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The purpose of this paper is to analyse the motion of multibody hybrid systems characterized by
switching between constraints, which are defined as different dynamical regimes. The dynamics of
these systems is formulated within the framework of Lagrange formalism, based on the Lagrange
equations, and on the symmetries by Noether’s theorems. As an example, we consider the oscillations
of a woodpecker model.
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1. THE LAGRANGE EQUATIONS

The motion of hybrid systems is characterized by switching between constraints, which are defined as
different dynamical regimes. An important class of hybrid systems consists of systems with multiple elastic
impacts (Brogliato [1]). The nonholonomic constraints with affine connections are analyzed by Bloch and
Crouch [2], and Lewis [3]. Some controllability results for smooth mechanical systems and kinematically
controllable systems are reported by Lewis and Murray [4], Sussmann [5], and Bullo and Lynch [6], Secarặ,
Niţu and Cononovici [7]. The analysis leads to effective motion planning schemes for various classes of
mechanical control systems, in closed connection to the Lie groups theory (Brockett [8], Leonard and
Krishnaprasad [9], Lynch, Shiroma, Arai and Tanie [10], Teodorescu and  Nicorovici [11]).

In this paper we present a model for a hybrid system S  consisted of n  rigid bodies that can move by
switching between constraints. The spatial position of S  is specified by 3N Cartesian coordinates. When the
bodies are subjected to some constraints, the 3N coordinates have to satisfy certain relations, such that the
number of independent coordinates becomes less than 3N . Let us have 3m N<  independent geometrical
constraints (holonomic) of the form

1 2( , ,..., , ) 0i nf r r r t = , 1,2,...,i m= , (1.1)

where ( , , )i i i ir x y z denotes the position vector of the mass center of the body i. The matrix

1 2

1 1 1 2

( , ,...,
( , , , ,...,

m

n

f f f
x y z x z

 ∂
 ∂ 

,

contains at least one non-vanishing determinant of order m and it follows that m  coordinates can be
expressed as functions of 3n N m= −  independent coordinates, denoted by generalized coordinates
(Lagrange’s coordinates) kq , 1,2,...,k n− . The set of all values kq defines an n-dimensional space
(configuration space, or Lagrange’s space) denoted by nΛ . To each representative center mass point

1 2( , ,..., )n nP q q q ∈Λ , it corresponds a position of S  in 3E  in accordance with the holonomic constraints, and
conversely by means of the one-to one mapping
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1 2( , ,..., , )i i nr r q q q t= , 1,2,...,i m= , (1.2)

where t  is regarded as a parameter. For 0 1[ , ]t t t∈ , the system takes a sequence of positions in 3E , which
corresponds to a sequence of points in the Lagrange’s space. Consequently, the evolution of S  is represented
by equations

( )i iq q t= , 1,2,...,i n= , 0 1[ , ]t t t∈ , (1.3)

which defines a trajectory of the representative point P  in nΛ . The motion takes place in such a way that the

Lagrangian action functional 
1

0

( , , )d
t

t

A L q q t t= ∫ ! , is stationary, where ( , , )L L q q t= !  is the Lagrange function or

Lagrange’s kinetic potential. From stationarity of action functional, the Lagrange equations are obtained

d 0
d k k

L L
t q q
 ∂ ∂− = ∂ ∂ !

, 1,2,...,k n= , (1.4)

where L  is the sum between the total kinetic energy T , and the potential U , i.e. L T U= + . If ( )U U q=  or
( , )U U q t= , we have a simple potential, and a simple quasi-potential, respectively. The generalized force is a

conservative forces and respectively a quasi-conservative force k
k

UQ
q
∂=
∂

, 1,2,...,k n= .  If  ( , )U U q q= !  or

( , , )U U q q t= ! , we have a generalized potential, or a quasi-generalized potential, respectively. In this case,
the generalized force is

d 0
dk

k k

U UQ
q t q

 ∂ ∂= − = ∂ ∂ !
, 1,2,...,k n= ,

and the motion equations (1.4) lead to

d
d k

k k

T T Q
t q q
 ∂ ∂− = ∂ ∂ !

