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This paper presents a general computer-aided method of obtaining the influence coefficients for any 
statically determined or undetermined straight beams of a constant cross section, modeled as a p-
lumped beam for all the combinations of loading and boundary conditions, unrelated of how big p is. 
The method can easily be developed into a non-constant cross section. We present the comparisons 
with known cases in field literature and, for example, we give the influence coefficients matrix for 
eight grades of freedom. Noting that the direct computation formulas for the influence coefficients are 
extremely infrequent, the great potential of this Computer-Aided way to acquire the influence 
coefficients can be understood. 
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1. INTRODUCTION 

When, in a very large and thorough study about the elasto-dynamic behavior of the real multi-branched 
mechanisms [1], I wanted to analyze the bending effect of the main camshaft on the entire system, I realized 
that it is problematic to do this for a large number of branches. Theoretically, a lumped beam model seems to 
be very suitable, but practically it was limited to a very small number of branches. To study the bending 
behavior of a lumped beam, the influence coefficients are to be known. So, for a real mechanism with p 
branches with the main camshaft modeled as a (p+1)-lumped beam under certain loading and boundary 
conditions, a (p+1) square influence coefficients matrix is to be known. It’s well known that the specialty 
literature [4] offers computing methods for only a very small number, p, of concentrated masses and not for 
any kind of boundary conditions. Thus, to find a way to compute influence coefficients matrix for a lumped 
beam with any finite number, p, of concentrated masses and in any boundary conditions, appears to be very 
challenging. 

In this paper, our response to this challenge is presented. We chose to do this by using the method of 
initial parameters [1, 4]. 

2.  FLEXIBILITY INFLUENCE COEFFICIENTS  

 In the literature, the concept of "influence coefficients" denotes both the stiffness influence 
coefficients and the flexibility influence coefficients, which are intimately related - they describe the manner 
in which the mechanical system deforms under the forces. We will deal only with the flexibility influence 
coefficients, which will be named, shortly, the influence coefficients. To define the influence coefficients, let 
us consider a simple discrete system, with no damping, consisting of p masses  occupying the position   im

, 1,ix i = p  and being in equilibrium. Forces jF  act upon each mass  (this can be assumed without loosing 
generality) so that the masses undergo displacements . Thus, the flexibility influence coefficient is the 
displacement of the point 

im

iz ije

ix  due to a unit force 1jF =  applied at jx . Note that the flexibility influence 
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coefficients  have the appropriate units corresponding to the type of loading: [LF] -for torsion, and [LF-1] 
-for forces. For a linear system, using the principle of superposition, the flexibility influence coefficients  

allow to obtain the displacement at the point 

ije

ije

ix  due to all the forces ( ), 1,jF j p=  acting on the system, as: 

i , , 1, .je i j pj iz F= =  (2.1)

In (2.1), Einstein’s summation convention is used. 

3.  EQUATION OF MOTION IN TERMS OF INFLUENCE COEFFICIENTS  

To determine the flexibility influence coefficients for a bending beam, based on the method of initial 
parameters [1], the usual notations from the bending beams theory are used: : the shear force; ( )T T x=

( )M M x= : the bending moment; : the elastic deflection; ( )z z x= )x()( zx == θθ : the slope (of the elastic 
deflection). Likewise, for a straight beam of constant cross section, the following equations between 
deflection, shear force, and bending moment hold: 

4

4

1d zf
dx EI

=  (2.2)

3

dx3

1d z T
EI

=  (2.3)

dM T
dx

=  (2.4)

where E is Young's module, I is the moment inertia of the constant cross section, and f is an externally 
applied load.  
 The Eq. (2.2) with the appropriate boundary conditions allows to obtain the deflection for any 
given external loading. The boundary conditions are to be written for each range: between any pair of 
external concentrated forces/moments and for each portions of the beam on which the distributed forces are 
applied. The relationships (2.2) and (2.3) serve as continuity conditions.   

( )z z x=

 Looking for the homogenous solution of (2.2) as 
3 2

( )
3! 2!
x xz x A B Cx D= + + +  

the slope, the bending moment and the shear force are: 

( ) ( )
2

( )    ;   
2!
x ( )   ;   x A Bx C M x EI Ax B EI Aθ = + + = − + ⋅T x = −     

Denoting by index 0 the values at the point ( ) ( ) ( ) ( )0 0 0   ;  θ = θ 0 00  0   ;  0   ;  0x z z M M T T= ⇒ = = =  the 
integration constants become: 

 0
1A T

EI
= − ; 0

1B M
EI

= −  ; 0C θ= ; 0D z=  

and the homogenous solution of (2.2) is:  
3 2

0 0 0 0z+
1 1( )

3! 2!
x xz x T M x

EI EI
θ= − − +  (2.5)
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 Since the relationship (2.5) connects the current values of the deflections to the loading 
parameters at the origin (

( )z x
0x = ), the method is known by the name “the initial parameters method”. 

 Now, the particular solutions, typical to each type of external loading, are to be added to the 
homogenous solution (2.5). Let us consider the beam of long l  ( 0 x l≤ ≤ ) with typical external loading, as 
shown in Fig.3.1. 

