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We obtain an existence result for the weak solutions in the Sobolev space , , 
to the Dirichlet problem for a nonlinear second order system of divergence type. In fact, it is proved 
that, in certain hypotheses, the operator naturally associated to the Dirichlet problem is a bounded and 
coercive Gårding operator [10]. We get a generalization of the results obtained in [4] for the Dirichlet 
problem of nonlinear elastostatics.  

1 ( )p m, Ω,W 2p >
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4. SOME FEW PRELIMINARIES 

A. The summation over repeated subscripts is understood and the notation i p q= , , where p q≤  are 
integers, means that the index i  takes the values .  1p p … q, + , ,

If  then  is the standard scalar product on  and k, ∈a b ⋅a b k | |a  is the corresponding Euclidean 

norm of .  denotes the linear space of matrices a m n×M ( )ijA a=  of elements , ija ∈ 1i m= , , 1j = ,n

)

. The 

application ( ) tr( TA B AB, , , is the standard inner product on  and m nA B ×, ∈M m n×M A| |  is the 
corresponding norm of A .  
 

B. Throughout this paper we suppose  is a bounded Lipschitz domain ([1], [3], [5], [9]) with 
boundary ∂Ω , and  denotes the Lebesgue measure on .  

nΩ ⊂
dx Ω

We use the notation [6] , , and , , for the Banach spaces 
of -valued functions , with components , 

( )p mΩ,L 1 (p, Ω,W )m 1
0 ( )p m, Ω,W [1 )p ∈ ,∞

m
1( ) m

mu u … u= , , : Ω → ku : Ω → 1k m= , , belonging to 

Banach spaces , , and  respectively.  is a Banach space, separable for 
 and reflexive for , with respect to the norm  

( )pL Ω 1 ( )pW , Ω 1
0 ( )pW , Ω ( )p Ω,L m

)

[1 )p ∈ ,∞ (1 )p ∈ ,∞

1
0 ( d ) [0 ) (p p p m

p p
/

,
Ω

≡ := | | ∈ ,∞ , ∈ Ω, .∫u u u u x u L   

If , , 1 1( ) ( ) ( )p m p′, ∈ Ω, × Ω,u v L L m 1(1 )p ∈ ,∞ p p′/ + / = , then the function , 

, belongs to  [7] and it holds the Hölder inequality 
( )( ) ( ) ( )⋅ := ⋅u v x u x v x

∈Ωx 1( )L Ω

d d p p′
Ω Ω

⋅ ≤ | || | ≤ .∫ ∫u v x u v x u u   

The dual of  is , i.e. , and duality pairing on 
 is defined by  

( )p Ω,L m )m m

)m

(p′ Ω,L ( ( )) ( )p m p′′Ω, = Ω,L L
( ) (p m p′Ω, × Ω,L L
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d
Ω

, = ⋅∫u v u v x.

)

p

  

The Sobolev space  ([1]–[3], [5], [6], [9]) is separable for  and reflexive for 
, with respect to the norm  

1 (p m, Ω,W [1 )p ∈ ,∞
(1 )p ∈ ,∞

1 1
1 { [ ] } ( ) [0 )p p p p p p

p pd / /
,

Ω

:= | | + | ∇ | = + ∇ ∈ ,∫u u u u x u u ∞ .   

Here ∇  is the distributional gradient of u , i.e.  u

( ) ( )ij m n ij j iD u×∇ = ∇ : Ω → , ∇ := ,u u uM   

j iD u  is the j -th partial generalized derivative of .  is a closed subspace of  

and, in view of Poincare’s inequality ([2], [3], [6]), , , where  
iu 1

0 (p m, Ω,W )

)

),

),

)

))

m m

m )m

)m

1 ( )p m, Ω,W

p pk≤ ∇u u 1
0 (p m,∈ Ω,u W

11
0( d ) [0 ) (pp p m

p
,/

Ω
∇ := | ∇ | ∈ ,∞ , ∈ Ω,∫u u u x u W   

is a norm equivalent with the norm  on .  1 p,⋅ 1
0 ( )p m, Ω,W

In our hypothesis on Ω  we have the completely continuous imbedding ([2], [9])  
1 ( ) ( ) (1p m p m p, Ω, ⊂ Ω, , ∈ ,∞W L  (1.1)

and for  the following continuous and dense imbeddings  2p >

1 2 1
0 ( ) ( ) ( ) (p m p m m p m, ′− ,Ω, ⊂ Ω, ⊂ Ω, ⊂ Ω, ,W L L W  (1.2)

where . If  then  and therefore  11
0( ) ( (pp m m,′− , ′Ω, := Ω,W W 2p > (1 2)p′∈ ,

