
      THE PUBLISHING HOUSE  PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, 
      OF THE ROMANIAN ACADEMY Volume 9, Number 1/2008, pp. 000–000 

CONTROL STRATEGIES FOR OBSTACLE AVOIDANCE BY REDUNDANT 
MANIPULATORS 

 Cornel SECARẶ 

Institute of Solid Mechanics, Ctin Mille 15, 010141 Bucharest 
Email: corsecus@yahoo.com 

In redundancy resolution, obstacle avoidance is considered as a performance criterion and is usually 
performed using specific solution offered by Gradient Projection or Extended Jacobian Methods 
while the end-effector follows a pre-determined path in workspace. The paper starts with an 
introduction section followed by the redundancy resolution methods presentations in second and third 
sections, then simulation results illustrating the methods are presented in fourth section and the last 
section contains the conclusions regarding the methods comparison.   
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1. INTRODUCTION  

The need for dexterous and versatile robotic manipulations has led to the development of kinematic 
redundant arms. These particular serial systems have more joints than necessary to achieve a specified task 
of the manipulator’s end-effector. Thus, an infinite number of system’s configurations correspond to the 
same end-effector’s configuration (position and orientation) and the user can chooses the better configuration 
improving the robot’s dexterity while end-effector accomplishes the desired task. 

Redundancy allows manipulators to achieve complex tasks by taking into account additional 
constraints. These constraints are comprised in a constraint function, which limits, globally or specifically, 
the manipulator configuration using adjustable parameters whose values are determined by computer 
simulations. The choice of the constraint function is done according to some constraint criteria such as: 
obstacle avoidance, maneuverability improvement, limiting of speed/force values or minimization of joint 
torques. Obstacle avoidance is one of the most important domains of redundant manipulators application 
because of non-redundant structures incapacity for collision avoidance with workspace’s obstacles, [3], [4], 
[6]. 

The direct geometric model gives the relation between end-effector configuration vector x and joint 
coordinates (angles vector θ, in rotation joint case): 

T T
1 2 1 2( );  [   . . .  ] ;  [   . . .  ] .m nf x x x= = = θ θ θx θ x θ  (1.1) 

where n is the number of degrees of freedom and m is the workspace dimension. 
If one differentiates the direct geometric model, it one obtains the direct differential model: 

( ) ,δ = θ δx J θ  (1.2)

where ( ) ( )fδ θ
θ =

δθ
J  is the manipulator Jacobian matrix. 

For non-redundant manipulator structures, n = m, the inverse differential model is: 
1 .−δ = δθ J x  (1.3)
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In the case of redundancy, n > m, two basic methods for obstacle avoidance can be distinguished in the 
literature. Gradient Projection Method (GPM) formulates the obstacle avoidance problem as an optimization 
problem. While the end-effector follows a given path by means of the least norm solution, some performance 
criteria are carried out by means of the null space solution that yields self-motion of the links in the joint 
space only, without any end-effector motion effect. Extended Jacobian Method (EJM) defines additional 
constraints including obstacle avoidance for the given task until the relationship between the joint and the 
space becomes non-redundant. 

2. GRADIENT PROJECTION METHOD  

The Gradient Projection Method was first introduced by Liegeois [1] to utilize the redundancy to avoid 
mechanical joint limits. Extending the pseudoinverse solution, a general solution to the inverse kinematics 
problem can be expressed as: 

( - )+ +δ = δ +θ J x I J J z  (2.1)

where δθ is the joint angular differential variation, ; 1 ×ℜ∈δ nx ( ) 1TT  −+ = JJJJ
nm× 

1 ×ℜ∈δ mx

is the Moore-Penrose 

pseudoinverse of manipulator Jacobian matrix, ; ; δx is the differential variation of 
end-effector position (computed in closed-loop), δx(k) = x(k) - x(k-1) where: x(k) - imposed position at the 
moment kT; x(k-1) - achieved position at  previous moment (k-1)T, ; I – J+ J = P is the 
“projector” matrix, ; and z is an arbitrary vector, 

mn×ℜ  ∈J

1n

+ ∈J ℜ

nn×ℜ∈  P ×∈ℜz . 
The first term on the right of equation (2.1) is the least norm solution. The second term is the 

homogeneous or null-space solution, which is orthogonal to the first term. The homogeneous solution is 
called the self-motion of the manipulator and produces no end-effector motion. For a desired end-effector 
trajectory, a homogeneous solution is selected such that the resulting robot configuration optimizes a 
performance measure. To optimize a performance criterion h(θ), z is chosen to be: 

( )K h θ= ± ∇z  (2.2)

where K is a positive real number and is the gradient of . A positive sign in equation )(θh∇ )(θh (2.2)
indicates that the criterion is to be maximized; a negative sign indicates minimization. 