  
If the concentrated force  is acting in the section P x c= , the appropriate particular solution is: 

( )

( ) ( )3

0                                              if 

1                           if 
3!

c

c

z x x c

x c
z x P c x

EI

= <

−
= ≤

 (2.6)

If the moment Me  is acting in the section x d= , the appropriate particular solution is: 

( )

( ) ( )2

0                                     if 

1            if 
2!

c

c

z x x d

x d
z x Me d x

EI

= <

−
= − ≤

 (2.7)

(The moments were considered to be positive in a clockwise sense and the external forces in the descendent 
sense of the vertical axis.) 
If the distributed force p  is acting on the portion ( , )x g h∈  of the beam section, the appropriate particular 
solution is: 

( )

( ) ( )

( ) ( ) ( )

4

4 4

0                                                   if 

1                              if x h
4!

1          if 
4! 4!

c

c

c

z x x g

x g
z x p g

EI

x g x h
z x p h x

EI

= <

−
= ≤

⎡ ⎤− −
⎢ ⎥= −
⎢ ⎥⎣ ⎦

≤

<

 
(2.8)

If the distributed force with linear variation, p(x-a)/(x-b), is acting on the portion ( , )x a b∈  of the beam 
section, the appropriate particular solution is: 

( )

( ) ( )

( ) ( )
( ) ( ) ( )

5

5 5 4

0                                                                             if 

1                                                          if 
5!

1
5! 5! 4!

c

c

c

z x x a

x a
z x p a x b

EI

x a x b x bpz x
EI b a

= <

−
= ≤

⎡ − − −
= − −

− ⎣
          if b x
⎤

⎢ ⎥ <
⎢ ⎥⎦

≤  
(2.9)

Let us consider that the beam is loaded by: 
 (1)  ip distributed forces acting in the section ),( ii bax∈  of the beam, (i=1,n1);  
 (2) jP concentrated forces acting in ,jx a=  (j=1,n2); 

P 

x=0 x=l 

P 

c g       h      d 

Me 
 

a                          b 

Fig.3.1. Typical external loading 
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 (3)  kM external moments acting in the section kx a=  of the beam (k=1,n3).  
Using the superposition principle, the general solution obtained combining the homogenous solution 

and the three- type of particular solutions (explained before), is: 

( )1

32

3 2
4 4

0 0 0 0
1

3 2

1 1

1 1 1 1( )
3! 2! 4!

1 1 1 1
3! 2!

n

i i i
i

nn

j j k k
j k

x xz x T M x z p x a x b
EI EI EI

P x a M x a
EI EI

=

= =

= − − + θ + + − − − −

− + −

∑

∑ ∑
 (2.10)

where ( ) ( ) ( ) ( )0 0 0 0 0 0 0 ;  ;  ; z z x x M M x T T x= θ = θ = = 0  are the initial parameters and  

( )                             if
0                             if

n
n x xx

x

⎧ −α ≥ α⎪−α = ⎨
< α⎪⎩

  (2.11)

The relationships (2.10) determine the elastic deflection, ( )z z x=  for a straight beam of constant cross 
section under the external loading (1), (2) and (3) as function of initial parameters   . 0 0 0,  , ,  z Mθ 0T

4.   REVERSE-ENGINEERING TASK: COMPUTER-AIDED WAY TO ACQUIRE THE 
INFLUENCE COEFFICIENTS 

Important to note that the formula (2.10) is not dependent on the type of external loading and number 
and / or kind of boundary conditions or intermediate supports. Also, it’s important to note that the method 
does not require, as a separate step, the static determination of the reactions at the supports. So, it is 
applicable without any restrictions to the case of a statically undetermined beam. 

 So, we can conclude that we can find the influence coefficients  beside the deflection, the shear 
force, and the bending moment for a statically determined or undetermined beam, based on the "initial 
parameters" method.  

ije

The routine can be concentrated in the following important procedural steps that are to be followed: 
1. Analysis of the loading conditions, in order to establish the boundary conditions at the ends of 

the beam, as well as at the intermediate supports;  
2. Removal of the intermediate supports and their replacement by the intermediate reactions; the 

intermediate reactions will be regarded as a part of the loading; 
3. Computation of the terms appearing necessary in the conditions established for step (1) and 

writing the conditions. Thus, we obtain a set of algebraic equations in which the unknowns are 
the values of the initial parameters, 0T0 0 0,  , ,  z Mθ , and the intermediate reactions; 

4. Obtaining the intermediate reactions in terms of initial parameters by solving the equations 
established in step (3); 

5. Determination of the deflection, the shear force, and the bending moment in terms of values of 
the initial parameters- 0T . 0 0 0,  , ,  z Mθ

 
Once the elastic deflection ( ) is known, the flexibility influence coefficients  will be known, 

too - by definition, the flexibility influence coefficient  is the displacement of the point 
( )z z x= ije

ije ix due to a unit 
force ( ) applied at point1jF = jx . 