1, 1,( ) ( ) ( ) ( ) ( )p m m p m p m p m′ ′− −Ω, ⊂ Ω, := Ω, ∩ Ω, ⊂ Ω, .L X L W W  (1.3)

The weak convergence in , denoted by  in , is defined by 

, , while the weak convergence in , denoted by  

in , is equivalent with ([5], [6])  

( )p Ω,L nu u ( )p Ω,L

 d dn
Ω Ω

⋅ → ⋅∫ ∫u u x u v x ( )p′∀ ∈ Ω,v L 1 (p, Ω,W nu u

1 (p, Ω,W

and 1 in ( ),p m
n i n iD D i m, = , , Ω,u u u u L   

and implies the strong convergence  in  (Rellich Theorem [5]).  n →u u ( )p Ω,L m

)m )

)

The quotient space  is isomorphic to  in the sense of the 
trace operator ([2], [3], [9]).  

11
0( ) (pp m ,, Ω, / Ω,W W 1 (p p m′/ , ∂Ω,W

 
C. The divergence operator on the set of mappings , with  is defined by ( )ij m nS ×= : Ω →S M 1 ( )p

ijS W ,∈ Ω

div (div ) ( )m p
i i ijD S L: Ω → , := ⊂ Ω .S S S   

 
D. Definition 1.1 Let  and , , be two separable and reflexive Banach 
spaces. Suppose that  is dense in  and that the imbeding  is completely continuous [1]. The 
operator , where  is the topological dual of , is said to be a Gårding operator [10] if 

, , where the operator 

(V V= , ⋅ ( )UU U= , ⋅ V U⊂
V U V U⊂

V V ′Λ : → V ′ V
( ) ( )v F v vΛ = , v V∀ ∈ ( )F V V V ′⋅,⋅ : × →  satisfies the conditions:  
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( )i  For every , w V∈ ( )F w V V ′⋅, : →  is hemicontinuous [8], i.e. the real function 
( )t v F u tv w, + , ∈ , , is continuous for every , t ∈ u v w V, , ∈ ⋅,⋅  being the pairing duality on 

.  V V ′×
( )ii  There exists a continuous function , , satisfying the condition 

, , such that 
γ + +: × → + [0 )+ = ,∞

1
0

lim[ ( )] 0x y
θ

θ γ θ−
↓

, = x y +∀ , ∈ ( ) ( ) ( )Uu v u F v u r u vγ− ,Λ − , ≥ − , − , for every 

.  (0) { }u v B w V w rγ, ∈ = ∈ : <
( )iii  If  in V , the conditions  nu u

liminf ( ) ( ) 0

liminf ( ) ( ) 0

n nn

nn

u u F v u F v u

w F v u F v u u v w V
→∞

→∞

⎧ − , , − , ≥ ,⎪
⎨ , , − , ≥ , ∀ , , ∈⎪⎩

.
 

hold simoultaneously.   
 

One shows [10] that a bounded Gårding operator is a pseudomonotone operator [8].  
Definition 1.2 An operator  is said to be coercive [8] if  V V ′Λ : →

1 ( ) asv v v v− < ,Λ >→ ∞ → ∞.  (1.4)

THEOREM 1.1 ([10]) If  is a reflexive and separable Banach space and  is a bounded 
and coercive Gårding operator then  is surjective, i.e. for every 

V V V ′Λ : →
Λ f V ′∈  the operator equation  

has at least a solution u . 
( )u fΛ =

V∈

2. SECOND ORDER SYSTEMS OF DIVERGENCE TYPE 

We consider the following second order system of divergence type [9]  

div ( ) ( )− ,∇ − ,∇ =S u u b u u f  (2.1)

in the unknown function  from , , where  is a Lipschitz 
domain and ,  

1( ) m
mu … u= , , : Ω →u 1 ( )p m, Ω,W 2p > nΩ ⊂

1( ) m
mf … f= , , : Ω →f

1( ) ( )( ) ( ( ) ( ))n mx … x ×= , , ,∇ := , ,∇ ∈ , ∈Ω ⊂ nRx S u u x S x u x u x xM n ,

,

 (2.2)

1( ) ( ( )) ( ( ) ( )) m nx x= , , ,∇ := , ,∇ ∈ , ∈Ω ⊂n…x b u u x b x u x u x x  (2.3)

are given functions.  
Now we present the restrictions imposed to mappings (2.2) and (2.3) for the solvability of the 

system (2.1) in , .  1 ( )p m, Ω,W 2p >
(I) Restrictions on .  For every , the mapping  is 
(Lebesgue) measurable, i.e. its real components , 

( )⋅,⋅S )a ( ) m
m n×, ∈ ×p P M ( ) m n×⋅, , : Ω →S p P M

( )ijS ⋅, , : Ω →p P 1i m= , , 1j = ,n

×

 are measurable. 

