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This work demonstrates that the Multichannel Quantum Defect Theory and the Reduced R-Matrix are 
formally related and physically equivalent; both theories describe not only the internal dynamics but 
also the interactions in space of eliminated channels. The Multichannel Quantum Defect Theory is, 
according to present approach, a general framework relating collision matrices of two reaction 
systems which differ only in dynamics of eliminated channels. 
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The Multichannel Quantum Defect Theory (MQDT) is based on possibility of separating the effects of 
long and short range interactions between an electron and an atomic core (e.g. Seaton 1983). The effect of 
short range interactions, within the core, are very complex but, nevertheless, can be concisely represented by 
a global parameter, named Quantum Defect. The long range interactions, (represented by a simple field as 
e.g. the Coulomb one), are treated analytically by extensive use of Coulomb wavefunctions; this fact resulted 
into perception that the MQDT is a specific theory for atomic collisions. On the other hand the general 
assumptions of the MQDT are similar to those of R-Matrix Theory, (e.g. Lane and Thomas 1958). 
Developing this idea and by using only basic properties of Whittaker and Coulomb functions, Lane (1986) 
has extracted MQDT from Wigner's R-Matrix Theory. A relationship between K-Matrix, on one side, and R-
Matrix, boundary condition parameters and Coulomb functions, on other side, was established. This relation 
was then rewritten, by using specific boundary conditions, in a K-Matrix form of MQDT.  

In the present work one proves that the MQDT is rather equivalent to the Wigner reduced R-Matrix. 
The K-Matrix form of the MQDT is obtained from R-Matrix Theory by a procedure for relating the collision 
matrices defined for the multichannel system both above and below threshold. This approach proves that the 
essential aspects of the MQDT originate in variation across threshold of the logarithmic derivative of the 
eliminated channels. At this level of derivation, the role of single particle states (from eliminated closed 
channel) for producing resonances in the competing open reaction channels of the multichannel system is 
proved; this is done by relating the above approach to the R-Matrix bound state condition. According to this 
approach, the MQDT provides a relationship between the collision matrices of two multichannel reaction 
systems with the same inner core but differing only in interactions of the eliminated channels. 

The collision matrix U  is parameterized (Lane and Thomas 1958) in terms of the R-Matrix, the 
Coulombian hard-sphere phase shifts , the logarithmic derivative  and its imaginary part, penetration 
factor 
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Another form suitable for the present purpose is 
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The penetration factor matrix P  is a diagonal matrix with dimension equal to number of open 
channels. Below threshold, Naba PPP == |||| δ  for  open channels, (N Nba ,,2,1, …= ); it will select the 
corresponding  submatrix of the whole  matrix. Above threshold, a new open channel 

 is added to the reaction system. The dimension of penetration factor 
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square matrices rises by one. The R-Matrix and the logarithmic derivative , corresponding to whole 
reaction system, are represented both below and above threshold by square matrices of dimension .  

L
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The collision matrix elements are constructed, both below )(<  and above  n -threshold, by assuming 
that the only changing parameter across threshold is the logarithmic derivative of the channel  (or a group 

 of degenerate channels) 
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it results into a formula connecting collision matrices defined above  and below , -threshold >W <W n
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In this derivation it is assumed that  is real and <nL <> −=Δ nnn LLL  is logarithmic derivative variation across 
threshold of the -channel. The modulus one quantity  allows to define a "defect scattering 
phase shift" , a corresponding "K-Matrix element" 
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The collision matrix form of the MQDT  
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results into a corresponding  K-matrix form, (Hategan and Ionescu 1995) 
1)(21 −++−= iKiU  (7a)
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One can prove, by evaluating  near threshold for Coulomb field, (e.g. Baz et al 1971; Landau and 
Lifshitz 1980), that the 

nLΔ

nδ  phase shift is related to effective quantum number of MQDT, ηπδ =n . 
It is worthy of mention another result which can be obtained from collision matrix formula (6) of 

MQDT 
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In zero energy limit, for scattering on a short range potential, , it reduces to , a result of 
R-Matrix Theory, (Lane and Thomas 1958). 
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Obtaining the U-Matrix and standard K-Matrix forms of MQDT, we have, in next step, to relate them 
to the reduced R-Matrix. In general theory the R-Matrix has a dimension equal to total number of channels, 
whether open or closed. The reduced R-Matrix has (in our case) dimension equal to number of open 
channels; it takes into account the eliminated closed channel through an additional term. For obtaining a 
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compact R-Matrix form of the MQDT, (analogous to the K-Matrix one), one uses the R-Matrix 
parameterization of the collision matrix below threshold 
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the explicit form of the  term has to be determined. One defines a similar R-Matrix parametrization for 
the diagonal matrix , with  
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One can remark that  can be regarded (up to diagonal matrices ) as a linear function of  
 while the right side of MQDT form of W , (4), as a submatrix (corresponding to the system of  open 

