MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I *n* -SET FUNCTIONS

Ioan M. STANCU-MINASIAN

The Romanian Academy, Institute of Mathematical Statistics and Applied Mathematics, Calea 13 Septembrie nr. 13, 050711, Bucharest 5, Romania, E-mail: stancu_minasian@yahoo.com

We establish duality results under generalized convexity assumption for a multiobjective nonlinear fractional programming problem involving generalized d-type-I n-set functions.

Key words: duality, multiobjective programming, fractional programming, *n*-set functions, generalized d-type-I functions.

1. PRELIMINARIE

In this section we introduce the notation and definitions which will be used throughout the paper. Let \mathbb{R}^m be the *m*-dimensional Euclidean space and \mathbb{R}^m_+ its positive orthant, i.e.

$$\mathbb{R}^{m}_{+} = \left\{ x = (x_{j}) \in \mathbb{R}^{m}, x_{j} \ge 0, j = 1, ..., m \right\}.$$

For $x = (x_1, ..., x_m)$, $y = (y_1, ..., y_m) \in \mathbb{R}^m$ we put $x \le y$ iff $x_i \le y_i$ for each $i \in M = \{1, 2, ..., m\}$; $x \le y$ iff $x_i \le y_i$ for each $i \in M$, with $x \ne y$; x < y iff $x_i < y_i$ for each $i \in M$. We write $x \in \mathbb{R}^m_+$ iff $x \ge 0$.

For an arbitrary vector $x \in \mathbb{R}^n$ and a subset J of the index set $\{1, 2, ..., n\}$, we denote by x_j the vector with components x_j , $j \in J$.

Let (X, Γ, μ) be a finite non-atomic measure space, and let d be the pseudometric on Γ^n defined by

$$d\left(S,T\right) = \left[\sum_{k=1}^{n} \mu^{2}\left(S_{k}\Delta T_{k}\right)\right]^{1/2}$$

for $S = (S_1, ..., S_n), T = (T_1, ..., T_n) \in \Gamma^n$, where Γ^n is the *n*-fold product of a σ -algebra Γ of subsets of a given set X, and Δ denotes the symmetric difference. Thus (Γ^n, d) is a pseudometric space, which will serve as the domain for most of the functions that will be used in this paper.

For $h \in L_1(X,\Gamma,\mu)$, the integral $\int_S h d\mu$ will be denoted by $\langle h, I_S \rangle$, where I_S is the indicator (characteristic) function of $S \in \Gamma$.

We next introduce the notion of differentiability for *n*-set functions. This was originally introduced by Morris [4] for set functions and subsequently extended by Corley [1] to *n*-set functions.

A function $\varphi: \Gamma \to \mathbb{R}$ is said to be differentiable at $S^0 \in \Gamma$ if there exists $D\varphi(S^0) \in L_1(X, \Gamma, \mu)$, called the derivative of φ at S^0 , and $\psi: \Gamma \times \Gamma \to \mathbb{R}$ such that for each $S \in \Gamma$,

$$\varphi(S) = \varphi(S^0) + \langle D\varphi(S^0), I_S - I_{S^0} \rangle + \psi(S, S^0)$$

where $\psi(S,T)$ is $o(d(S,S^0))$, that is $\lim_{d(S,S^0)\to 0} \psi(S,S^0)/d(S,S^0) = 0$, and d is a pseudometric on $\Gamma[4]$.

A function $F: \Gamma^n \to \mathbb{R}^n$ is said to have a partial derivative at $S^0 = (S_1^0, ..., S_n^0)$ with respect to its k-th argument, $1 \le k \le n$, if the function

$$\varphi(S_k) = F(S_1^0, ..., S_{k-1}^0, S_k, S_{k+1}^0, ..., S_n^0)$$

has derivative $D\varphi(S_k^0)$, and we define $D_k F(S^0) = D\varphi(S_k^0)$. If the $D_k F(S^0)$, $1 \le k \le n$, all exist, then we put $DF(S^0) = (D_1 F(S^0), ..., D_n F(S^0))$. If $H : \Gamma^n \to \mathbb{R}^m$, $H = (H_1, ..., H_m)$, we put $D_k H(S^0) = (D_k H_1(S^0))$.

