MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d- TYPE-I n-SET FUNCTIONS

Ioan M. STANCU-MINASIAN

The Romanian Academy, Institute of Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie nr. 13, 050711, Bucharest 5, Romania, E-mail: Stancu_minasian@yahoo.com

Abstract

We establish duality results under generalized convexity assumption for a multiobjective nonlinear fractional programming problem involving generalized d-type-I n-set functions .

Key words: duality, multiobjective programming, fractional programming, n-set functions, generalized d-type-I functions.

1. PRELIMINARIE

In this section we introduce the notation and definitions which will be used throughout the paper.
Let \mathbb{R}^{m} be the m-dimensional Euclidean space and \mathbb{R}_{+}^{m} its positive orthant, i.e.

$$
\mathbb{R}_{+}^{m}=\left\{x=\left(x_{j}\right) \in \mathbb{R}^{m}, x_{j} \geqq 0, j=1, \ldots, m\right\}
$$

For $x=\left(x_{1}, \ldots, x_{m}\right), y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$ we put $x \leqq y$ iff $x_{i} \leqq y_{i}$ for each $i \in M=\{1,2, \ldots, m\} ; x \leq y$ iff $x_{i} \leqq y_{i}$ for each $i \in M$, with $x \neq y ; x<y$ iff $x_{i}<y_{i}$ for each $i \in M$. We write $x \in \mathbb{R}_{+}^{m}$ iff $x \geqq 0$.

For an arbitrary vector $x \in \mathbb{R}^{n}$ and a subset J of the index set $\{1,2, \ldots, n\}$, we denote by x_{J} the vector with components $x_{j}, j \in J$.

Let (X, Γ, μ) be a finite non-atomic measure space, and let d be the pseudometric on Γ^{n} defined by

$$
d(S, T)=\left[\sum_{k=1}^{n} \mu^{2}\left(S_{k} \Delta T_{k}\right)\right]^{1 / 2}
$$

for $S=\left(S_{1}, \ldots, S_{n}\right), T=\left(T_{1}, \ldots, T_{n}\right) \in \Gamma^{n}$, where $\quad \Gamma^{n}$ is the n-fold product of a σ-algebra Γ of subsets of a given set X, and Δ denotes the symmetric difference. Thus $\left(\Gamma^{n}, d\right)$ is a pseudometric space, which will serve as the domain for most of the functions that will be used in this paper.

For $h \in L_{1}(X, \Gamma, \mu)$, the integral $\int_{S} h \mathrm{~d} \mu$ will be denoted by $\left\langle h, I_{S}\right\rangle$, where I_{S} is the indicator (characteristic) function of $S \in \Gamma$.

We next introduce the notion of differentiability for n-set functions. This was originally introduced by Morris [4] for set functions and subsequently extended by Corley [1] to n-set functions.

A function $\varphi: \Gamma \rightarrow \mathbb{R}$ is said to be differentiable at $S^{0} \in \Gamma$ if there exists $D \varphi\left(S^{0}\right) \in L_{1}(X, \Gamma, \mu)$, called the derivative of φ at S^{0}, and $\psi: \Gamma \times \Gamma \rightarrow \mathbb{R}$ such that for each $S \in \Gamma$,

$$
\varphi(S)=\varphi\left(S^{0}\right)+\left\langle D \varphi\left(S^{0}\right), I_{S}-I_{S^{0}}\right\rangle+\psi\left(S, S^{0}\right)
$$

where $\psi(S, T)$ is $o\left(d\left(S, S^{0}\right)\right)$, that is $\lim _{d\left(S, S^{0}\right) \rightarrow 0} \psi\left(S, S^{0}\right) / d\left(S, S^{0}\right)=0$, and d is a pseudometric on Γ [4].
A function $F: \Gamma^{n} \rightarrow \mathbb{R}$ is said to have a partial derivative at $S^{0}=\left(S_{1}^{0}, \ldots, S_{n}^{0}\right)$ with respect to its k-th argument, $1 \leqq k \leqq n$, if the function

$$
\varphi\left(S_{k}\right)=F\left(S_{1}^{0}, \ldots, S_{k-1}^{0}, S_{k}, S_{k+1}^{0}, \ldots, S_{n}^{0}\right)
$$