channels) of the difference  
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The collision  matrix describes both open  and threshold  channels while  has 
only a non zero element referring to  channel, defined by (9). By this remark and by using (4) one 
obtains the explicit form of  matrix defined below threshold 
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As from (10) the term nρ  is identified to be , ( ), one obtains that the R-Matrix 
parameterization of the MQDT is just Wigner reduced R-Matrix, as defined in Lane and Thomas (1958). The 
physical basis for this equivalence is following analogy between the two concepts. The reduced R-Matrix 
describes not only the internal dynamics, (as R-Matrix does), but also the interaction in space of eliminated 
closed channels. The MQDT is dealing also with "inner" and "channel" resonances corresponding, 
respectively, to multielectron excitations and to Rydberg states. Both describe not only the internal dynamics 
but also the interaction of eliminated closed channels. 
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The next step is to exploit the physics contained in U  (W ) matrix form (4) of the MQDT, (Hategan, 
Ionescu and Wolter, work in progress). The collision matrix dependence on eliminated channel is contained 
in the product , where  is the reduced R-Matrix element of the  channel. The inner 
multichannel resonances are described by R-Matrix while the channel resonances are represented by  
logarithmic derivative. In the R-Matrix theory, usually, one considers only multichannel resonances 
described by poles of all its elements; in Lane's approach to MQDT, (Lane 1986), the Rydberg resonances 
are described by a meromorphic term added to genuine R-Matrix. There are also multichannel resonances 
originating in single particle (bound or quasistationary) states as proved in following two paragraphs. 

nNnnnNn RLR 11 )( −− −R nnR n
1−

nL

Below threshold a pole in  collision matrix elements could be obtained from the condition 
, (  - shift function).  In non-coupling limit,  reduces to single channel R-Matrix   

element . Or this is just bound state condition of the R-Matrix Theory, (Lane and Thomas 1958); a bound 
state appears at that energy at which the internal ( ) and external  logarithmic derivatives do match.  
This result is a R-Matrix proof that the single channel state of a   closed channel does induce resonance in 
competing open channels of the multichannel system. The above result is known in a different framework of 
the Collision Theory, (e.g. Drukarev 1978); but this is the first R-Matrix demonstration of the relation of a 
multichannel resonance to a bound single particle state. The above result transcends the MQDT framework, 
being a general result in R-Matrix theory too. 
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The standard form of the MQDT was derived only for (bound states in) eliminated closed channels; 
extended (see next paragraph) to positive energy eliminated channels the corresponding states should be 
quasistationary ones. A pole in  is now obtained by a condition which is analog to the bound state one, 

; the logarithmic derivative  is the corresponding, at positive energy, of the shift function  
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defined for negative energy. According to R-Matrix theory the quasistationary (Siegert) state is defined by 
condition 0)(1 =− LHR λ , (Lane and Thomas 1958). A quasistationary state originating in an eliminated 
channel induces a quasiresonant structure in other open competing channels. Apparently, (see, for example, 
Kukulin et al 1989), this situation (multichannel resonance originating in a quasistationary state from an 
unobserved channel) was not reported until now. In the literature (Badalyan et al 1982) one reports on the 
"channel coupling pole" observed in numerical experiments for multichannel scattering; a single channel 
pole may be driven to physical region of the complex energy plane when channel coupling becomes 
effective. It could be of interest to relate the "channel coupling resonances" and the multichannel resonances 
originating in quasistationary states. 

To complete this R-Matrix approach  one has to remark that, according to present derivation, MQDT 
does provide a relation connecting collision matrices of two multichannel systems which differ only in 
interaction from the eliminated channel, (3). Therefore the derivation can be extended also to the case when 
the eliminated channel  of both reaction systems is open; both logarithmic derivatives  and  refer now 
to positive energy but they will correspond  to different interactions in unobserved (eliminated) -channel. 
The "defect" scattering  phase shift 
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nδ  becomes complex, 0Im >nδ , and  is not more unitary. This form 
of the MQDT does connect two multichannel systems with identical dynamics in the internal regions of the 
configuration space but having  different interactions  in the eliminated channel regions of configuration 
space  (e.g., monotone- and resonant-logarithmic derivatives for the same -channel of the two reaction 
systems). If the logarithmic derivatives of the eliminated  channel do coincide, 
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collision matrices of the two multichannel systems are identical, as it should be. If the n-channel logarithmic 
derivative of one reaction system is zero (decoupling -channel from that multichannel system), one obtains 
the reduced collision matrix (analogue of reduced R-Matrix) which includes generalization of the threshold  
Cusp Theory. 
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