For the performance function construction a potential repulsive field is used, [6]. Khatib originally 
proposed potential field method for on-line collision avoidance for a robot with proximity sensors. This 
method treats the robot as being under the influence of a virtual potential field U. The potential function is 
defined as the sum between an attractive potential, which attracts the robot toward the goal configuration, 
and a repulsive potential, which take off the robot of obstacles, [4].  

The use of potential fields is a strong and efficient tool to solve the collision avoidance problems in the 
workspace. Virtual potential fields generated by the restriction surfaces are introduced. Links of the 
manipulator are subjected to potential field forces arising from the obstacles; these forces induce a virtual 
repulsion from the obstacle surfaces. The basic idea of following method is application of a repulsive 
potential field in p Control Points on the links of manipulator. 

One choice for the mathematical expression of the repulsive potential field is: 
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 (2.3)

where η is a positive scaling factor, ρ is the minimum distance from robot to obstacle, ρ0 is a positive 
constant called distance of influence. 

The constraint function z is defined as the sum of the potential repulsive forces that induce a virtual 
repulsion from the restriction surface: 
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= ∑z F  (2.4)

where p is the maximum number of Control Points and the potential repulsive forces Fj have the following 
mathematical expression: 

TU U U
 .  .  . ;  1,2, , ; 1,2, ,j j j

j
i i n

i n j
∂ ∂ ∂⎡ ⎤

− = − − = =⎢ ⎥∂θ ∂θ ∂θ⎣ ⎦
F … … p . (2.5)

The computation procedure is composed of the following steps [6]: 
• Determine the Control Points where the repulsive potential forces actions. 
• Express, relative to the base frame, the coordinates of this configuration Control Points depending 

on the joint coordinates. 
• Write the relations that specify the distances between the configuration control points and the 

restriction surface. 
• Compose the potential repulsive fields and determine the potential repulsive forces (equations (2.3) 

and (2.5)). 
• Write the equations of the direct kinematic model for the given manipulator (equation (1.1)). 
• Determine the constraint functions z by summing the potential repulsive forces (equation (2.4)). 
• Obtain the Jacobian matrix J and determine the pseudo-inverse matrix J+. 
• Solve equation (2.1) and determine the joint angular differential variation δθ. 

3. EXTENDED JACOBIAN METHOD 

The Configuration Control method augments the manipulator forward kinematics with a set of 
kinematic functions in Cartesian or joint space that reflects the desired additional task, [5]. Let 

be the forward kinematic model of the robot which maps the ( )E Ef=x θ 1n×  joint displacement vector θ to 
the  end-effector coordinate vector xE. Let 1m× ( )c cf=x θ  define a set of r (= n – m) kinematic functions. 
The augmented kinematic model is then given by: 
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where x is the 1  configuration vector. The user can then set up the desired additional task by imposing 
the constra ( )cdx , w ( )cd tx  is the user specified desired time variation of xc. The 
configuration control problem is then to ensure that the configuration vector x tracks the desired trajectory 

 using a kinematic or dynamic control law. 
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The direct differential model obtained from the direct geometric model presented in (3.1) is:  
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where JE is the end-effector Jacobian matrix, Jc is the additional constraints Jacobian matrix and J is the 
extended Jacobian matrix. 

In a special case when the desired additional task is to optimize an objective function, this method is 

called the Extended Jacobian Method, introduced by Baillieul [2]. One defines ( ) T
c

gf ∂
θ =

∂θ
N , where g(θ) is  
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the scalar kinematic objective function to be optimized and N is the n r× null space matrix of J that 
corresponds to the self-motion of the redundant manipulator: 
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 (3.3)

Ja is an m-squared matrix of the first columns of J and Jb is an m r× matrix of the remaining columns. 
The necessary condition for optimality of g(θ) is fc = 0. Thus, if we define the desired trajectory as 

 and use the configuration control to track , then the kinematic optimization problem can be 
solved. 

