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Using the Scale Relativity Theory, Langmuir’s double layer plasma and the heat transfer in nanofluids 
were analyzed by means of the “ballistic” phonons. 
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 1. INTRODUCTION.  

Since the last twenty years an increasing interest on the fractal approach on microphysics has been 
observed [1-9]. The Theory of fractal space-time or the Scale Relativity Theory (SRT) [1] extends Einstein’s 
principle of relativity to scale transformation of resolution. The introduction of non-differentiable trajectories 
in physics dates back to the pioneering works of Feynman, who demonstrated that the typical quantum 
mechanical paths are non-differentiable curves of fractal dimension 2 [10].  

2. THE FRACTAL STRUCTURE OF SPACE-TIME 

The new geometric description of space-time is based on the explicit dependence of physical laws on the 
investigation scale and on the introduction of a non-differentiable space-time varying with resolution, i.e. 
characterized by its fractal properties.   

Three main consequences arise from this approach: i) The geodesics of a non-differentiable space-time 
are fractal and in infinite number: this leads one to use a fluid-like description, v = v [x(t), t], and to add new 
terms in the differential equations of mean motion; ii) The geometry of space-time becomes fractal [2-4], i.e. 
explicitly resolution dependent: this allows one to describe a non-differentiable physics in terms of differential 
equations acting in the scale spaces. In this framework, the Planck length-time scale becomes a minimal 
impassable scale, invariant under dilatations, and the cosmic length-scale (related to the cosmological constant) 
a maximal one [5, 6]. An attempt to construct a generalized SRT includes non-linear scale transformations and 
scale-motion coupling. In this last framework, one can reinterpret gauge invariance as scale invariance on the 
internal resolutions. In such a context, each elementary displacement is described in terms of the sum, 
dX dx dξ= +  of a mean classical displacement dx vdt=  and of a fractal fluctuation dξ  whose behavior 
satisfies the principle of SRT. The fractal properties of the considered curve is characterized by 0dξ =  and 

2 2d Dξ = dt , with D the fractal dimension. The existence of this fluctuation implies the introducing of a new 

second order terms in the differential equation of motion; iii) Time reversibility is broken at the infinitesimal 
level: this can be described in terms of a two-valuedness of the velocity vector, with the complex 
representation, ( ) ( )2 2v v i v v+ − + −⎡ ⎤ ⎡= + − −⎣ ⎦ ⎣v ⎤⎦ .  

These three effects can be combined to construct a complex time-derivative operator  
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td dt iD= ∂ + ⋅∇ − ΔV  (1)

where the mean velocity dx dt=V  is now complex and D is a parameter characterizing the fractal behavior of 
trajectories. 

Since the mean velocity is complex, the same is true for the Lagrange function, then for the generalized 
action S as well. Setting 

0
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2
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⎝ ⎠

S
, (2)

the velocity V  has the expression [1] 

( )2 lniD ψ= − ∇V  (3)

and the Newton’s equation of dynamics 0m d dt U= −∇V can be integrated in terms of a generalized 
Schrödinger equation [1]: 
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ψ ψ ψ
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This provides us with a theory of self-organization, since the solutions of this equation yield probability 
densities, which are interpreted as a tendency for the system to make ordered structures.  

In the present paper, using the SRT, Langmuir’s double layer plasma and the heat transfer in nanofluids 
by means of the “ballistic” phonons are analyzed. 

3. LANGMUIR’S DOUBLE LAYER PLASMA 

A double layers is a local region that can sustain a potential difference. It consists of two adjacent layers 
with opposite net charge. Such a structure has an internal electrical field althougt as a whole arrangement it is 
globally neutral. The stability is determined in a self-consistent manner by particles dynamics in the electrical 
field set up by the net charge distribution [11]. The one dimensional (1D) potential distribution in the 
Langmuir’s double layer (DL) plasma is given by Poisson equation [11, 12] 

1/ 2 1/ 2
0 0 0 0[2 ( ) / ] [2 ( ) / ]

i e
xx

i e

j jV
e V V m e V V mε ε

∂ = −
− +

 (5)

where the parameters which appear in (5) have the usual significances from [11,12]: me,i – electron and ion 
mass,  je,i – electron and ion current densities through the structure, V0 – double layer potential, e – elementary 
charge. 