A function $F:\Gamma^n \to \mathbb{R}$ is said to be differentiable at S^0 if there exist $DF(S^0)$ and $\psi:\Gamma^n \times \Gamma^n \to \mathbb{R}$ such that

$$F(S) = F(S^{0}) + \sum_{k=1}^{n} \langle D_{k}F(S^{0}), I_{S_{k}} - I_{S_{k}^{0}} \rangle + \psi(S, S^{0}),$$

where $\psi(S, S^0)$ is $o[d(S, S^0)]$ for all $S \in \Gamma^n$.

A vector set function $f = (f_1, ..., f_p): \Gamma \to \mathbb{R}^p$ is differentiable on Γ if all its component functions f_i , $1 \le i \le p$, are differentiable on Γ .

Consider the multiobjective nonlinear fractional programming problem involving n-set functions.

(P)
$$\min_{\substack{i \in S \\ subject \text{ to } H_j(S) \leq 0, j \in M, S = (S_1, \dots, S_n) \in I}} \left\{ F(S) = \left(\frac{F_1(S)}{G_1(S)}, \dots, \frac{F_p(S)}{G_p(S)} \right) \right\},$$

where $F_i, G_i, i \in P = \{1, 2, ..., p\}$, and $H_j, j \in M$ are differentiable real valued functions defined on Γ^n with

 $F_i(S) \ge 0$ and $G_i(S) > 0$, for all $i \in P$.

The term "minimize" being in Problem (P) is for finding efficient, and weak efficient solutions. Let $S_0 = \{S | S \in \Gamma^n, H(S) \le 0\}$ be the set of all feasible solutions to (P), where $H = (H_1, \dots, H_m)$.

A feasible solution S^0 to (P) is said to be an efficient solution to problem (P) if there exists no other feasible solution S to (P) such that $F_i(S) \leq F_i(S^0)$, for all $i \in P$, with strict inequality for at least $i \in P$.

A feasible solution S^0 to (P) is said to be a weakly efficient solution to problem (P) if there exists no other feasible solution S to (P) such that $F_i(S) < F_i(S^0)$, for all $i \in P$.

Let $\rho_1, ..., \rho_p, \rho'_1, ..., \rho'_m$, ρ, ρ' be real numbers and put $\overline{\rho} = (\rho_1, ..., \rho_p)$ and $\overline{\rho}' = (\rho'_1, ..., \rho'_m)$. Also let $\theta : \Gamma^n \times \Gamma^n \to \mathbb{R}_+$ be a function such that $\theta(S, S^0) \neq 0$ for $S \neq S^0$.

Along the lines of Jeyakumar and Mond [2] and Suneja and Srivastava [7], Preda, Stancu-Minasian and Koller [5] defined new classes of *n*-set functions, called $(\overline{\rho}, \overline{\rho}', d)$ -type-I, (ρ, ρ', d) -quasi type-I, (ρ, ρ', d) -pseudo type-I, (ρ, ρ', d) -quasi-pseudo type-I, (ρ, ρ', d) -pseudo-quasi type-I.

Definition 1.1. [5] We say that (F,H) is of $(\overline{\rho},\overline{\rho}',d)$ - type- I at $S^0 \in \Gamma^n$ if there exist functions $\alpha_i,\beta_j:\Gamma^n \times \Gamma^n \to \mathbb{R}_+ \setminus \{0\}, i \in P, j \in M$, such that for all $S \in S_0$, we have

$$F_i(S) - F_i(S^0) \ge \alpha_i(S, S^0) \sum_{k=1}^n \left\langle D_k F_i(S^0), I_{S_k} - I_{S_k^0} \right\rangle + \rho_i \theta(S, S^0), \ i \in P$$

$$\tag{2}$$

and

$$-H_{j}(S_{0}) \ge \beta_{j}\left(S, S^{0}\right) \sum_{k=1}^{n} \left\langle D_{k}H_{j}\left(S^{0}\right), I_{S_{k}} - I_{S_{k}^{0}}\right\rangle + \rho_{j}^{\prime}\theta\left(S, S^{0}\right), j \in M.$$

$$\tag{3}$$

We say that (S,H) is of $(\overline{\rho},\overline{\rho}',d)$ -semistrictly type-I at S^0 if in the above definition we have $S \neq S^0$ and (2) is a strict inequality. Now, we introduce

