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 One defines the notion of Rheonomic Lagrangian Mechanical system 

 )F L, (M, e=Σ where ),( LMLn =  is a time -dependent Lagrange space and Fe are the 

external forces. The evolution equations of ∑  are the Lagrange equations (17). The most important 
result is given by the following Theorem: there exists a canonical semispray S, determined only by 
the system ∑ , whose integral curves are evolution curves of ∑ . S is a dynamical system on the 
phase space Rx TM. The geometry of the pair (Rx TM, S) is the Geometry of Lagrangian rheonomic 
mechanical system ∑ . 
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1. INTRODUCTION 

The problem of geometrization of classical non-conservative mechanical systems is an old one [1, 6, 
14].  Essential contributions to solved this problem have been done by R. Abraham and J. Marsden [1], J. 
Klein, F. Pirani, M. de Leon, O. Krupkova [11], R. Miron and M. Anastasiei [9,11], V. Vujkovici [14], K. 
(Stevanovic) Hedrih [6] et alt. 

Recently, to the 40th Symposium on Finsler Geometry, organized by H. Shimada and S. Sabau in 
Sapporo 2005, the first author of the present paper solved the problem for the scleronomic non-conservative 
mechanical system [11]. With this occasion have been defined the Finslerian and Lagrangian mechanical 
systems and has been determined the canonical evolution semispray for such systems. 

 In the present paper we consider rheonomic nonconservative mechanical systems by using the 
geometrical theory of time-dependent Lagrange spaces realized by M. Anastasiei and H. Kawaguchi, [2]. In 
the particular case of the rheonomic Finslerian mechanical systems we refer to the paper of C. Frigioiu [5]. 

 Now, we study the rheonomic Lagrangian mechanical systems:  

( )),,(),,,(, xxtFxxtLM e=Σ  

where M is the configuration space, is a time-dependent regular Lagrangian  and  are the 
external forces. 

),,( xxtL ),,( xxtFe

We find the canonical semispray S of ∑  where its integral curves are the evolution curves of ∑ . 
Therefore: the geometry of the vector field S on the phase space Rx TM is the geometry of the mechanical 
system ∑ . But S is a dynamical system on Rx TM determined only by system ∑ . So we can study the 
global properties of ∑  such as the stability of solutions curves of the evolution equations of ∑ .  
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2. RHEONOMIC LAGRANGE SPACES. PRELIMINARIES 

Let M be a real n-dimensional smooth manifold and ( )MTM ,,π  its tangent bundle. Consider the 

manifold E=Rx TM with local coordinates ),,( ii yxt , (i, j, k,…= 1, 2,…,n). These coordinates transform by 
rule: 

),...,(~~ 1 nii xxxx = ,      
i

i j
j

xy y
x
∂

=
∂

 ,   ( )t t= Φ  (1)

with:    

rank ( )
i

j

x n
x
∂

=
∂

 ,       0d
dt
Φ
≠ .                                                    (2)

Usually, we consider .  Then a rheonomic Lagrange space [2] is a pair:  ( ) , 0t a t b aΦ = + ≠

( , ( , , ))nL M L t x y=  

in which L(t, x, y) is a time-dependent regular Lagrangian. 
The fundamental tensor of the space  is as follows:  nL

g ij (t, x, y) = 2
1

ji yy
L
∂∂

∂ 2

, (3)

assuming that ijg  has a constant signature and it is verified the condition: 

rank( ijg ) = n. (4)

Therefore we can consider the contravariant tensor ijg .  
Now let us investigate the integral of action of the Lagrangian L along a smooth curve : [ ]: 0,1c M→

1

0
( ) ( , ( ), )dxI c L x d

d
= τ τ

τ∫ τ  

It leads to the Euler-Lagrange equations [2]:  

  ( )i i

L d L
x d y
∂ ∂

− =
∂ τ ∂

0 ,   
i

i dxy
d

=
τ

.                                                  (5)

These equations are equivalent to: 
2

02 2 ( , , ) ( , , ) 0
i

i id x dx dxG x G x
d d d

+ τ + τ =
τ τ τ

 (6)

where: 
2

2

0

12 ( )  ,     ,
2

1
2

i
i ik j i

k j k

i ik
k

L L dxG g y y
y x x d
LG g

y t

∂ ∂
= −

∂ ∂ ∂ τ

∂
=

∂ ∂

=
  (7)

Clearly,  is a d-vector field [2]. With respect to (1) the equations (5) and (6) have a geometrical meaning. 0
iG

Let us consider the vector field   on E = Rx TM: 
o
S
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0(2 )
o

i i i
i iy G G

x yS ∂ ∂
= − +

∂ ∂
 (8)

Then we have [2]: 
Theorem 2.1. The following properties hold: 

            1.  is a semispray on the manifold E. 
o
S

            2.  depends on the Lagrange space only. 
o
S

           3.  The integral curves of   are given by Euler-Lagrange equations of L. 
o
S

Consequently  is the dynamical system on the phase space E of the time-dependent Lagrangian L. 
o
S

 Consider the energy of Lagrangian L:  

i
L i

LE y L
y
∂

= −
∂

, (9)

and the Poincaré 1-form: 

i
L Li

L dx E dt
y
∂

ω = −
∂

 (10)

Applying the exterior operator d of differentiation we obtain the Cartan 2-form: 

{ }i i
L L i i

L Ld d dt dx y dt
y x

⎧ ⎫∂ ∂
θ = ω = − ∧ −⎨ ⎬

∂ ∂⎩ ⎭
 (11)

A vector field X on E with the property i X Lθ  = 0 is called characteristic for the 2-form . Lθ
One proves [2, 9]: 