has derivative $D \varphi\left(S_{k}^{0}\right)$, and we define $D_{k} F\left(S^{0}\right)=D \varphi\left(S_{k}^{0}\right)$. If the $D_{k} F\left(S^{0}\right), 1 \leqq k \leqq n$, all exist, then we put $D F\left(S^{0}\right)=\left(D_{1} F\left(S^{0}\right), \ldots, D_{n} F\left(S^{0}\right)\right)$. If $H: \Gamma^{n} \rightarrow \mathbb{R}^{m}, H=\left(H_{1}, \ldots, H_{m}\right)$, we put $D_{k} H\left(S^{0}\right)=\left(D_{k} H_{1}\left(S^{0}\right)\right)$.

A function $F: \Gamma^{n} \rightarrow \mathbb{R}$ is said to be differentiable at S^{0} if there exist $D F\left(S^{0}\right)$ and $\psi: \Gamma^{n} \times \Gamma^{n} \rightarrow \mathbb{R}$ such that

$$
F(S)=F\left(S^{0}\right)+\sum_{k=1}^{n}\left\langle D_{k} F\left(S^{0}\right), I_{S_{k}}-I_{S_{k}^{0}}\right)+\psi\left(S, S^{0}\right),
$$

where $\psi\left(S, S^{0}\right)$ is $o\left[d\left(S, S^{0}\right)\right]$ for all $S \in \Gamma^{n}$.
A vector set function $f=\left(f_{1}, \ldots, f_{p}\right): \Gamma \rightarrow \mathbb{R}^{p}$ is differentiable on Γ if all its component functions f_{i}, $1 \leqq i \leqq p$, are differentiable on Γ.

Consider the multiobjective nonlinear fractional programming problem involving n-set functions.

$$
\begin{align*}
& \operatorname{minimize}\left\{F(S)=\left(\frac{F_{1}(S)}{G_{1}(S)}, \ldots, \frac{F_{p}(S)}{G_{p}(S)}\right)\right\}, \tag{P}\\
& \text { subject to } H_{j}(S) \leqq 0, \quad j \in M, S=\left(S_{1}, \ldots, S_{n}\right) \in \Gamma^{n}
\end{align*}
$$

where $F_{i}, G_{i}, i \in P=\{1,2, \ldots, p\}$, and $H_{j}, j \in M$ are differentiable real valued functions defined on Γ^{n} with

$$
F_{i}(S) \geq 0 \text { and } G_{i}(S)>0, \text { for all } i \in P .
$$

The term "minimize" being in Problem (P) is for finding efficient, and weak efficient solutions. Let $\mathrm{S}_{0}=\left\{S \mid S \in \Gamma^{n}, H(S) \leq 0\right\}$ be the set of all feasible solutions to (P), where $H=\left(H_{1}, \ldots, H_{m}\right)$.

A feasible solution S^{0} to (P) is said to be an efficient solution to problem (P) if there exists no other feasible solution S to (P) such that $F_{i}(S) \leqq F_{i}\left(S^{0}\right)$, for all $i \in P$, with strict inequality for at least $i \in P$.

A feasible solution S^{0} to (P) is said to be a weakly efficient solution to problem (P) if there exists no other feasible solution S to (P) such that $F_{i}(S)<F_{i}\left(S^{0}\right)$, for all $i \in P$.
Let $\rho_{1}, \ldots, \rho_{p}, \rho_{1}^{\prime}, \ldots, \rho_{m}^{\prime}, \rho, \rho^{\prime}$ be real numbers and put $\bar{\rho}=\left(\rho_{1}, \ldots, \rho_{p}\right)$ and $\bar{\rho}^{\prime}=\left(\rho_{1}^{\prime}, \ldots, \rho_{m}^{\prime}\right)$. Also let $\theta: \Gamma^{n} \times \Gamma^{n} \rightarrow \mathbb{R}_{+}$be a function such that $\theta\left(S, S^{0}\right) \neq 0$ for $S \neq S^{0}$.
Along the lines of Jeyakumar and Mond [2] and Suneja and Srivastava [7], Preda, Stancu-Minasian and Koller [5] defined new classes of n-set functions, called ($\bar{\rho}, \bar{\rho}^{\prime}, d$)-type-I, (ρ, ρ^{\prime}, d)-quasi type-I, (ρ, ρ^{\prime}, d) pseudo type-I, ($\left.\rho, \rho^{\prime}, d\right)$-quasi-pseudo type-I, $\left(\rho, \rho^{\prime}, d\right)$-pseudo-quasi type-I.

