hat{\Psi}(\hat{\Psi}-1)[(\gamma-1) \Phi+(\gamma+1) \hat{\Psi}-2]=0 .
\end{array}\right.
$$

Therefore we get the following exhaustive list of solutions of (5.10) corresponding to the mentioned subcase [we complete this list with the information concerning $\hat{\Phi}, \Xi, \hat{\Xi}$; cf. (5.7), (5.8), (5.9)]

$$
\begin{array}{llll}
\Phi=0, & \Psi=0, & \hat{\Psi}=0, & \hat{\Phi}=\Psi,
\end{array} \text { arbitrary } \Xi, \hat{\Xi} \quad 1 \text { arbitrary } \Xi ; \hat{\Xi}=0
$$

$$
\begin{array}{llll}
\Phi=0, & \Psi=0, & \hat{\Psi}=\frac{2}{\gamma+1}, & \hat{\Phi}=\Psi, \\
\Phi=1, & \Psi=0, & \hat{\Psi}=0, & \hat{\Phi}=\Psi, \\
\Phi=1, & \Psi=0, & \hat{\Psi}=1, & \hat{\Phi}=\Psi, \\
\Phi=1, & \Psi=0, & \hat{\Psi}=\frac{3-\gamma}{\gamma+1}, & \hat{\Phi}=\Psi, \quad \hat{\Xi}=0 \\
\Phi=\frac{2}{\gamma+1}, & \Psi=0, & \hat{\Psi}=0, & \hat{\Xi}=0, \text { arbitrary } \\
\Phi=\frac{3-\gamma}{\gamma+1}, & \Psi=0, & \hat{\Psi}=1, & \hat{\Phi}=\Psi, \\
\Phi=\frac{1}{\gamma}, & \Psi=0, & \hat{\Psi}=\frac{1}{\gamma}, & \hat{\Phi}=\Psi, \tag{5.20}
\end{array}
$$

We extend our analysis by considering the subcase $\Psi \neq 0$. In this subcase we use (5.10) ${ }_{2}$ in order to eliminate Ψ^{2} from (5.10) $)_{1,3}$. We notice that the equations (5.10) ${ }_{1,3}$ are not distinct in this subcase. In fact, we denote

$$
\begin{equation*}
X=\Phi-1, \quad Y=\hat{\Psi}-1, \quad Z=X+Y=\Phi+\hat{\Psi}-2 \tag{5.21}
\end{equation*}
$$

and obtain the following common form of equations (5.10) ${ }_{1,3}$

$$
\begin{equation*}
(\gamma+1)^{2} Z^{3}+(\gamma+1)(5 \gamma-1) Z^{2}+2\left(4 \gamma^{2}-\gamma-1\right) Z+4 \gamma(\gamma-1)=0 \tag{5.22}
\end{equation*}
$$

with the roots

$$
\begin{equation*}
Z_{1}=-\frac{2 \gamma}{\gamma+1}, \quad Z_{2}=-1, \quad Z_{3}=-\frac{2(\gamma-1)}{\gamma+1} . \tag{5.23}
\end{equation*}
$$

Finally we put (5.23) in the form

$$
\begin{array}{cc}
\Phi+\hat{\Psi}=\frac{2}{\gamma+1} & ; \quad\left[\text { cf. }(5.23)_{1}\right] \\
\Phi+\hat{\Psi}=1 \quad ; \quad\left[\text { cf. }(5.23)_{2}\right] \\
\Phi+\hat{\Psi}=\frac{4}{\gamma+1} & ; \quad\left[\text { cf. }(5.23)_{3}\right] . \tag{5.26}
\end{array}
$$

For (5.25) we obtain cf. (5.10) ${ }_{2}$

$$
\Psi^{2}=\Phi(1-\Phi)
$$

and therefore

$$
\begin{equation*}
0 \leq \Phi \leq 1 \quad \text { and } \quad \Psi= \pm \sqrt{\Phi(1-\Phi)} \tag{5.27}
\end{equation*}
$$

Similarly, we get, cf. (5.10) ${ }_{2}$,

$$
\Psi^{2}=\Phi\left(\frac{2}{\gamma+1}-\Phi\right)
$$

hence

$$
\begin{equation*}
0 \leq \Phi \leq \frac{2}{\gamma+1} \text { and } \quad \Psi= \pm \sqrt{\Phi\left(\frac{2}{\gamma+1}-\Phi\right)} \tag{5.28}
\end{equation*}
$$

for (5.24), and

$$
\Psi^{2}=\left(\Phi-\frac{3-\gamma}{\gamma+1}\right)(1-\Phi)
$$

or, equivalently,

$$
\begin{equation*}
\frac{3-\gamma}{\gamma+1} \leq \Phi \leq 1 \quad \text { and } \quad \Psi= \pm \sqrt{\left(\Phi-\frac{3-\gamma}{\gamma+1}\right)(1-\Phi)} \tag{5.29}
\end{equation*}
$$

for (5.26).
Consequently, we complete the list (5.12)-(5.20) which corresponds, for $\Psi=0$, to the case (5.9) with the following circumstances [which take into account (5.7), (5.8) and (5.24)-(5.26)]:

$$
\begin{gather*}
0<\Phi<1, \Psi= \pm \sqrt{\Phi(1-\Phi)}, \quad \hat{\Phi}=\Psi, \quad \hat{\Psi}=1-\Phi, \quad \text { arbitrary } \Xi ; \quad \hat{\Xi}=m \Xi \sqrt{\frac{\Phi}{1-\Phi}} \tag{5.30}\\
0<\Phi<\frac{2}{\gamma+1}, \Psi= \pm \sqrt{\Phi\left(\frac{2}{\gamma+1}-\Phi\right)}, \quad \hat{\Phi}=\Psi, \quad \hat{\Psi}=\frac{2}{\gamma+1}-\Phi, \quad \text { arbitrary } \Xi, \hat{\Xi} \tag{5.31}\\
\frac{3-\gamma}{\gamma+1}<\Phi<1, \quad \Psi= \pm \sqrt{\left(\Phi-\frac{3-\gamma}{\gamma+1}\right)(1-\Phi)}, \quad \hat{\Phi}=\Psi, \quad \hat{\Psi}=\frac{2}{\gamma+1}-\Phi, \quad \text { arbitrary } \Xi \\
\hat{\Xi}=m \Xi \sqrt{\frac{\Phi-\frac{3-\gamma}{\gamma+1}}{1-\Phi}} \tag{5.32}
\end{gather*}
$$

Case 2. This case considers in (5.3) the circumstance

$$
\begin{equation*}
\Phi+\hat{\Psi}-1=0 \tag{5.33}
\end{equation*}
$$

We use (5.33) in order to give to (5.4)-(5.6) the form

$$
\left\{\begin{array}{c}
{[2(\Phi-1)+(\gamma-1)][\Psi \hat{\Phi}+\Phi(\Phi-1)]=0} \tag{5.34}\\
(\Psi+\hat{\Phi})[\Psi \hat{\Phi}+\Phi(\Phi-1)]=0 \\
{[2 \Phi-(\gamma-1)][\Psi \hat{\Phi}+\Phi(\Phi-1)]=0}
\end{array}\right.
$$

of a system for $\Phi, \Psi, \hat{\Phi}$.

A single relation results from (5.34) for $\Phi, \Psi, \hat{\Phi}$:

$$
\begin{equation*}
\Psi \hat{\Phi}+\Phi(\Phi-1)=0 . \tag{5.35}
\end{equation*}
$$

Now, the circumstance (5.33) could be completely described by the following list of possibilities [which also considers the contribution of equations (5.7), (5.8) for $\Xi, \widehat{\Xi}]$:

$$
\begin{align*}
& \Phi=0, \quad \Psi=0, \quad \text { arbitrary } \hat{\Phi}, \quad \hat{\Psi}=1, \quad \text { arbitrary } \Xi ; \quad \hat{\Xi}=-\hat{\Phi} \Xi \tag{5.36}\\
& \Phi=1, \quad \Psi=0, \quad \text { arbitrary } \hat{\Phi}, \quad \hat{\Psi}=0, \quad \Xi=0, \text { arbitrary } \hat{\Xi} \tag{5.37}
\end{align*}
$$

arbitrary Φ, arbitrary $\Psi \neq 0, \quad \hat{\Phi}=\frac{\Phi(\Phi-1)}{\Psi}, \quad \hat{\Psi}=1-\Phi, \quad \operatorname{arbitrary} \Xi, \quad \hat{\Xi}=-\frac{\Phi}{\Psi} \Xi$

We notice that (5.12)-(5.20), (5.30)-(5.32), (5.36)-(5.38) represents an exhaustive list of possibilities. An exhaustive list of local solutions of the form (2.3) for the system (2.2) of the isentropic gas dynamics results from the above mentioned list; cf. paragraph 3.

ACKNOWLEDGEMENT

This work was supported by the CEEX Grant MI-C2-8089.

REFERENCES

1. M. BURNAT, Theory of simple waves for a nonlinear system of partial differential equations and applications to gas dynamics, Arch. Mech. Stos., 18(1966), 521-548.
2. M. BURNAT, The method of Riemann invariants for multidimensional nonelliptic systems, Bull. Acad. Polon. Sci., Ser. Sci. Tech., 17(1969), 1019-1026.
3. M. BURNAT, The method of characteristics and Riemann's invariants for multidimensional hyperbolic systems, Sibirsk. Math .J.,11(1970),279-309.
4. L.F. DINU, Some remarks concerning the Riemann invariance. Burnat-Peradzynski and Martin approaches, Revue Roumaine Math. Pures Appl., 35(1990), 203-234.
5. L.F. DINU, Multidimensional wave-wave regular interactions and genuine nonlinearity: some remarks, Preprints Series of Newton Institute for Math. Sci., No. 29(2006), Cambridge, U.K.
6. L.F. DINU, Nondegeneracy, from the prospect of wave-wave regular interactions of a gasdynamic type, Preprints Series of Newton Institute for Math. Sci., No. 52(2006), Cambridge, U.K.
7. Z. PERADZYNSKI, On algebraic aspects of the generalized Riemann invariants method, Bull. Acad. Polon. Sci., Ser. Sci. Tech., 18(1970), 341-346.
8. Z. PERADZYNSKI, Nonlinear plane k-waves and Riemann invariants, Bull. Acad. Polon. Sci., Ser. Sci. Tech., 19(1971), 625-631.
9. Z. PERADZYNSKI, On certain classes of exact solutions for gas dynamics equations, Arch Mech.Stos., 24(1972), $287-303$.
10. Z. PERADZYNSKI, On double waves and wave-wave interaction in gas dynamics, Arch Mech, 48(1996), 1069-1088.