 For almost every (a.e.)  the mapping  is Fréchet continuously 
differentiable. This implies that for a.e.  there exist the “partial derivatives” of 

)b ∈Ωx ( ) m
m n m n×,⋅,⋅ : × →S x M M

∈Ωx S  with respect to 
 and , i.e. the linear operator  m∈p m n×∈P M



 Gheorghe Gr. CIOBANU, Gabriela SĂNDULESCU 4  

( ) ( ) (

( ) ( ) (

m
m n

m
m n

L

L

×

×

∂⎧ , , , ∈ ,⎪ ∂⎪
⎨

∂⎪ , , , ∈ ,⎪ ∂⎩

Sp P x p P
p
Sp P x p P
P

M

M

)

)

,
 (2.4)

which are continuous on  and are defined by  m
m n××M

( ) ( ) ( )

( ) ( ) ( )

m
i i

i

ij ij m n m n
ij

q q
p

Q Q
P

×

× ×

∂ ∂⎧ = , , := , , ∈ , ∈⎪ ∂ ∂⎪
⎨ ∂ ∂⎪ = , , := , , ∈ , ∈
⎪ ∂ ∂⎩

S Sq x p P q x p P q
p

S SQ x p P Q x p P Q
P

M

M M

m n ,

.

)

 (2.5)

In (2.4)  denotes the space of linear operators from the linear space U  to the linear space V . 
 For every  the mappings  

(L U V,
)c ( ) m

m n×, ∈ ×p P M

( ) ( ) 1 1m n
i ij

i m j n
p P ×

∂ ∂⋅, , , ⋅, , : Ω → , = , , = , ,
∂ ∂

S Sp P p P M   

are measurable.  Suppose that for every  and )d ( ) m
m n×, , ∈Ω × ×x p P M 1i m= , , 1j = ,n , the following 

growth conditions hold:  
1 2

1 2

1 2

( ) ( )

( ) ( )

( ) ( )

i i i
i

ij ij ij
ij

a a

a a
p

a a
P

ϕ

ϕ

ϕ

| , , | ≤ + | | + | |,⎧
⎪ ∂⎪| , , | ≤ + | | + | |,⎪ ∂⎨
⎪ ∂⎪| , , | ≤ + | | + | |,

∂⎪⎩

S x p P x p P
S x p P x p P

S x p P x p P

 

(2.6)

where the real functions ϕ , iϕ , ijϕ  are from  and , ; , ; ,  are positive constants 
independent of ( ) .  

( )pL Ω 1a 2a 1
ia 2

ia 1
ija 2

ija
, ,x p P

Remark 2.1 We notice that the conditions  and ( )  (it is required only the continuity of  
for a.e. ) shows that (2.2) satisfies the Caratheodory conditions ([9], [11]). If moreover the condition 

 holds then the (Nemytsky) operator  is a well defined bounded continuous operator 
from  into  [11]; in particular this operator is bounded and continuous from 

 into  . 

( )aI bI ( ),⋅,⋅S x
∈Ωx

1(2.6) ( , )∇u S u u
( , )p ΩL m

m

u

m m

( , )p mΩL
1, ( , )p ΩW ( , )p mΩL

 
Remark 2.2 If the mapping (2.2) satisfies all the conditions (I), then 

div ( , )− ∇u S u  (2.7)

is a well defined continuous operator from  into  (see [3], [12]), and taking into 
account the Green’s formula in Sobolev spaces [3] we obtain 

1, ( , )p ΩW 1, ( , )p− ΩW

1, '
0, div ( , ) ( , ) d , ( , ),p m

Ω

− ∇ = ∇ ⋅∇ ∈ Ω∫v S u u S u u v x v W  (2.8)

where ,⋅ ⋅  is the pairing duality of  and  . 1, ' ( , )p ΩW m

)m

1, ( , )p m− ΩW
 

We note that if  then  and therefore we have  2p > 1 1
0 0( ) (p pm ′, ,Ω, ⊂ Ω,W W
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div ( ) ( ) d
Ω

