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Necessary conditions for normal efficient solutions to a class of multiobjective fractional variational 
problems (MFP) with nonlinear equality and inequality constraints are established using a parametric 
approach to relate efficient solutions of a fractional problem and a non-fractional problem. Based on 
these normal efficiency criteria a Mond-Weir type dual is formulated and appropriate duality 
theorems are proved assuming ( ,bρ )-quasiinvexity of the functions involved.  
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1. NOTATION AND STATEMENT OF THE PROBLEM  

Let R  be the n-dimensional Euclidean space. Throughout the paper, the following conventions for 
vectors in R  will be adopted. 

n

n

For vectors ,  the relations ),...,( 1 nvvv = ),...,( 1 nwww = ,, wvwv <= v w, and v w≤ ≤  are 
defined as follows 

niwvwv ii ,1, ==⇔=  ;  niwvwv ii ,1, =<⇔< ; 

niwvwv ii ,1, =≤⇔≤ ;  wuwv ≤⇔≤  and  .vu ≠

 Let  be a real interval and ],[ baI = ×= Ifff p :),...,( 1 R ×n R R ,  →n p :),...,( 1 pkkk =

×I R R R , ×n →n p ( )mggg ,...,1= :I×R ×n R R , →n m ( )qhhh ,...,1= :I×R R R  be twice 

differentiable functions.  
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Similarly,  and  denote the xxx hgk ,, xxx hgk ,, nqnmnp ××× ,,

x ,(IC )n

 matrices of the first partial 

derivatives of k, g and h respectively, with respect to x and . Let  R  denote the space of piecewise 

smooth (continuously differentiable) functions x with the norm ∞∞ += xx : Dx , where the differential 

operator D is given by  
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Dxu =  ⇔ ( ) ( ) ( )d
t

a
x t x a u s s= + ∫ , 

where  is a given boundary value. Therefore, )(ax tD d / d= , except at discontinuities. 
Consider the multiobjective variational problem  

(MFP) .
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Assume that  for all 0dt),,( >∫ xxtki
b

a
.,.,2,1 pi =   

Let D R{ ,(ICx∈= }Itxxthxxtfbbxaaxn ∈∀=≤== ,0),,(,0),,(,)(,)() 00  be the set of all 
feasible solutions  to  (MFP). 

2. PRELIMINARIES. THE MULTIOBJECTIVE VARIATIONAL PROBLEM 

In this section we recall some definitions and auxiliary results that will be needed later in our 
discussion of efficiency conditions and Mond-Weir duality  to (MFP). 

Consider the multiobjective variational problem 
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The domain of (MP) is also D. 
 Definition 2.1. A feasible solution D  is said to be an efficient solution to (MP) iff for all feasible 

solutions 
∈0x

∈x D 
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Let R R R be a scalar continuously differentiable function and consider now the scalar 
variational problem 

×Is : ×n →m

(SP)
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Definition 2.2. The optimal solution D to (SP) is called normal if ∈0x 0≠λ .  
According to this definition, without loss of generality, in what follows we  can take  .1=λ
The next result gives necessary Valentine’s conditions [4] for the optimality of to (SP). 0x
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Theorem 2.1 (Necessary Valentine’s conditions). Let  be a (normal) optimal solution to (SP) and 
let s, g and h be continuously differentiable functions. Then there exists a scalar and piecewice smooth 
functions  and   satisfying the conditions 

0x
λ

)(0 tμ )(0 tυ

(VC)

0 0 0 0 0 0 0 0
x x x

0 0 0 0 0 0 0 0
x x x

0 0 0 0

s (t, x , x ) (t) 'g (t, x , x ) (t) 'h (t, x , x )
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dt
(t) 'g(t, x , x ) 0, (t) 0, t I, ( 1).

⎧λ + μ + υ
⎪
⎪= λ + μ + υ⎨
⎪
⎪ μ = μ ≥ ∀ ∈ λ =⎩

=

 

We have  
Lemma 2.2 (Chankong, Haimes [1]). D is an efficient solution to problem (MP) if and only  if 
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Lemma 2.3. If is a (normal) optimal solution to the scalar problem  P , then there exist a 
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Theorema 2.4. Let D be a normal efficient solution to  (MP). Then there exist a vector R  
and piecewise smooth  functions R  and R  that satisfy the Valentine’s  conditions 
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Let R and a function ∈ρ :b XX × ),0[ ∞→ . Put 
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txxthxH d),,()(  
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Definition 2.3. The function  H is said to be (strictly) ),( bρ -quasiinvex at  if there exist vector 

functions : R  with 

0x

η →×× XXI n 0))(),(,( =η txtxt  for  and )(0 t)( xtx = θ : XX ×  →  R n  such that 
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    ⇒
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3. EFFICIENCY NECESSARY CONDITIONS FOR  (MFP)        

Consider now the problem  
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Consider now the  problem  
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Lemma.3.1 (Jaganathan [2]). D is optimal to (FPR) i  if and only if is optimal to (SPR) i .  ∈0x 0x



5 Multiobjective fractional problems 

Theorem 3.2. D is an efficient solution for (MFP)  if and only if it is an optimal solution for each 
of the  problems (SPR) , 

∈0x

i pi ,1= . 

Definition 3.1.  D is said to be a normal efficient solution of (MP)  if it is a normal optimal 
solution to at least one of the scalar problems (FP) , 

∈0x
)( 0xi pi ,1= . 
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Theorem 3.3 (Necessary efficiency conditions). Let D be a normal efficient solution to problem  
(MFP). Then there exist R  and piecewise smooth functions R  and R  that 
satisfy the conditions 
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Theorem 3.4 (Necessary efficiency conditions). Let be a normal efficient solution to problem 
(MFP). Then there exist R  and piecewise smooth functions R  and R n  that 
satisfy the conditions 
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4. MOND-WEIR TYPE DUALITY  

Let },...,{ 1 rJJ  be a partition of  and },...,1{ m },...,{ 1 rKK  a partition of . Consider 

functions R . We associate with (MFP) the multiobjective variational problem (MFD)  

},...,1{ q

,(, ICvy ∈ )n
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          Denote by  π (MFP) )(xπ=  the value of problem (MFP) at ∈x D and let δ(MFD)  = ),,,( υηλδ y  be 

the value of the dual (MFD) at Δ∈υηλ ),,,(y , where Δ is the domain of  (MFD). 
Theorem 4.1 (Weak duality). Let x  and ),,,( vy μλ  be feasible points of problems (MFP) and 

(MFD). Assume that are satisfied the conditions : 
a) for each pi ,1=  we have  ..,0)(,0)( XxxKxF ii ∈∀>>  
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       Then  π (x) ≤  δ  is false. ),,,( vy μλ

Theorem 4.2 (Direct duality). Let be a normal efficient solution to  the primal (MFP) and assume 
the hypotheses of Theorem 4.1. Then there exist R  and piecewise smooth functions R  

and R  such that   is an efficient solution to the dual problem  (MFD) and, 

moreover, π ( ) = δ  . 
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Theorem 4.3 (Converse duality). Let be an efficient solution to the dual problem 
(MFD) and assume the conditions: 
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The proofs will appear in [3].  
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