, 1,2,...,k n= . (1.5)

The equations (1.5) are the consequence of the principle of virtual work 
1

( ) 0
n

i i i i
i

m r F rδ
=

− ⋅ =∑ !! , where

iF  is the force acting on the sub-body i , and im  is the mass of the sub-body i . The generalized force is
given in this case by

1

n
i

k i
i k

rQ F
q=

∂= ⋅
∂∑ , 1,2,...,k n= . (1.6)

The general total kinetic is given by

0
1
2 jk j k j jT g q q g q g= + +! ! ! , (1.7)

where jkg are components of the metric tensor g

1

n
i i

jk i
i j k

r rg m
q q=

∂ ∂= ⋅
∂ ∂∑ ,

1

n
i i

j i
i j

r rg m
q t=

∂ ∂= ⋅
∂ ∂∑ , 

2

0
1

n
i

i
i

rg m
t=

∂ =  ∂ 
∑ .

(1.8)
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In the case of scleronomic constraints (which do not explicitly depend on time), the expression (1.7)
becomes

1
2 jk j kT g q q= ! ! . (1.9)

The matrix

1 1 1 2

1 2

( , , , ,...,
( , ,...,

n

n

x y z x x
q q q

 ∂
 ∂ 

,

 is of rank n , and the generalized velocities 0k
j

j

r q
q
∂ =
∂
! , 1,2,...,k n= , have only trivial solutions. It results

that the kinetic energy (1.9) is a positive definite quadratic form, which vanishes only when all the
generalized velocities are zero. In the case of scleronomic constraints it follows

d 1
d 2

jk kl
jk j j l

k l j

g gT g q q q
t q q q

 ∂  ∂∂ = + +    ∂ ∂ ∂   
!! ! !

!
,

jl
j l

k k

gT q q
q q

∂∂ =
∂ ∂

! ! , 1,2,...,k n= .

Thus, the Lagrange equations (1.5) can be written under the form

[ , ]jk j j l kg q jl k q q Q+ =!! ! ! , 1,2,...,k n= , (1.10)

where [ , ]jk l  are the Christoffel symbols of the first kind for the metric jkg

1[ . ]
2

jk jlkl

l j k

g ggjl k
q q q

 ∂ ∂∂
= + −  ∂ ∂ ∂ 

, , , 1,2,...,j k l n= (1.11)

Introducing the Christoffel symbols of the second kind

[ , ]kmm g jl k
j l

 
= 

 
. (1.12)

where kmg  are the components of the inverse of jkg  ( km m
jk jg g δ= ), and the generalized forces

km
m kQ Q g=" , (1.13)

The normal form of the Lagrange equations (1.10) is

m j l m
mq q q Q
j l

 
+ = 
 

"!! ! ! , 1,2,...,m n= . (1.14)

The equations (1.14) suggests that we can describe the motion of a hibrid system by a set
{ , , , }n g F qΣ = Λ , where nΛ  is the configuration space (or Lagrange’s space), g  the metric tensor, F  the

vector of input forces, and q  the generalized coordinate vector. The force F  is related with the generalized

force Q"  by relations (1.13) and (1.6).
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2. THE NOETHER’S THEOREMS

The Lagrange function ( , , )L q q t! is a kinetic potential because it satisfies the Lagrange equations (1.4).
Let introduce a transformation

( , , ) ( , , ) ( , , )L q q t L q q t L q q t′ = + "! ! ! , (2.1)

where L"  has the form 0( , ) ( , )k kL a q t q a q t= +" ! . By substituting (2.1) in (1.4) we obtain similarLagrange
equations for L" . The function L"  has the form

d( , , )
dk k k

k

L q q t q
q t t
ϕ ϕ ϕ∂ ∂= + =

∂ ∂
" ! ! , 2Cϕ ∈ .

(2.2)

Thus, by applying a transformation of the form

. d( , , ) ( , , )
dk k k kL q q t L q q t
t
ϕ′ = +! ! ,

(2.3)

called gauge transformation, to a Lagrangian L  we obtain another Lagrangian L′ , which satisfies the same
Lagrange equations (1.4).  A general form of a transformation of independent variable is

( )t tϕ′ = , (2.4)

and the changes of generalized coordinates are

( ) ( , )i i iq t Q t q′ ′ = . (2.5)