,− ,∇ = ,∇ ⋅∇ ,∫v S u u S u u v x

)m

 (2.8’)

for every .  1 1
0( ) ( ) (p m p, ,, ∈ Ω, × Ω,u v W W

Consequently, if restrictions (I) hold an  , it results that the operator (2.7) determines in a unique 
way the bounded and continuous operator [11] 

2p >

1, 1,

1, '
0

( ) ( , ), ( , ),

, ( ) ( , ) d , ( , ).

p m p m

p m

A

A

−

Ω

∈ Ω ∈ Ω⎧
⎪
⎨ = ∇ ⋅∇ ∈ Ω
⎪⎩

∫
u u W u W

v u S u u v x v W  (2.9)

(II) Restrictions on  . a) For every  the mapping  is 
measurable, i.e. its real components  are measurable. b) For a.e.  , the mapping 

( , )∇b u u ( , ) m
m n×∈ ×p P M ( , , ) : m⋅ Ω →b p P

( , , )ib ⋅ p P ∈Ωx

( , , ) : m m
m n×⋅ ⋅ × →b x M   

is Fréchet continuously differentiable. This implies that for a.e.  there exist the “partial derivatives” of 
b with respect to  and   

∈Ωx
m∈p m n×∈P M

( , ) ( , , ) ( ),

( , ) ( , , ) ( ),

m m

i

m
m n

p

×

∂⎧ ∈ ×⎪ ∂⎪
⎨

∂⎪ ∈ ×⎪ ∂⎩

bp P x p P L

bp P x p P L
P

M
 (2.10)

which are continuous on  and are defined through m
m n××M

( ) ( , , ) : ( , , ) , ,

( ) ( , , ) : ( , , ) ,

m m
i i

i

m
ij ij m n

ij

q q
p

Q Q
P ×

∂ ∂⎧ = = ∈⎪ ∂ ∂⎪
⎨ ∂ ∂⎪ = = ∈
⎪ ∂ ∂⎩

b bq x p P q x p P q
p
b bQ x p P Q x p P Q
P

M .

∈

∈
 (2.11)

c) For each  the mappings ( , ) m
m n×∈ ×p P M

( , , ) : , ( , , ) : , 1, , 1, ,m
m n

i ij
i m j n

p P ×
∂ ∂⋅ Ω → ⋅ Ω → = =
∂ ∂

b bp P p P M   

are measurable. d) The mapping  satisfies the growth condition ( , , )⋅ ⋅ ⋅b

1 1 2 1| ( , , ) | ( ) | | | | , ( , , ) ,p p m
m nb bψ − −

×≤ + + ∀ ∈Ω × ×b x p P x p P x p P M  (2.12)

where  and ,  are constants independent of ( ,  . ( )pψ ∈ ΩL 1 0b > 2 0b > , )x p P
 

Remark 2.3 The condition  and the continuity of  for a.e.  shows that the mapping 
(2.3) satisfies the Caratheodory conditions. If moreover the growth condition (2.12) holds it results that the 
(Nemytsky) operator 

( )aII ( , , )⋅ ⋅b x ∈Ωx

( ) : ( , )B = ∇u u b u u

m

 (2.13)

is a bounded continuous operator from  into  . 1, ( , )p ΩW ' ( , )p mΩL
 

Remark 2.4 In consideration of Remark 2.2 it results that if  then the operator 2p >
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div ( , ) ( , )− ∇ − ∇u S u u b u u

m

 (2.14)

from  into  is a continuous operator and in view of (1.3) it follows that, for , 
the equation (2.1) makes sense for  . 

1, ( , )p ΩW ( , )mΩX 2p >
( , )p m∈ Ωf L

We point out that the operator (2.14) determines in a unique way the bounded and continuous operator 
1,

1,
0

( ) : ( ) ( ) ( , ), ( , ), 2,

, ( ) [ ( , ) ( , ) ]d , ( , ).

m p m

p m

A B X p

Ω

Λ = − ∈ Ω ∈ Ω >⎧
⎪
⎨ Λ = ∇ ⋅∇ − ∇ ⋅ ∈ Ω
⎪⎩

∫
u u u u u W

v u S u u v b u u v x v W

Ω

m

m

 (2.15)

3. WEAK SOLUTIONS OF THE DIRICHLET PROBLEM FOR THE SYSTEM (2.1) 

In the conditions of the preceding Section we have in view to prove the existence of weak solutions 
, , of the Dirichlet problem 1, ( , )p m∈ Ωu W 2p >

(P)  
0

div ( , ) ( , )  in ,
 on ,

− ∇ ∇ − ∇ =⎧
⎨ = ∂Ω⎩

S u u b u u f
u u  

where  and  . ( , )p∈ Ωf L 1/ ',
0 ( , )p p m∈ ∂Ωu W

The function  is called a weak solution to the problem (P) if u is the solution of the 
variational problem 