Definition 1.1. [5] We say that (F, H) is of $\left(\bar{\rho}, \bar{\rho}^{\prime}, d\right)$-type- I at $S^{0} \in \Gamma^{n}$ if there exist functions $\alpha_{i}, \beta_{j}: \Gamma^{n} \times \Gamma^{n} \rightarrow \mathbb{R}_{+} \backslash\{0\}, i \in P, j \in M$, such that for all $S \in \mathrm{~S}_{0}$, we have

$$
\begin{equation*}
F_{i}(S)-F_{i}\left(S^{0}\right) \geqq \alpha_{i}\left(S, S^{0}\right) \sum_{k=1}^{n}\left\langle D_{k} F_{i}\left(S^{0}\right), I_{S_{k}}-I_{S_{k}^{0}}\right)+\rho_{i} \theta\left(S, S^{0}\right), i \in P \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
-H_{j}\left(S_{0}\right) \geqq \beta_{j}\left(S, S^{0}\right) \sum_{k=1}^{n}\left\langle D_{k} H_{j}\left(S^{0}\right), I_{S_{k}}-I_{S_{k}^{0}}\right\rangle+\rho_{j}^{\prime} \theta\left(S, S^{0}\right), j \in M \tag{3}
\end{equation*}
$$

We say that (S, H) is of $\left(\bar{\rho}, \bar{\rho}^{\prime}, d\right)$-semistrictly type-I at S^{0} if in the above definition we have $S \neq S^{0}$ and (2) is a strict inequality.

Now, we introduce
Definition 1.2. [8] A feasible solution S^{0} to (P) is said to be a regular feasible solution if there exists $\hat{S} \in \Gamma^{n}$ such that

$$
H_{j}\left(S^{0}\right)+\sum_{k=1}^{n}\left\langle D_{k} H_{j}\left(S^{0}\right), I_{\hat{s}_{k}}-I_{s_{k}^{0}}\right\rangle<0, j \in M
$$

Now, for each $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right) \in \mathbb{R}_{+}^{p}$ we consider the parametric problem

$$
\left(\mathrm{P}_{\lambda}\right)
$$

$$
\operatorname{minimize}\left(F_{1}(S)-\lambda_{1} G_{1}(S), \ldots, F_{p}(S)-\lambda_{p} G_{p}(S)\right)
$$

subject to

$$
H_{j}(S) \leqq 0, j \in M, S=\left(S_{1}, \ldots, S_{n}\right) \in \Gamma^{n}
$$

It is well known that $\left(\mathrm{P}_{\lambda}\right)$ is closely related to problem (P).
The following lemma is well known in fractional programming.
Lemma 1.3. An S^{0} is an efficient solution to (P) if and only if is an efficient solution to $\left(\mathrm{P}_{\lambda^{0}}\right)$ with $\lambda_{i}^{0}=F_{i}\left(S^{0}\right) / G_{i}\left(S^{0}\right), i=1,2, \ldots, p$.

In this paper, the proofs of the duality results for Problem (P) will invoke the following necessary optimality conditions (see Zalmai [8], Theorems 3.1 and 3.2 and Corley [1], Theorem 3.7.)]

Theorem 1.4. Let S^{0} be a regular efficient (or weakly efficient) solution to (P) and assume that $F_{i}, G_{i}, i \in P$, and $H_{j}, j \in M$, are differentiable at S^{0}. Then there exist $u^{0} \in \mathbb{R}_{+}^{p}, \sum_{i=1}^{p} u_{i}^{0}=1, v^{0} \in \mathbb{R}_{+}^{p}$ and $\lambda^{0} \in \mathbb{R}_{+}^{p}$ such that