Now, we introduce

Definition 1.2. [8] A feasible solution S^0 to (P) is said to be a regular feasible solution if there exists $\hat{S} \in \Gamma^n$ such that

$$H_{j}(S^{0}) + \sum_{k=1}^{n} \left\langle D_{k}H_{j}(S^{0}), I_{\hat{s}_{k}} - I_{s_{k}^{0}} \right\rangle < 0, \ j \in M.$$

Now, for each $\lambda = (\lambda_1, ..., \lambda_p) \in \mathbb{R}_+^p$ we consider the parametric problem

$$(\mathbf{P}_{\lambda}) \qquad \text{minimize } \left(F_1(S) - \lambda_1 G_1(S), \dots, F_p(S) - \lambda_p G_p(S)\right).$$

subject to

$$H_i(S) \leq 0, j \in M, S = (S_1, \dots, S_n) \in \Gamma^n$$

It is well known that (P_{λ}) is closely related to problem (P).

The following lemma is well known in fractional programming.

Lemma 1.3. An S^0 is an efficient solution to (P) if and only if is an efficient solution to (P_{λ^0}) with $\lambda_i^0 = F_i(S^0) / G_i(S^0), i = 1, 2, ..., p.$

In this paper, the proofs of the duality results for Problem (P) will invoke the following necessary optimality conditions (see Zalmai [8], Theorems 3.1 and 3.2 and Corley [1], Theorem 3.7.)]

Theorem 1.4. Let S^0 be a regular efficient (or weakly efficient) solution to (P) and assume that $F_i, G_i, i \in P$, and $H_j, j \in M$, are differentiable at S^0 . Then there exist $u^0 \in \mathbb{R}^p_+, \sum_{i=1}^p u_i^0 = 1, v^0 \in \mathbb{R}^p_+$ and $\lambda^0 \in \mathbb{R}^p_+$ such that

$$\sum_{k=1}^{n} \left\langle \sum_{i=1}^{p} u_{i}^{0}(D_{k}F_{i}(S^{0}) - \lambda_{i}^{0}D_{k}G_{i}(S^{0})) + \sum_{j=1}^{m} v_{j}^{0}D_{k}H_{j}(S^{0}), I_{S_{k}} - I_{S_{k}^{0}} \right\rangle \geq 0 \quad \text{for all } S \in \Gamma^{n},$$

$$\tag{4}$$

$$u_i^0\left(F_i(S^0) - \lambda_i^0 G(S^0)\right) \ge 0, \ i \in \mathbb{P},\tag{5}$$

$$v_i^0 H_i(S^0) = 0, j \in M.$$
 (6)

2. DUALITY

In this section, in the differentiable case, based on the equivalence of (P) and P_{λ} a dual for P_{λ} is defined and some duality results in $(\overline{\rho}, \overline{\rho}', d)$ -type-I assumptions are stated. With P_{λ} we associate a dual stated as

(D) maximize
$$(\lambda_1, \dots, \lambda_p)$$

subject to

$$\sum_{i=1}^{p} \sum_{k=1}^{n} u_{i} \left\langle D_{k} F_{i}(T) - \lambda_{i} D_{k} G_{i}(T), I_{S_{k}} - I_{S_{k}^{0}} \right\rangle + \sum_{j=1}^{m} \sum_{k=1}^{n} v_{j} \left\langle D_{k} H_{j}(T), I_{S_{k}} - I_{S_{k}^{0}} \right\rangle \geq 0, \ S \in \Gamma^{n},$$
(7)

$$u_i(F_i(T) - \lambda_i G(T)) \ge 0, i \in P,$$
(8)

$$v_j H_j(T) \ge 0, \, j \in M. \tag{9}$$

$$u \in \mathbb{R}^{p}_{+}, \sum_{i=1}^{p} u_{i} = 1, v \in \mathbb{R}^{m}_{+}, \lambda \in \mathbb{R}^{p}_{+}.$$
(10)

Let D_0 be the set of feasible solutions to (D).

Theorem 2.1. (Weak duality). Let (T, u, v, λ) be a feasible solution to problem (D) and assume that

(i₁) for each $i \in P$ and $j \in M$, $(F_i(\cdot) - \lambda_i G_i(\cdot), H_i(\cdot))$ is of $(\overline{\rho}, \overline{\rho}', d)$ -type-I at T.

We also assume that any of the following conditions hold:

(i₂)
$$u_i > 0$$
 for any $i \in P$, $\sum_{i=1}^{p} \frac{u_i \rho_i}{\alpha_i(S,T)} + \sum_{j=1}^{m} \frac{v_j \rho_j}{\beta_j(S,T)} \ge 0$ and for some $i \in P$ and $j \in M$.