1, ( , )p m∈ Ωu W

(VP)  1,
0( ) , ( , ),p mΛ = − ∈ Ωu f u g W

where the operator  is defined by (2.15) and  is a mapping having the trace  on , Λ 1, ( , )p∈ Ωg W 0u ∂Ω

0tr =g u  (such a mapping does exist [2], [3], [9]). The variational problem (VP) comes back to the 
variational problem 

1,
0( ) : ( ) , ( , ),pgΛ = Λ + = ∈ Ωu g u f u W m  (3.1)

which is equivalent to the problem of finding  such that 1, ( , )p m∈ Ωu W

, ( ) : { ( , ( )) [ ( , ( )) ]}d 0,g

Ω

Λ − = ∇ ⋅ + ∇ + − ⋅ + ∇ + − =∫v u f v S g u g u v b g u g u f x  (3.1’)

for every  . 1, ( , )p m∈ Ωv W
Further we are going to use the following 
Lemma 3.1 For every  and  we have 1, ( , )p∈ Ωg W m m1, ( , )p∈ Ωu,v W

0 1, ( ) ( ) ( , , ) ( , , )g g L L− Λ − Λ = +u v u v ,g u v g u v  (3.2)

Where 
1

0
0
1

1
0

( , , ) d ( , ( )) ( , ( )) d

( , , ) d ( , ( )) ( , ( )) d

L t

L t h

Ω

Ω

⎧ ⎡ ⎤∂ ∂= ∇ ⋅ + ∇ + + + ∇ + ∇⎪ ⎢ ⎥∂ ∂⎣ ⎦⎪
⎨

⎡ ⎤∂ ∂⎪ = ⋅ + ∇ + + + ∇ + ∇⎢ ⎥⎪ ∂ ∂⎣ ⎦⎩

∫ ∫

∫ ∫

S Sg u v h g w g w h g w g w x,
p P

b bg u v h g w g w h g w g w x,
p P

h

 (3.3)

and , . t= +w v h = −h u v
PROOF: From (2.15) we obtain 
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1 1

0 0

, ( ) ( )

[ ( , ( )) ( , ( ))]d [ ( , ( )) ( , ( ))]d

d d[ ( , ( ))d ]d [ ( , ( ))d ]d
d d

g g

t t
t t

Ω Ω

Ω Ω

− Λ − Λ =

= ∇ ⋅ + ∇ + − + ∇ + − ⋅ + ∇ + − + ∇ + =

= ∇ ⋅ + ∇ + − ⋅ + ∇ +

∫ ∫

∫ ∫ ∫ ∫

u v u v

h S g u g u S g v g v x h b g u g u b g v g v x

S bh g w g w x h g w g w x

 

where , . Taking into account that  and  are Fréchet differentiable and 
applying the Chain Rule we get (3.2). 

t= +w v h = −h u v ( , , )⋅ ⋅S x ( , , )⋅ ⋅b x

4. AN EXISTENCE RESULT OF THE PROBLEM (P) 

THEOREM 4.1 If for every ,  and (  we have  u 1 ( )p,∈ Ω,h W m ) m
m n×, , ∈Ω × ×x p P M

1( )H  

1

0 1
0

1

0

d ( ( )) d

d ( ( )) d 0

p
pt t t c

t t t

,
Ω

Ω

⎧ ∂∇ ⋅ + ,∇ + ∇ ≥ ,⎪
∂⎪

⎨
∂⎪ ∇ ⋅ + ,∇ + ≥⎪ ∂⎩

∫ ∫

∫ ∫

Sh u h u h h x h
P

Sh u h u h h x
p

 

and  

2( )H  

1

0

1 1
1

d ( ( )) d

( ) (1 q q

t t t

c

Ω

− −

⎧ ∂⋅ + ,∇ + ≤⎪
⎪ ∂
⎨
⎪ ∂

0

)| , , |≤ + | | + | | ,⎪ ∂⎩

∫ ∫
bh u h u h h x
p

b x p P p P
P

 

where , and ,  are constants independent of ,  and , then the 
bounded and continuous operator  

(1 1) (1 )q p p p′∈ , − = , / 0 0c > 1 0c > u h ( , ,x p P)

11
0

1
0

( ) ( ) ( )

( ) [ ( ( )) ( ( ))]d (

pg p m m

pg m

,− ,

,

Ω

⎧ Λ ∈ Ω, , ∈ Ω, ,
⎪
⎨ ,Λ = ∇ ⋅ + ,∇ + − ⋅ + ,∇ + , ∈ Ω, ,⎪⎩

∫
u u W u W

v u v S g u g u v b g u g u x v W )

)

m ,

0 )

)

 (4.1)

is a Gårding coercive operator.  