$$
\begin{gather*}
\sum_{k=1}^{n}\left\langle\sum_{i=1}^{p} u_{i}^{0}\left(D_{k} F_{i}\left(S^{0}\right)-\lambda_{i}^{0} D_{k} G_{i}\left(S^{0}\right)\right)+\sum_{j=1}^{m} v_{j}^{0} D_{k} H_{j}\left(S^{0}\right), I_{S_{k}}-I_{s_{k}^{0}}\right\rangle \geqq 0 \text { for all } S \in \Gamma^{n} \tag{4}\\
u_{i}^{0}\left(F_{i}\left(S^{0}\right)-\lambda_{i}^{0} G\left(S^{0}\right)\right) \geqq 0, i \in \mathrm{P} \tag{5}\\
v_{j}^{0} H_{j}\left(S^{0}\right)=0, j \in M \tag{6}
\end{gather*}
$$

2. DUALITY

In this section, in the differentiable case, based on the equivalence of (P) and P_{λ} a dual for P_{λ} is defined and some duality results in $\left(\bar{\rho}, \bar{\rho}^{\prime}, d\right)$-type-I assumptions are stated. With P_{λ} we associate a dual stated as

$$
\text { (D) } \quad \operatorname{maximize}\left(\lambda_{1}, \ldots, \lambda_{p}\right)
$$

subject to

$$
\begin{gather*}
\sum_{i=1}^{p} \sum_{k=1}^{n} u_{i}\left\langle D_{k} F_{i}(T)-\lambda_{i} D_{k} G_{i}(T), I_{s_{k}}-I_{s_{k}^{0}}\right\rangle+\sum_{j=1}^{m} \sum_{k=1}^{n} v_{j}\left\langle D_{k} H_{j}(T), I_{S_{k}}-I_{s_{k}^{0}}\right) \geqq 0, S \in \Gamma^{n}, \tag{7}\\
u_{i}\left(F_{i}(T)-\lambda_{i} G(T)\right) \geqq 0, i \in P \tag{8}\\
v_{j} H_{j}(T) \geqq 0, j \in M . \tag{9}\\
u \in \mathbb{R}_{+}^{p}, \sum_{i=1}^{p} u_{i}=1, v \in \mathbb{R}_{+}^{m}, \lambda \in \mathbb{R}_{+}^{p} . \tag{10}
\end{gather*}
$$

Let D_{0} be the set of feasible solutions to (D).
Theorem 2.1. (Weak duality). Let (T, u, v, λ) be a feasible solution to problem (D) and assume that
(i_{1}) for each $i \in P$ and $j \in M,\left(F_{i}(\cdot)-\lambda_{i} G_{i}(\cdot), H_{j}(\cdot)\right)$ is of $(\bar{\rho}, \bar{\rho} ', d)$-type-I at T.
We also assume that any of the following conditions hold:
(i i_{2}) $u_{i}>0$ for any $i \in P, \sum_{i=1}^{p} \frac{u_{i} \rho_{i}}{\alpha_{i}(S, T)}+\sum_{j=1}^{m} \frac{v_{j} \rho_{j}^{\prime}}{\beta_{j}(\mathrm{~S}, \mathrm{~T})} \geqq 0$ and for some $i \in P$ and $j \in M$;

$$
\left(\mathrm{F}_{\mathrm{i}}(\cdot)-\lambda_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}(\cdot), \mathrm{H}_{\mathrm{j}}(\cdot)\right) \text { is of }\left(\bar{\rho}, \bar{\rho}^{\prime}, d\right) \text {-semistrictly type-I at } T ;
$$

(i_{3}) $\sum_{\mathrm{i}=1}^{\mathrm{p}} \frac{\mathrm{u}_{\mathrm{i}} \rho_{\mathrm{i}}}{\alpha_{\mathrm{i}}(\mathrm{S}, \mathrm{T})}+\sum_{\mathrm{j}=1}^{\mathrm{m}} \frac{\mathrm{v}_{\mathrm{j}} \rho_{\mathrm{j}}^{\prime}}{\beta_{\mathrm{j}}(\mathrm{S}, \mathrm{T})}>0$.
Then for any $\mathrm{S} \in \mathrm{S}_{0}$ one cannot have

$$
\begin{array}{ll}
F_{i}(S) / G_{i}(S) \leqq \lambda_{i} & \text { for any } i \in P, \\
F_{j}(S) / G_{j}(S) \leqq \lambda_{j} & \text { for some } j \in P
\end{array}
$$

Corollary 2.2. Let S^{0} and $\left(S^{0}, u^{0}, \nu^{0}, \lambda^{0}\right)$ be feasible solutions to $\left(\mathrm{P}_{\lambda^{0}}\right)$ and (D), respectively. If the hypotheses of Theorem 2.1 are satisfied, then S^{0} is an efficient solution to $\left(\mathrm{P}_{\lambda^{0}}\right)$ and $\left(S^{0}, u^{0}, \nu^{0}, \lambda^{0}\right)$ is an efficient solution to (D).