The equations of motion can be derived from the functional 1

0
1 2 1 2( , ,..., , , ,..., , )d

t

n nt
L q q q q q q t t= ∫ ! ! !! , which

is invariant with the infinitesimal transformation t t tδ′ = +  if

( , , )d ( , , )di i i iL q q t t L q q t t′ ′ ′ ′ ′ =! ! . (2.6)

The Lagrange equations are invariant if

d( , , ) ( , , )
di i i i

fL q q t L q q t
t

′ ′ ′ ′ ′ ′ ′= +
′

! ! . (2.7)

We can say that (2.4) is a symmetry transformation for a mechanical system if and only if the conditions
(2.6) and (2.7) are satisfied. For the infinitesimal transformation t t tδ′ = + , these conditions yield to

 d ( , )
di i i

i i

t q q L f t q
t q t t

δ δ δ δ
 ∂ ∂ ∂+ + = − ∂ ∂ ∂ 

! . (2.8)

On this basis, a symmetry transformation of a mechanical system is associated with an equation of
conservation.  This result is proved by the Noether’s theorem.

THEOREM 2.1. (Noether).  If the Lagrangian of a mechanical system is invariant with respect to a
continuous group of transformation with p  parameters, then exist p  quantities, which are conserved during
the evolution of the system.

Let ( , )C q p  be an integral of motion in the Hamilton formulation. In the Lagrange formulation, this
integral becomes ( , ) ( , )F q q C q p=! . The integral of motion along trajectories of the system satisfies the
condition

d ( , ) 0
d

F q q
t

=! . (2.9)
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Along the trajectories system, the variation of the Lagrangian due to the transformations i i iq q qδ′ = + ,
1,2,...,i n= , is given by

d ( )
d i

i

LL q
t q

δ δ∂=
∂ !

. (2.10)

From  (2.10) it follows certain conserved quantities.
Case 1. If 0Lδ = , the integral of motion is given by

i i
i

L p q
q

δ∂ =
∂ !

. (2.11)

Case 2.  If there exists a function ( )if q  such that d ( )
d iL f q
t

δ δ= , then the integral of motion is

( ) ( )i i i
i i i

L f fq p q
q q q

δ δ∂ ∂ ∂− = −
∂ ∂ ∂!

. (2.12)

Case 3.  If there exists a function ( , )i ig q q!  such that

d ( , )
d i iL g q q

t
δ = ! , (2.13)

the integral of motion becomes

( , ) ( , )i i i i i i i
i

L q g q q p q g q q
q
δ δ∂ − = −

∂
! !

!
. (2.14)

We see that (2.11) and (2.12) are particular cases of the third case.
 THEOREM 2.2. (Noether). To every infinitesimal transformation of the form k k kq q qδ′ = + , 1,2,...,k n= ,

due to a variation of the Lagrangian given by (2.13), it corresponds to a conserved quantity defined by
(2.14).

In conclusion, from the motion equation of Lagrange (1.14), and the Noether’s theorems, we can define
a mechanical model for a hibrid system as a quadruple { , , , }n g F qΣ = Λ , where nΛ  is the configuration
space (Lagrange’s space), g  the metric tensor, F  the vector of input forces related with by generalized

forces by 
1

n
i

k i
i k

rQ F
q=

∂= ⋅
∂∑ ,  km

m kQ Q g=" , 1,2,...,k n= , and  q  the generalized coordinate vector. We are

interested in a class of hybrid systems that interact with the surrounding environment via holonomic or
nonholonomic constraints. Clamping a sliding body to a surface is an example of a holonomic constraint.
Rolling without sliding is an example of a nonholonomic constraint. The characterizing feature of this model
is that the constraint can become active at any configuration so that the constraint distribution is defined at
least over an open subset of nΛ . The advantage of this model is that both holonomic and nonholonomic
constraints can be represented in the same way.  As an example, we consider the woodpecker model first
considered by Glocher and Pfeiffer [12].