PROOF: A. The operator (4.1) is a Gårding operator. In view of imbeddings (1.1) and (1.2) we can 
chose  and  in Def. 1.1 of Gårding operators. In this definition we take [10]  1

0 ( )p mV ,= Ω,W (p mU = Ω,L

11
0( ) ( ) ( ) ( ) ( ) ( ) ( )pg g p mF ,′− ,, , := Λ + = Λ ∈ Ω, , , ∈ Ω,0u v u v u v u W u v W  (4.2)

where  is the null operator. With this choice, the condition  in Def. 1.1 is trivially satisfied because 

 for every . The condition (  of Def. 1.1 is fulfilled since 

0 ( )iii
( ) ( )nF F, − , =v u v u 1

0 (p m,∈ Ω,v W )i
( ) (gF t t+ , = Λ +u v w u v  for every  and t , and the real function  1

0 ( )p m,, , ∈ Ω,u v w W ∈

( ) [ ( ( )) ( ( ))]dgt t t t t t t
Ω

,Λ + = ∇ ⋅ + ,∇ + − ⋅ + ,∇ + ∈ , ∈∫v u v v S u v u v v b u v u v x  
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is continuous in consideration of condition ( )  and ( . Consequently, to prove that bI )bII gΛ  is a Gårding 
operator we have only to show that, with  given by (4.2), the condition  of Def. 1.1 is verified.  F ( )ii

Taking into account  and  we get  1( )H 2(H )

1

t

0 0( ) p
pL c ,, , ≥ − ,g u v u v  (4.3)

1
1 1

1 1
0

( ) d [1 ]dq qL c − −

Ω

− , , ≤ | || ∇ | + | + | + | ∇ + ∇ | ≤∫ ∫g u v h h x g w g w  

1
1 1 1 1 1

1
0

d {1 2 [( ) ( ( ) )]}q q q q qc t t t d− − − − −

Ω

≤ | || ∇ | + | | + | ∇ | + | + | + | ∇ + | .∫ ∫ h h g g v h v h x  (4.4)

Using some elementary results from the theory of  spaces ([1], [2], [7]), taking into account that 
, and  is a bounded Lipschitz domain we obtain:  Because  it follows that 

( )pL Ω
2p > nΩ ⊂ )a 1 (p,∈ Ω,h W )m

| |h , 2( ) ( )pL L| ∇ |∈ Ω ⊂ Ωh  and therefore  

2 2 const p pd
Ω

| || ∇ | ≤ ∇ ≤ . ∇∫ h h x h h h h  (4.5)

since .  Let us point out the implications:  2 const p⋅ ≤ . ⋅ )b

1 1

(1 1) 0 ( 1) ( 2) ( ) ( ) ( 1) ( 2)
( ) ( ) ( ) ( )

p s

p m p s q p p

q p p q p p L L s p q p
L L L, −

∈ , − ⇒ < − / − < ⇒ Ω ⊂ Ω , = − / − ,
∈ Ω, ⇒| |∈ Ω ⊂ Ω ⇒| | ∈ Ω .g W g gR ( 2)/ −

 

As 1 1 1( )
2

pp p
p

− − −+ + =
−

1, by virtue of generalized Hölder inequality ([2], [7]), it results that 

1 1( )q L−| || ∇ || | ∈ Ωh h g  and  

1 1
( 2)

q q
p p p pd− −

/ −
Ω

| || ∇ || | ≤ ∇ | | .∫ h h g x h h g  

On the other hand we have 1 1
( 2)

q q 1q
p p s

− −
/ −| | = ≤g g p

−g

p

, whereof we obtain  

1 1
1constq q

p p p pd− −
,

Ω

| || ∇ || | ≤ ∇ | | ≤ .∫ h h g x h h g h h .  (4.6)

)c  From the implications 1 ( ) ( ) ( ) ( )p m p s sR L L L,∈ Ω, ⇒| ∇ |∈ Ω ⊂ Ω ⇒∇ |∈ Ω ⇒g W g g  

1 ( 2)| ( )q p pL− / −∇ | ∈ Ωg 1 ( ) ( )p m pW L,∈ Ω, ⇒, | |,| ∇ |∈ Ωh h hR , and from 1 1 1( )
2

pp p
p

− − −+ + =
−

1 it results 

that 1 1( )q L−| || ∇ || ∇ | ∈ Ωh h g  and  

1
( 2)

q
p p p pd−

/ −
Ω

| || ∇ || ∇ | ≤ ∇ ∇∫ h h g x h h g .