It’s very important to remark that the method does not require, as a separate phase, the static 
determination of the reactions at the supports and this is very important in the case of a statically 
undetermined beam. Thus, the method allows both statically determined and undetermined beams to be 
treated in the same way.  
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5.   THE ALGORITHM 

 A general algorithm for the method above was developed and its schematic flow diagram is shown in 
Fig. 5.1. It could be easily translated into any programming language. 
 After our analysis, we concluded that all the combinations of boundary conditions can be grouped in 
five different cases (see, Fig. 5.2) identified by the input data "tipb" which must be 1, 2, 3, 4 or 5.  

A MATHEMATICA-based application package (see [1], subsection 8.5.2 and Appendix A.ben) to 
compute the influence coefficients of a p-lumped beam for all the combinations of loading and boundary 
conditions was written. 
 

Fig. 5.1 – General flow-diagram for computing the influence coefficients 

INPUT DATA 
tipb, m, n, EI, l, 

ai, i=1,n; bj, j=1,m

COMPUTE BOUNDARY VALUES 
according to tipb in one of the subroutines 

ben1, ben2, ben3, ben4, ben5 

DO  i=1,n 

m=0 

COMPUTE REACTIONS 
Rj, j=1,m 

Rj =0, j=1,m 

OUTPUT DATA 
ije , i,j =1,n 

N Y 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                    The boundary conditions at point tipb 
A B 

 

1 0, 0, 0, 0, 0A A A Ax M T= ω = θ = ≠ ≠ , 0, 0, 0, 0B B B Bx l M T= ω ≠ θ ≠ = =  Fig. 5.2a 
1 0, 0, 0, 0, 0A A A Ax M T= ω = θ = ≠ ≠ , 0, 0, 0, 0B B B Bx l M T= ω = θ ≠ = ≠  Fig. 5.2b 
2 0, 0, 0, 0, 0A A A Ax M T= ω = θ = ≠ ≠ , 0, 0, 0, 0B B B Bx l M T= ω = θ = ≠ ≠  Fig. 5.2c 
3 0, 0, 0, 0, 0A A A Ax M T= ω = θ ≠ = ≠ , 0, 0, 0, 0B B B Bx l M T= ω = θ ≠ = ≠  Fig. 5.2d 
4 0, 0, 0, 0, 0A A A Ax M T= ω = θ ≠ = ≠ , 0, 0, 0, 0B B B Bx l M T= ω ≠ θ ≠ = =  Fig. 5.2e 
5 0, 0, 0, 0, 0A A A Ax M T= ω ≠ θ ≠ = = , 0, 0, 0, 0B B B Bx l M Tω ≠ θ ≠ = =  Fig. 5.2f =
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Being very flexible, the package can be run independently or can request other package. 

For an independent running the Input Data requested are the following: 
 - kodben=1 : code for independent running; 
 - tipb = 1;2;3;4 or 5 ; 
 - ei = E I (E-Young's modulus;  I- the moment inertia of the constant cross section); 
 - l : length of  beam AB; 
 - n : number of masses {M1,M2,...,Mn} between A and B; 
 - m : number of reactions {R1,R2,...,Rm} between A and B; 
 - a : vector -distances between A and position of masses {M1,M2,...,Mn} ({n,1}-Array); 
 - b : vector -distances between A and position of reactions {R1,R2,...,Rm} ({m,1}-Array); 
Warning: If a reaction exists on B, then b[m]=l (l - length of the beam AB). Therefore:  
 - m>0 for   tipb  = 2,3 or 4;  

- m>1 and a[[1]]=0 for  tipb  = 5.  
The Output Data is mee – an symmetric {n,n} matrix that contains the computed influence coefficients, . ije

The program can be run for all the combinations of boundary conditions and different numbers of 
masses. 

6.   EXAMPLE 

To check our method, algorithm and program we run the program for all the cases for which we find 
the direct computation formula for the influence coefficients in strength materials textbooks/papers- 
frequently found only for the 2-lumped beams (for example, see [4]).  Our results were identical with those 
obtained with the direct computation formula. For the 4-lumped beam shown in Fig. 6.1, the calculated 
influence coefficients are presented in the 4x4 matrix in Fig. 6.2. The concentrated masses are positioned at 
the distances given in the vector a in Fig. 6.2 and the reactions are placed at the distances given in the vector 
b in Fig. 6.2.  

 

 

Fig. 6.1 A 4-lumped beam. 

Fig. 5.2 – The boundary conditions 

A B  

(a) 

A B  

(b) 

A B  A B  

(d) (c) 

(e) 

A B A B 

(f) 

A B  
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Fig. 6.2 The calculated influence coefficients 

CONCLUDING REMARKS 

Noting that, the direct computation formulas for the influence coefficients are extremely infrequent, the 
great potential of this Computer-Aided way to acquire the influence coefficients can be understood. Thus, the 
method is a very powerful tool, especially in the case of a large number of concentrated masses and/or 
intermediate supports. 

The method can easily be generalized to a non-uniform cross-section. 
Implemented in a Computer-Aided tool, the method can lead to a better understanding, learning and 

teaching.  
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