Theorem 2.3. (Strong duality). Let S^{0} be a regular efficient solution to (P). Then there exist $u^{0} \in \mathbb{R}_{+}^{p}, \sum_{i=1}^{p} u_{i}^{0}=1, v^{0} \in \mathbb{R}_{+}^{m}$ and $\lambda^{0} \in \mathbb{R}_{+}^{p}$, such that $\left(S^{0}, u^{0}, v^{0}, \lambda^{0}\right)$ is a feasible solution to (D).

Further, if the conditions of the weak duality Theorem 2.1 also hold, then $\left(S^{0}, u^{0}, v^{0}, \lambda^{0}\right)$ is an efficient solution to (D).
Now we give a strict converse duality theorem of Mangasarian type [3] for ($\mathrm{P}_{\lambda^{0}}$) and (D).
Theorem 2.4. (Strict converse duality). Let S^{*} and $\left(S^{0}, u^{0}, \nu^{0}, \lambda^{0}\right)$ be efficient solutions to $\left(\mathrm{P}_{\lambda^{0}}\right)$ and (D), respectively. Assume that

$$
\begin{equation*}
\sum_{i=1}^{p} u_{i}^{0}\left(F_{i}\left(S^{*}\right)-\lambda_{i}^{0} G_{i}\left(S^{*}\right)\right) \leqq \sum_{i=1}^{p} u_{i}^{0}\left(F_{i}\left(S^{0}\right)-\lambda_{i}^{0} G_{i}\left(S^{0}\right)\right) \tag{1}
\end{equation*}
$$

$\left(\mathrm{j}_{2}\right) \quad$ for any $i \in P$ and $j \in M,\left(F_{i}(\cdot)-\lambda_{i} G_{i}(\cdot), H_{j}(\cdot)\right)$ is of $\left(\bar{\rho}, \bar{\rho}^{\prime}, d\right)-$ semistrictly type -I at T;
(j_{3}) $\quad \sum_{i=1}^{p} \frac{u_{i} \rho_{i}}{\alpha_{i}(S, T)}+\sum_{j=1}^{m} \frac{v_{j} \rho_{j}^{\prime}}{\beta_{j}(S, T)}>0$.
Then $\mathrm{S}^{0}=\mathrm{S}^{*}$.
The proofs will appear in [6].

REFERENCES

1. CORLEY, H.W., Optimization theory for n-set functions, J. Math. Anal. Appl., 127 (1987), 193-205.
2. JEYAKUMAR, V., MOND, B., On generalized convex mathematical programming, J. Austral. Math. Soc. Ser. B, 34 (1992), 43-53.
3. MANGASARIAN, O.L., Nonlinear Programming, McGraw-Hill, New York, 1969.
4. MORRIS, R.J.T., Optimal constrained selection of a measurable subset, J. Math. Anal. Appl., 70 (1979) 2, 546-562.
5. PREDA, V., STANCU-MINASIAN, I.M., KOLLER, E., On optimality and duality for multiobjective programming problems involving generalized d-type-I and related n-set functions. J.Math.Anal.Appl. 283(2003)1, 114-128.
6. STANCU-MINASIAN, I.M., Duality for multiobjective fractional programming problems involving generalized d-type- I n-set (Submitted).
7. SUNEJA, S.K., SRIVASTAVA, M.K., Optimality and duality in nondifferentiable multiobjective optimization involving d-type I and related functions, J.Math.Anal.Appl., 206(1997)2, 465-479.
8. ZALMAI, G.J., Optimality conditions and duality for multiobjective measurable subset selection problems, Optimization, 22 (1991) 2, 221-238.