1q

 

As 1 1
( 2)

q q
p p s

− −
/ −| ∇ | = ∇ ≤ ∇g g p

−g

p

 it follows  

1
1constq

p p p pd−
,

Ω

| || ∇ || ∇ | ≤ ∇ ∇ ≤ .∫ h h g x h h g h h .  (4.7)
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)d  Similarly with (4.6) and (4.7) we obtain  

1 1
1constq q

p p pt d t− −
,

Ω

| || ∇ || + | ≤ . +∫ h h v h x h h v h ,  (4.8)

1 1
1( ) const ( )q q

p p pt d t− −
,

Ω

| || ∇ || ∇ + | ≤ . ∇ +∫ h h v h x h h v h .  (4.9)

From (4.4)2 and (4.5)–(4.9) we have 
1 1

1 1,( , , ) const. (1 ( ) ),q q
p p p pL θ θ− −− ≤ + + + ∇ +g u v h h v h v h  (4.10)

and, on the other hand 

1, 1, 1,

1, 1, 1,

2 ,
(0,1).

( ) 2 ,
p p p p

p p p p

θ θ
θ

θ θ

⎧ + ≤ + ≤ +⎪ ∈⎨ ∇ + ≤ + ≤ +⎪⎩

v h v h u v

v h v h u v
 (4.11)

In view of the dense imbedding (1.2) and (4.11) we have  
1 1 1const ( ) constq q q

p prθ θ− − −+ ≤ . , ∇ + ≤ .v h v h 1qr − ,

1 p

 (4.12)

for every 1
0( ) { ( ) }p m

rB r,
,, ∈ = ∈ Ω, : <0u v u W uR . From (4.10) and (4.12) it results  

1
1 1 1 2( ) ( ) (q

p p rL a a r −
,− , , ≤ + , = − , , ∈ 0g u v h h h u v u v )B ,  (4.13)

where  and  are constants depending on , 1 0a > 2 0a > Ω p , and . By using a variant of the Young 
inequality [2] we get  

g

1 1

1 (
1 1

( ) ,

( ) ,

p p
p p p p

pq p
p p p p

c

r c r

ε ε
ε ε

′
, ,

′ ′− −
, ,

⎧ ≤ +⎪
⎨

≤ +⎪⎩

h h h h

h h h h 1)q p

p ,

 (4.14)

where  is an arbitrary constant, , and . Therefore, from (4.13), (4.14) we have  0ε > 1 ( 1)( ) pc ε ε − / −= = −h u v

( 1)
1 1 2 1 1 2( ) ( ) ( ) ( )p q p p

pL a a a a r cε ε′ ′−
,− , , ≤ + + +g u v h h  (4.15)

whereof, in view of (4.3), from (3.2) it results  
( 1)

0 1 1 2 1 1 2( ) ( ) ( ) ( ) ( )p pg g q
p pc a a a a r cε ε′ ′−

, ,− ,Λ − Λ ≥ − + − +u v u v h h hp p
p .   

If in this inequality we take  sufficiently small, it follows that for every u ,  we have  0ε > ( )rB∈ 0v

( 1)
0 1 1 2( ) ( ) ( )pg g q

pb b b r ′ ′−
,− ,Λ − Λ ≥ − − + − ,u v u v u v u vp p

p  (4.16)

where , , and  are constant. Thus we proved that 0 0b > 1 0b > 2 0b > gΛ  is a Gårding operator for every 
 since (4.16) implies  1 (p,∈ Ω,g W R )m

( ) ( ) ( ) ( )g g
p rr Bγ− ,Λ − Λ ≥ − , − , , ∈ ,0u v u v u v u v  (4.17)

where ( 1)
1 2( ) ( )q p px y b b x yγ ′ ′−, = + , , , satisfies , 0x ≥ 0y ≥ 1

0
lim ( ) 0x y
θ

θ γ θ−

↓
, = x∀ , . 0y >

 
B. The operator (4.1) is coercive. By taking  in (3.2) we obtain 0=v
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0 1, ( ) ( , , ) ( , , ) , ( )g L LΛ = + + Λ0 0u u g u g u u ,g 0

)

d

 (4.18)

From (3.3) with  and hypotheses ,  we obtain  0=v 1( )H 2(H

0 0 1

1
1 1 1 1 1 1

1
0

( ) ,

( ) {1 2 [ ( )]} .