4. THE MODEL OF GLOCHER AND PFEIFFER

The woodpecker model is described by the set 1( , , )Ty φ φ=q , where y  is the vertical displacement of
the sleeve, φ  is the absolute angle of rotation of the woodpecker, and 1φ is the absolute angle of rotation of
the sleeve. The mass of woodpecker is m , the moment of inertia of woodpecker with respect to the mass
center O , is J . Horisontal deviations are negligigle. The mass of sleeve is 1m , and the moment of inertia of
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the sleeve with respect to the mass center 1O , is 1J . The contact without friction occurs when the beak of the
woodpecker hits the pole (constraint 1). The diameter of the hole in the sleeve is a little larger than the
diameter of the pole, and then the lower or upper edge of the sleeve may come into contact with the pole
without friction (constraints 2 and 3).  We suppose that the displacement are small. This is a planar
mechanism moving in a vertical plane with gravity. The coordinates ( , )C Cx y  define the joint C . The
constraint 1 permit transition from separation to separation at the beak impact. The constraint 2 permit
transition from separation to sliding at the lower sleeve impact, from sliding to sticking, from sticking to
sliding, and from sliding to separation. The constraint 3 permit transition from separation to separation at the
upper sleeve impacts.

Fig. 3.1. The Glocker and Pfeiffer’s model [12]).

The motion equations (1.14) yield to the motion equations derived by Glocker and Pfeiffer ([12], [13])
in the case of constrained motion of a multibody system

3

1
( ) 0Nj Nj Tj Tj

j=
− − λ + λ =∑Mq h w w!! , (4.1)

The inertia matrix M  of the woodpecker is given by

1 1 2
2

1 1 1 1 2
2

2 1 2 2

m m ml ml
ml J ml ml l
ml ml l J ml

+ 
 = + 
 + 

M .    (4.2)

The  vector of  the generalized forces h , and the vector of generalized coordinates q , are

1

1 1

1 2

mg m g
c c mgl
c c mgl
φ φ
φ φ

− − 
 = − + − 
 − + − 

h ,   1

y
φ
φ

 
 =  
  

q .   (4.3)
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The last three term of the motion equations (4.1) represent the normal and tangential contact forces
proportional to the Lagrange multipliers Nλ  and Tλ . The constraints vectors Nw and Tw in the contact
points are

1

0
0N

h

 
 =  
 − 

w , 2 1

0

0
N h

 
 =  
  

w , 3 1

0

0
N h

 
 = − 
  

w ,   (4.4)

1 1

2

1

T l
l l

 
 =  
 − 

w , 2 1

1

0
T r

 
 =  
  

w , 3 1

1

0
T r

 
 =  
  

w .   (4.5)

The motion equation (4.1) is subject to the initial conditions on the impact intervals

( )A At=q q! ! , ( )C Ct=q q! ! , ( )E Et=q q! ! ,

( )iA i Ag g t=! ! , ( )iC i Cg g t=! ! , ( )iE i Eg g t=! ! ,  i N=  or i T= , (4.6)

where At , Ct are Et  represent time instances at the beginning of the impact, end of compression and end of
expansion. Here, g!  is the relative velocity vector in the normal and tangential direction, which can be stated
in terms of the generalized velocity vector q!

( )T
NCj Nj C A NAjg g= − +w q q! !! ! ,  ( )T

TCj Tj C A TAjg g= − +w q q! !! ! , 1,2,3j = .   (4.7)

The computations are carried out for the same data considered in [12]: 0.0003m = kg,
9 25 10 kgmJ −= × , 1 0.0045m = kg, 7 2

1 7 10 kgmJ −= × , 0.0056c = Nm, 29.81m/sg = , 0 0.0025r = m,

1 0.0031r = m, 1 0.0058h = m, 1 0.01l = m, 2 0.015l = m, 0.02h = m, 0.0201l = m. The contact is characterized
by the following coefficients of restitution 1 0.5Nε = , 2 3 0N Nε ε= =  and 1 2 3 0T T Tε ε ε= = = , defined as ration
of the relative velocities after and before the impact (Newton law) (Stănescu, Munteanu, Chiroiu and
Pandrea [14]).

Fig. 4.1. Phase space portraits.

The phase portraits are shown in fig. 4.1. At point 1  the lower edge of the sleeve hits the pole. At point 2
the sleeve has a sliding and then a sticking. When the woodpecker reaches point 3, the tangential constraint
is passive and the sleeve slides to point 7 where the contact is lost.  At point 5 the upper edge of the sleeve
hits the pole. Point  6  is an elastic impact of the beak to the pole.  At point 7 the upper edge of the sleeve hits
the pole and has a separation. The results are similar to those of Glocker and Pfeiffer [12], with the
difference that the impact is without friction.
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