Let us consider the approximation 0/V V 1≤ and thereby equation (5) with substitutions: 

1/ 2

0 0

( )
2

i ij ma
eVε

=      ;           1/ 2

0 0

( )
2

e ej mb
eVε

=  (6a,b)

can be approximate as a power series in V/V0 : 

2 3 4

0 0 0 0

1 3 5 35( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) [( ) ]
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V V V VV a b a b a b a b a b O
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∂ ≈ − + + + − + + + − + 5

0

V
V

 (7)

The restriction  determines the Langmuir condition for the critical currents densities bellow which 
double layer cannot be maintained:

a b=
( )1/ 2

e i i ej j m m= . This condition shows also that the electronic 
component has a major contribution to the electric current in double layer. 

In the framework of SRT, we can build a field theory with spontaneous symmetry breaking using the 
following substitutions: 
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x ix→   , V i  V→ (8a,b)

In this approach, space-time becomes fractal, therefore, the x coordinate has a dynamic signification 
(particularly by time) and V variable a probabilistic one [1-4, 9].  

Using the relation between the spatial length l and the potential drop generating this arrangement, 
and (6b) we can obtain the Child-Langmuir relation 2

0( / )l V a= ( )1/ 2 3/ 2 2
0 0(2 )e ej e m V dε=  [11]. 

Let us apply the variational principle 0Ldv∂ =∫ , integrating over the whole volume, to the Lagrangean 

density: 

( )21 ( )
2

L fζ ϑ= ∂ − f  (9)

with the potential 
4 2

( )
4 2
f ffϑ

⎛ ⎞ ⎛
= −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠
 (10)

We made the substitution: 
1/ 2

0

a x
V

ξ
⎛ ⎞

=⎜ ⎟
⎝ ⎠

   ,       
1/ 2

0
8 ,
5

V V⎛ ⎞= ⎜ ⎟
⎝ ⎠

f  (11a,b)

and neglect all the higher order terms in V/V0.  
The equation (7) with the substitutions (11a-b) takes the form 

fff −=∂ 3
ζζ  (12)

From the Lagrangean density (9) it result the energy: 

( )21( ) [ ( )]
2

f d fζε ζ ϑ
∞

−∞

= ∂ +∫ f  (13)

In order to find the explicit form of the solution of (12), we multiply it by fζ∂  and subsequently 
integrate overζ ; this yields: 

( )
2 42

0
1 1
2 2 4

f f
2

f fζ∂ = − + +  (14)

where 0f is an integrate constant. From this we have 

0

4
0 2

0

,

2

f df
f f f

ζ ζ− =

− +
∫  

(15)

0ζ  is a constant of integration.  
To this general solution corresponds, for an arbitrary 0f , an infinite value of the energy ( )fε . To obtain 

the solution with finite energy, we make use of the boundary conditions [13] leading us to . Replacing 
this value into (15), the solution 

0 1/ 2f =
( )kf ζ of the field equation (14) with a finite energy is: 

( )0 01( ) ( ) tanh[ ]
2kf fζ ζ ζ ζ ζ= − = −  (16)

This is called the kink solution and was also obtained using a nonlinear diffusion equation [14]. 
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Let us define the energy relative to an equivalent “vacuum state”, considered as a space without any 
spatial gradients, using the formula: 

( ) ( )∫
∞

∞−

−+∂=− ]1
4
1

2
1[)()( 222 ffdff v ζζεε  (18)

Since all the terms in the right hand side in (19) are positive, due to the finiteness of this energy it results 
that, at ±∞→ζ  

0=∂ fζ    ,        ( ) 01
4
1 22 =−f  (19)

It follows that at ±∞→ζ the function )(ζf tends to its “vacuum” value . 1fν → ±

Considering the expression and the expression for  in (19) we obtain the energy of the kink 
relative to the vacuum: 

1=vf kf

( ) ( )
3

32
=− vk ff εε  (20)

Therefore the kink solution was obtained by a spontaneous symmetry breaking, as a sudden transition 
from “vacuum state” to spatial ordered state (arrangement of double layer type). 