Theorem 2.2. The semi-spray  is a characteristic vector field for the Cartan 2-form . 
0
S Lθ

Remarking that the system of vector fields { }1 ,..., ,ny y t
∂ ∂ ∂
∂ ∂ ∂

 determine the vertical distribution V on 

E we can consider a splitting of the tangent space :  uT E

0

u uuT E N V= ⊕   ,  u E∈ . (12)

Therefore the horizontal distribution 
0
N  is a nonlinear connection on the manifold E and the adapted basis of 

the direct decomposition (12) is ( ), ,i ix y t
δ ∂
δ ∂

∂
∂

, where:  

0 0j

i ii i jN N
x x y
δ ∂ ∂ ∂

= − −
δ ∂ ∂ ∂t

. (13)

The pair 
0 0

,
i

j jN N
⎛
⎜
⎝ ⎠

⎞
⎟  is the system of coefficients of the nonlinear connection

0
N .                      

Theorem 2. 3.  Given the semispray  of the rheonomic Lagrange space  with the coefficients 
0
S nL

( )0,i iG G  from (7) then there exists a nonlinear connection 
0
N  determined only by .   The coefficients of  nL

0
N  are expressed by: 
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0 i i

j j

GN
y

∂
=
∂

  , 
0

0
j

i ijN g G=  . (14)

Remark. In the particular case of time-dependent Finsler space 2L F=  the previous theory leads to the 
geometry of rheonomic Finsler spaces [2].  

3.  RHEONOMIC LAGRANGIAN MECHANICAL SYSTEMS 

A rheonomic Lagrangian mechanical system is a triple: 

( , ( , , ), ( , , ))eM L t x y F t x yΣ = , (15)

where Ln= (M, L(t, x, y)) is a rheonomic Lagrange space and  Fe  are the external forces, a priori given as a 
vertical vector field,  in the form: 

( , , ) ( , , )i
e iF t x y F t x y

y
∂

=
∂

 (16)

Consequently, Fi (t, x, y) is a d-vector field on the manifold E. 
         Postulate: The evolution equations of the mechanical system  on the phase space E = 

TMxR are the following Lagrange equations: 
∑

,
i

i
ii i

L d L dxF y
x dt y dt
∂ ∂

− = =
∂ ∂

, (17)

with:  

Fi(t, x, y) = gij Fj(t, x, y).                                                           (18)

The previous d-covector field is the d-covariant vector of external forces. 
Obviously, if the time t does not explicitly enters in the system ∑  we obtain the scleronomic non-

conservative mechanical system, studied by the first author in the paper [11]. 
Two remarkable particular cases are given by: 

a. nL  is a Riemannian (or pseudo-Riemannian) space when Σ  is the classical nonconservative 
mechanical systems and (17) are its evolution equations. 

b. nL  is a time-dependent Finsler space ( , ( , , ))nF M F t x y=  studied by M. Anastasiei and H. 
Kawaguchi in [2, I, II, III]. Then ∑  is a rheonomic Finslerian mechanical system. 
 

More general, when L is a time-dependent Lagrangian we have the rheonomic Lagrangian mechanical 
system and when instead of  we consider the generalized Lagrange space = (M, g  (t, x, y)) then we 
have generalized rheonomic mechanical systems, [2,10,11]. 

nL nGL ij

Returning to the rheonomic Lagrangian mechanical systems (15) we remark that the Lagrange 
equations (17) are equivalent to the system of differential equations:  

2 . .

02

12 ( , , ) ( , . ) ( , , )
2

i
i i id x G t x x G t x x F t x x

dt
+ + = −

.
, (19)

where:  
2 2

0
1 12 ( ),
2 2

i ik j i ik
k j k k

L LG g y G g
y x x y t
∂ ∂ ∂

= − =
∂ ∂ ∂ ∂ ∂

L  (20)

Therefore the geometry of a rheonomic Lagrangian mechanical system Σ  is the  geometry of the 
semispray S whose the integral curves are given by the equations (19)  and  (20). 
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Example 3.1. The rheonomic Lagrangian mechanical system of time-dependent 
electrodynamics is given by the Lagrangian: 

2( , , ) ( , ) ( , ) ( , )i j i
ij i

eL t x y mcg t x x x A t x x U t x
mc

= + +  (21)

where m, c, e are the known physical constants, gij(t, x) are the time dependent gravitational potentials, Ai(t, 
x) are the electromagnetic time dependent potentials and U(t, x) is a time dependent potential function, [2]. 
The evolution equations (17) can be written without difficulty. In this case the external forces can be given 
by  
Fi= h(t)yi, h(t) being a function depending by t only. 

 
Returning to the general theory of the mechanical system∑ , we remark the geometrical meaning of the 

Lagrange equations (17) or (18) which can be easily demonstrated.   
The most important result on the rheonomic Lagrangian mechanical systems  is given by the 

following theorem: 
∑

 
Theorem 3.2.  The following properties hold: 
1. There exists a semispray S on the phase space E=RxTM depending only on the 
 rheonomic mechanical system  from (15). ∑
2. S  is given by:  

( )0
12
2

i i i i
i iS y G G F ix y y

∂ ∂
= − + +

∂ ∂
∂
∂

 (22)

3. The integral curves of semispray S are given by the Lagrange equations (17). 
 

         Proof.  Writing S in the form: 

1
2

o
i

iS S F
y
∂

= +
∂

, (23)

where is the canonical semispray of rehonomic Lagrange space nL  all properties expressed in the previous 
Theorem can be proved without difficulties.  

o
S  

 From these reasons we can call S the canonical semispray of rheonomic mechanical system∑ . It can 
be developed by the same methods as in the scleronomic case, [11].          
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