 $(F_i(\cdot) - \lambda_i G_i(\cdot), H_j(\cdot))$ is of $(\overline{\rho}, \overline{\rho}', d)$ -semistricity type-I at T;

(i₃)
$$\sum_{i=1}^{p} \frac{u_{i}\rho_{i}}{\alpha_{i}(S,T)} + \sum_{j=1}^{m} \frac{v_{j}\rho_{j}}{\beta_{j}(S,T)} > 0$$

Then for any $S \in S_0$ *one cannot have*

$$F_i(S)/G_i(S) \leq \lambda_i \qquad for \ any \ i \in P,$$

$$F_i(S)/G_i(S) \leq \lambda_i \qquad for \ some \ j \in P$$

Corollary 2.2. Let S^0 and $(S^0, u^0, v^0, \lambda^0)$ be feasible solutions to (P_{λ^0}) and (D), respectively. If the hypotheses of Theorem 2.1 are satisfied, then S^0 is an efficient solution to (P_{λ^0}) and $(S^0, u^0, v^0, \lambda^0)$ is an efficient solution to (D).

Theorem 2.3. (Strong duality). Let S^0 be a regular efficient solution to (P). Then there exist $u^0 \in \mathbb{R}^p_+, \sum_{i=1}^p u_i^0 = 1, v^0 \in \mathbb{R}^m_+$ and $\lambda^0 \in \mathbb{R}^p_+$, such that $(S^0, u^0, v^0, \lambda^0)$ is a feasible solution to (D).

Further, if the conditions of the weak duality Theorem 2.1 also hold, then $(S^0, u^0, v^0, \lambda^0)$ is an efficient solution to (D).

Now we give a strict converse duality theorem of Mangasarian type [3] for (P_{λ^0}) and (D).

Theorem 2.4. (Strict converse duality). Let S^* and $(S^0, u^0, v^0, \lambda^0)$ be efficient solutions to (P_{λ^0}) and (D), respectively. Assume that

(j₁)
$$\sum_{i=1}^{p} u_i^0 \left(F_i(S^*) - \lambda_i^0 G_i(S^*) \right) \leq \sum_{i=1}^{p} u_i^0 \left(F_i(S^0) - \lambda_i^0 G_i(S^0) \right);$$

(j₂) for any $i \in P$ and $j \in M$, $(F_i(\cdot) - \lambda_i G_i(\cdot), H_j(\cdot))$ is of $(\overline{\rho}, \overline{\rho}', d)$ -semistrictly type – I at T;

(j₃)
$$\sum_{i=1}^{p} \frac{u_i \rho_i}{\alpha_i(S,T)} + \sum_{j=1}^{m} \frac{v_j \rho_j}{\beta_j(S,T)} > 0.$$

Then $S^0 = S^*$.

The proofs will appear in [6].

REFERENCES

- 1. CORLEY, H.W., Optimization theory for n-set functions, J. Math. Anal. Appl., 127 (1987), 193–205.
- 2. JEYAKUMAR, V., MOND, B., On generalized convex mathematical programming, J. Austral. Math. Soc. Ser. B, 34 (1992), 43–53.
- 3. MANGASARIAN, O.L., Nonlinear Programming, McGraw-Hill, New York, 1969.
- 4. MORRIS, R.J.T., Optimal constrained selection of a measurable subset, J. Math. Anal. Appl., **70** (1979) 2, 546–562.
- 5. PREDA, V., STANCU-MINASIAN, I.M., KOLLER, E., On optimality and duality for multiobjective programming problems involving generalized d-type-I and related n-set functions. J.Math.Anal.Appl. 283(2003)1, 114-128.
- 6. STANCU-MINASIAN, I.M., Duality for multiobjective fractional programming problems involving generalized d-type- I n-set (Submitted).
- 7. SUNEJA, S.K., SRIVASTAVA, M.K., Optimality and duality in nondifferentiable multiobjective optimization involving d-type I and related functions, J.Math.Anal.Appl., **206**(1997)2, 465-479.
- 8. ZALMAI, G.J., Optimality conditions and duality for multiobjective measurable subset selection problems, Optimization, 22 (1991) 2, 221–238.

Received February 1, 2007