We can extend now the topological analysis and assume that the kink solution can be considered as 
mapping of a spatial zero-sphere S0, taken at infinity onto the vacuum manifold of the model given by (13). 
The homotopy group for this model is 0 0 2( )Z ZΠ = , i.e. the model gives rise to two solutions: a constant 
solution vf and the kink solution. The associated topological charge is: 

1 1 1( ) [ ( ) ( )]
2 2 2

dfQ j d d f f
d

ζ ζ ζ
ζ

∞ ∞

−∞ −∞

= = = +∞ −∫ ∫ −∞  (21)

The “vacuum solution” and the kink solution can be characterized by 0Q = and , respectively (the 
result it obtained by an adequate normalization of f). Since (12) is a equation of Ginzburg-Landau type, it 
follows that Q=0 and the vacuum solution describes the behavior of the electron-ion pair in the ground state, 
while Q=1 and the kink solution describe the electron-ion pair behavior for a disturbed state. The results can be 
interpreted in a similar way as in [16-18]: the kink solution (18), assimilated in the field theories with an 
instanton [18], broke the “vacuum” of the plasma, generating electron-ions pair by a charge separating 
mechanism. The pair broken time is τ=l2/Da. [14, 19]. If we continue the differentiation of the kink solution 
(Fig. 1a) we obtain the electric field distribution (Fig. 1b) 

1Q =

( )02

1 1( )
2 cosh [ ]

2

rE fζζ
ζ ζ

= − =
−

 
(22)

and the charge density distribution (see Fig. 1c): 

( )

( )

0

03

sinh[ ]
2( )

cosh [ ]
2
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ζ ζ

ζ
ζ ζ

−

= − =
−

. (23)

All theoretical profiles are in concordance with those obtained in experiments [19,20]. 
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Figures 1a-c – Distributions of the potential, field and charge density in the Langmuir double layer. 

Numerical application: Using parameters of the double layer from the experiments described in 
[14,15,18-20]: potential 0 40V V≈ , double layer current , electronic temperature  ionic 

temperature electronic-ionic mass ratio 

310I −≈ A ,

eV

5eT eV≈
22.5 10 ,pT −≈ ⋅ ( )1/ 2

1 270e p Ar
m m ≈ , electronic neutral collision 

frequency, 9 110en sν −= , length of the discharge tube, , we obtain the pair breaking time of the 

double layer structure

250 10d −= ⋅ m
2 35.9 10al D sτ −= = ⋅  (with ( ) ( )1/ 2 21 0.57a e e p p eD D m m T T m⎡ ⎤≈ + ≈⎣ ⎦ / s  and 

( ) 2155 /e B e e enD k T m m sν= ≈ ), in a good agreement with the experiment τexp=4*10-3s. With Child – 

Langmuir relation we obtain the width of double layer , value that agree with experiment 
[20].  

23.9 10l −≈ ⋅ m
2

exp 4 10l m−≈ ⋅

4. HEAT TRANSFER IN NANOFLUIDS BY MEANS OF THE “BALLISTIC” PHONONS 

 Thermal cnoidal oscillation modes of the nanoparticle-liquid (nP/L) interface show that this interface is 
ordered as a two dimensional (2D) non-linear Toda lattice vortex [21-25]. Since through the relation 
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( )2
0T T cn u≡  minima and maxima of the thermal field overlap with zeroes ( minima and maxima of the thermal field overlap with zeroes (≡ )2 1 2m K inK ′+ + and 

poles , m, n =0, ±1, ±2, …of the elliptic function  of complex argument ( )2 2 1mK i n K ′+ + 2cn u  [26], 

',   z ,   K Ku z x iy
a K

= = + =
b
a

 (24 a-c)

/ 2

2 2 1/ 2
0 (1 sin )

dK
k

π ϕ
ϕ

=
−∫  

/ 2
2 2

2 2 1/ 2
0

' ,
(1 ' sin )

dK k
k

π ϕ
ϕ

= +
−∫ ' 1k =  (25 a,b)

a, b are lattice constants along Ox and Oy directions. 
The potential of the vortex lattice is define as the real part of the complex action 

ln[ ( ; )]S mD cn u k=  (26)

In Figs. (2a-c) it is represented the spatial dynamics (x,y) of the vortex lattice (equipotential curves), 
given the relation (26) for k2=0.1; 0.5; 0.9, respectively.  

                                   

 

 a  b 

 c 

Figures 2(a-c) - The dynamics of the lattice represented by equipotential curves. 
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It results that in the limit cases k→0 and k→1 the ‘vortex streets’ are generated along Ox direction, and 
Oy direction, respectively. Only in these limits, the vortex lattice gets coherence properties and the heat 
transport in nP/L interface works properly.  