( ) 0cdf t = ( )d tx

Transpose Jacobian Matrix gives a resolution method of inverse kinematic problem (redundancy) [3]:  
T (θ )δ = εθ J K . (3.4)

where K is a positive definite matrix used for variation of the additional constraints effect on the constraints 
imposed to the end-effector and ε is the error, dε = −x x .  

Because the right matrix K choice for the error accomplished is difficult, another method for inverse 
kinematic problem resolution consists in matrix K elimination and Transpose Jacobian application until 

. For the k-th sampling step of end-effector’s task the control process is: dε ≤ ε
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(3.5)

4. COMPUTER SIMULATION RESULTS 

The propose of following application is to generate the references (positions and orientations) along 
the contour of a circle with radius r, whose surface is considered to be restrictive for all elements of a 
SCARA like planar redundant manipulator with revolute joints (fig. 4.1), having n = 4 degrees of freedom in 
2D Cartesian space (m = 2) [6].  

The initial position of the manipulator is given by: 

θ0 = [30o 30o 60o 30o]T 

l0 = l1 = l2 = l3 = l4 = 2;   l5 = 1;   R = 2;   r = 1;   α0 = 0 
(4.1)

where θ0 – the vector of initial joint coordinates; l0, l1, l2, l3, l4, l5 – the lengths of the links, R – the radius of 
end-effector positions generation, r – the radius of the restriction circle; α0 – the initial angular position (at 
moment t = 0). 
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Fig. 4.1. Initial manipulator position [6]. 

 
The restriction surface is a circle with imposed values for both radius r and its centre coordinates xc , yc. 

The end-effector is the link l5 and the coordinates of its extremities (ME and MR points) are generated 
according to the following relations: 

xE = xc + R cos(α0 + k Δα) 

yE = yc + R sin(α0 + k Δα) 

xR = xc + r cos(α0 + k Δα) 

yR = yc + r sin(α0 + k Δα) 

(4.2)

where: Δα - the angular step of generation; k – the sampling step of generation; EcMO = R; RcMO = r. 
Using the Gradient Projection Method, the Control Points of the repulsive potential field are 

positioned in the 3-th and 4-th joint of manipulator. For the Extended Jacobian Method, the objective 
function is the sum of the inverses of the distances between the 3-th and 4-th joint of manipulator and the 
restriction surface.  

The Gradient Projection and Extended Jacobian methods used to simulate the kinematic behaviour of 
the given redundant manipulator offers the possibility to study the influence of some parameters on 
manipulator behaviour, as follows: η - the positive scaling factor and ρ0 - the distance of influence of 
repulsive potential field and the imposed error εd, respectively. 

The interpretation of computer simulation results is made considering the following qualitative aspects: 
• the manipulator links should not intersect the restriction surface for a complete 3600 tracking of its 

contour; 
• the joint coordinates should have small variations; 
• for this case study, the direction of contour tracking is imposed by the chosen initial position. 

To achieve this qualitative requirements one uses computer simulation for various values of the input 
parameters. The simulations were realized using Matlab R6 program and the results are illustrated in the Fig. 
4.2 follow as: using gradient projection method with potential repulsive filed (first figure) and using 
Extended Jacobian method (second figure).  
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Fig. 4.2. Computer simulations 

5. CONCLUSIONS 

One advantage of GPM is that works in real time. Computational time required is sensible smaller 
than using the EJM that requires expensive computational resources because of increasing Jacobian 
dimension and of a greater number of iterations necessary for optimal solution identification. The most 
important advantages of the EJM are the idea having a square Jacobian matrix (thus, the use of a generalized 
inverse such as Moore-Penrose pseudoinverse is eliminated) and the possibility of an imposed error value 
selection (which can guarantee good end-effector task accuracy while obstacle avoidance is certainly 
accomplished). In GPM, choice of η and ρ0 parameters is difficult and don’t guarantees optimal solution 
identification. The most common disadvantages of both methods consist in difficult constraint expressions 
choosing (criteria must be differentiable and have complicated expressions in symbolic forms) and in 
algorithmic singularities introduced by these additional constraints. These two disadvantages are eliminated 
by new redundancy resolution approaches, which consist in direct search techniques, neural networks or 
genetic algorithms.  However, these methods require expensive computational resources and not deal with 
real-time applications.  
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