p
p

q q q q q q

L c

L dt t

,

− − − − − −

Ω

⎧ , , ≥
⎪⎪
⎨

− , , ≤ | || ∇ | + | | + | ∇ | + | | + | ∇ |⎪
⎪⎩

∫ ∫

0

0

g u u

g u u u g g u u x
 (4.19)

If in estimations (4.5)–(4.9) we take  and use the Young inequality as in (4.4) we obtain 0=v
' '

1 1 2 31, 1, 1,( , , ) ( ) ( ) ,'p p qp
p p pL A A c A cε ε ε− ≤ + +0g u u u u  (4.20)

where , ,  are constants depending on , and  is an arbitrary constant. 1 0A > 2 0A > 3 0A > , ,qΩ g 0ε >
Applying succesively Hölder and Young inequalities we have  

( ) ( ) ( )g
p p p′ ′ p|< ,Λ >|≤ ,∇ ∇ + ,∇0u S g g u b g g u ≤

≤

,

 

0 0[ ( ) ( ) ] ( )[ ]p p p p
p pp p cε ε ′ ′

′ ′≤ ,∇ + ,∇ + + ∇S g g b g g u u  

1 2 1
p

pB B ′
,≤ + u  

(4.21)

where  and  are constants with evident dependence on 1 0B > 2 0B > S  and b . From (4.18)–(4.21) we 
obtain  

0 1 1 2 2 1 3 1 1( ) ( ) ( ( ) ) ( )p pg
p pc A A c B A c Bε ε ε′ ′

, ,,Λ ≥ − − + − − ,u u u u u qp
p,  (4.22)

where  is an arbitrary constant. If we take  sufficiently small in (4.22) it results  0ε > 0ε >

0 1 1 1 2 1( ) p p qpg
p p pC C C′ ′

, , ,,Λ ≥ − − − ,u u u u u 1B  (4.23)

from where we get  
11

1 1 0 1 1 2 1 1( ) [ ]p p p qp pg
p p p pC C C B′ ′− − −−

, , , ,,Λ ≥ − − −u u u u u u u 1
p
p

−
,

)

 (4.24)

for every . Since , , and  we obtain  1
0 (p m,∈ Ω,u W R 1 1p − > 0p p′ − < qp p′ <

11
1 1( ) as ( )pg m

p p
,−

, ,,Λ → ∞ → ∞, ∈ Ω, ,u u u u u W R0  

and the theorem is proved (see (1.4)).  
 

Remark 4.1 Because a bounded Gårding operator is pseudomonotone [11], it follows the 
implication [8]  

1
0in ( )

and liminf ( ) ( )
limsup ( ) 0

p m
n

g g
n n

n
g

n n
n

,

→∞

→∞

⎫Ω, ⎪⎪⇒ − ,Λ ≥ − ,Λ ,⎬
⎪− ,Λ ≤ ⎪⎭

u Wu
v u vu u

uu u

R
u  

for every . 1
0 ( )p m,∈ Ω,v W R

From theorems 1.1 and 4.1 we obtain the desired existence result.  
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THEOREM 4.2 If  is a Lipschitz bounded domain, , and the mappings (2.2) and (2.3) 
satisfy the restrictions (  and (  of Section 2 and the hypotheses  and  in theorem 4.1 then, 

for every pair , there exists at least one weak solution 
 of the problem (P).  

nΩ ⊂ R 2p >
)I )II 1( )H 2(H )

)R
)m

m

1
0( ) ( ) (p m p p m′/ ,, ∈ Ω, × ∂Ω,f L Wu R

1 (p,∈ Ω,u W R
 
Remark 4.2 From the proof of lemma 3.1 and hypothesis (H1)1 it results that the operator 

1 1( ) : ( ) ( ) ( )p pm mA A − , ,= + ∈ Ω, , ∈ Ω, ,gu u g u W u WR R  

defined by (2.9), is a p-coercive, and consequently a strongly monotone operator ([9]) for every 
, i.e. 1, ( , )p∈ Ωg W R

1
0 01,, ( ) ( ) 0, ( )p p m

pA A c c ,− − ≥ − , > ∀ ∈ Ω,g gu v u v u v u,v W R .  

 
Remark 4.3 If the mapping (2.2) is independent of  and  then the system (2.1) is a 

quasilinear differential system of finite n-dimensional elastostatics type. In [4] we obtained some existence 
results of the weak solutions to the Dirichlet problem for such a system in three dimensions.  

u 1m n= ≥
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