Let us define the “thermal implse”: 

d SP
d z

=  (27)

or explicitly 

( ) ( ; ) ( ; )
2 ( ; )

K k sn u k dn u kP mD
a cn u k

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (28)

where sn and dn are the elliptic functions. Since only real quantities have direct physical meaning, in the 
following we consider only the real part of the expression (28). Using now the relations of transformation for 
the elliptic function of complex argument into elliptic functions of real argument and introducing the notations 
[26] 

1 1

1

( , );   ( , '); ( , );   ( , ');

( , );   ( , '); ;   

s sn k s sn k c cn k c cn k
K Kd dn k d dn k x y
a a

α β α

α β α β

= = = =

= = = =

β
 (29)

Relation (28) becomes: 
2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1

2 2 2 2 2 2 2 2
1 1 1 1

[ ( ) ( )]( ) ( ; ) ( ; ) ( )Re
2 ( ; ) 2 (1 )( )

scd c d k c s s d d c k sK k sn u k dn u k K kP mD mD
a cn u k a d s c c s d s d

⎡ ⎤ + − −
= =⎢ ⎥ − +⎣ ⎦

 (30)

Then, in agreement with the previous observations, the following degenerations are imposed: 
i) k=1, k’=0, K=∞, K’=π/2 for Px, i.e. 

2 2
sinh cosh

2 cosh sinx
mDP
b

π α α
α β

=
−

, ,   
2 2

x y
b a

π πα β= =  (31 a-c)

ii) k=0, k’=1, K=π/2, K’=∞ for Py, i.e. 

2 2 2 2
sin cos

2 cos cosh sin sinhy
mDP
a

π γ γ
γ δ γ

=
+ δ

   ,   ,   
2 2

x y
a b

π πγ δ= = . (32 a-c)

The “thermal vortex field” Ω  will have, through 1m−= ∇×Ω P , the non-zero component 

2 2 2 2 2 2

2 2 2 2 2 2 2
1 2cos2 (cos cosh sin sinh ) sin 2 1 sinh2 sin2

4 (cos cosh sin sinh ) (cosh sin )z
D
a a b

π γ γ δ γ δ γ α
γ δ γ δ α β

⎡ ⎤+ +
Ω = −⎢ ⎥

+ −⎣ ⎦
2

β  (33)

Averaging, 

0 0 0 0

b a b a

z zdS dSΩ = Ω∫ ∫ ∫ ∫ , (34)

relation (34) becomes 

2 2

cosh cos
1 ln

2 2cos cosh
2 2

z

a b
D b b a

b aab a
a b

π π
π

π ππ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞+⎪ ⎪⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠⎢ ⎥Ω = −⎨ ⎬
⎛ ⎞ ⎛ ⎞⎢ ⎥⎪ ⎪⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

 (35)

In Fig. 3 it is shown the dependence of the mean “thermal vortex field” on the lattice lengths a,b. 
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Figure 3. The dependence of the mean “thermal vortex field” on the lattice lengths a,b 

This means that the nP-L interface behaves like a nonlinear vortex lattice, with acoustic and optical 
component respectively (the first and the second term of the relation (35)) of the phononic spectrum (for details 
see [22-24]). The field diverges for a=b, specifying an intrinsic anisotropy of nP/L interface. The existence of 
this anisotropy determines an anisotropy of the heat transport in nanofluides ([22-24]). For a>>b (35) takes the 
approximate form: 

2 .
2z

D
a
π

Ω ≈  (36)

Then the optical component of the phononic spectrum is missing. We assume that in nanofluids the heat 
moves in a ballistic manner (by means of the “ballistical” phonons). These results are in concordance with the 
experiment [22-24]. 

5. CONCLUSIONS  

i) In the framework of a fractal space-time theory, it is possible to establish the distribution of the 
electrical potential, field and charge density for the Langmuir’s plasma double layer. The double layer 
can be assimilated, as in the field theory, with a breaking of the “vacuum” state of the plasma 
generating pairs of electron-ions. A numerical approach gives the theoretical values for the pair 
breaking time of the double layer structure in agreement with the experiment;  

ii) A theoretical approach of the heat transport in nanofluid using the scale relativity was developed. In 
such context, it was shown that the nP/L interface self-structurates as a non-linear Toda vortex lattice. 
The intrinsic anisotropy and the phononic spectrum components have been shown. In our opinion, the 
heat transfer in nanofluid is done by means of the “ballistical” phonons. 
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