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We present here a Demand Maximizing Circuit Problem, which involves time elastic demands, and 
which is related to applications of Network Synthesis to the design of urban public transportation 
systems. This problem consists in the optimization, on some irregular domain, of some quantity 
whose computation involves heavy computational costs. We propose a specific metaheuristic Pursuit 
scheme, based upon the application to the original problem of a multiform rewriting process. We 
present and discuss various interpretations of this scheme together with practical experimentations. 
The whole paper is an extension of a work which was presented during the LT ‘2007 conference in 
Sousse. 
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1. INTRODUCTION 

We address here a specific transportation problem which we call Demand Maximizing Circuit problem 
(DMC). This problem, which we are going to study through the prism of software design, must be viewed as 
part of a more general transportation network design problem. We consider a network, which is likely to 
represent some urban transit infrastructure network, and we want to design the routes which are going to be 
run by a flexible shuttle fleet, in response to a demand which is supposed to depend on the quality of the 
induced connections. According to our model, those routes are going to be represented through a circuit 
family Γ, given together with some kind of schedule. Then we assume that the running cost of this fleet 
essentially depend on the lengths of the circuits γ of Γ. Also, we suppose that the global access demand  
Global-Demand(Γ), which is generated by this shuttle fleet, may be expressed as a sum Σ i∈ I Di(Γ) of local 
demands Di(Γ) related to a large set of  origin/destination node pairs (oi,di), i ∈ I, and that every local 
demand Di(Γ) is time elastic, which means that it depends on the time Ti(Γ) that a user of this shuttle service 
will need in order to go from oi to di. Of course, our goal is here to design Γ in such a way that it maximizes 
the global demand Global-Demand(Γ), while keeping running costs under control. Getting software tools for 
this general network synthesis problem might help planners  in getting an evaluation of the opportunity of the 
application of reorganization scenario to a flexible public transportation system.   

The main specificity of this problem is related to the time dependency of the access demand which is 
induced by our system. While many authors have already worked on route design problems related to 
flexible public transportation systems (see for instance [1-9], for the Pick-up-and-delivery problem, Dial-a-
ride problem, One period-bus-touring problem…), few of them have taken into account demand variability, 
partly because getting models for this variability is something difficult (see for instance [10-13]).  

As a matter of fact, the above general network design problem may be handled, in a heuristic way, 
through a decomposition scheme, which give rise to an eventually large sequence of calls to a process which 
focuses on the specification of a single circuit γ of set Γ, while considering the rest of the system as being 
fixed. So, we are going to devote this paper, which is an extension of a previous work (see [14]) which was 
presented in 2007 during the LT’2007 conference in Sousse, Tunisia, not to the general problem, but to a 
thorough study of this specific circuit search sub-problem, which will be called DMC: Demand Maximizing 
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Circuit problem. The fact is that DMC problem, though it is simple to set, gives rise to several interesting 
questions about programs and software. First, its input data (costs, demands…), as well as the model itself, 
cannot be anything else than an approximation, while instances of DMC may eventually be tackled a large 
number of times throughout a process which aims at dealing with the general network design problem. That 
means that computing acceptable solution in a short time will be more important for us than spending a lot of 
time in getting high precision solutions.  Also, we will check that the structure of the search domain of DMC 
may very irregular, compelling the programmer to cope with a large number of local optima, most of them 
inducing poor solutions. But the most important point is that getting an evaluation of the quality criterion of 
DMC (essentially the induced demand) requires the resolution of a large amount of shortest path sub-
problems and thus induces high computational costs. Consequently, stricto sensu applying to the DMC 
problem a probabilistic rewriting scheme as the Simulated Annealing scheme (see for instance [15-16]), or an 
other kind of classical local search heuristic scheme (see for instance [17-18]), which essentially consists in 
the introduction of some random noise every time a quantity Global-Demand(γ) is computed, does not really 
fit our problem. Instead, we are going to propose a rewriting approach which will aim at reducing 
computational costs while regularizing the structure of the domain search (Look for an analogy with, for 
instance [19-22]): this approach will be based upon the introduction of a family of auxiliary quality criteria, 
which will involve low computational costs and which will simultaneously work as approximations and 
pseudo-random perturbations of the original quality Global-Demand. 

So the paper will be organized as follows: Section 2 and 3 will be devoted to a description of the DMC 
model, of the basic algorithmic tools which we need in order to deal with it, and to a short description of 
standard local search and branch and bound scheme which we tested on it.  Next, Section 4 will allow us to 
describe the pseudo-random approximation rewriting scheme which we designed in order to handle the 
above mentioned difficulties, and final Section 5 will describe the experimentation process which we 
performed in order to test this new approach. 

2. THE DEMAND MAXIMIZING CIRCUIT PROBLEM (DMC) 

As it was told during the introduction, we were led to work, in the context of a partnership between our 
laboratory and the CERTU (Centre d’Etudes sur les Réseaux de Transports Publics) on mathematical and 
computing tools which could eventually help planners in proposing reorganization scenario for public 
flexible transportation services (services based upon the use of shuttle fleets, micro-vehicles, semi-
autonomous vehicles…). In order to do it, we used a representation of the transit infrastructure as a network 
G = (X, E), whose arcs were labeled with technical characteristics: transportation modes, congestion rates, 
capacities, expected running times…). Then, a flexible transportation service was supposed to be determined, 
prices being fixed, by a set of routes and related schedules. Since the study was partly motivated by 
considerations related to economics, we had to introduce, as an essential component of our model, the 
dependency of the access demands to the quality of the service. So we supposed that this access demand was 
essentially dependent on the transit times induced by the service for the users between the nodes of the urban 
network, and that it could be expressed through some family OD of origin-destination pairs of vertices, given 
together with some function K allowing us to compute, for any pair (x, y) in OD, the expected transportation 
demand related to a move from x to y whose expected duration would be equal to some value t(x,y). By 
doing this, we could set a general Strategic Transportation Network Design problem (STNDP), where the 
unknown object was a collection of routes, i.e. of triples (Circuit, Vehicle Class, Frequency), subject to 
several Quality of Service constraints and required to optimize some compound criterion, involving both 
running costs and global induced demand.   

Handling this complex large scale problem had to be done while using decomposition techniques: we 
used a decomposition scheme which made appear, at the core of the STNDP problem, some “atomic” 
Demand Maximizing  Circuit (DMC) sub-problem involving the search of a single circuit, submitted to a 
threshold constraint related to its length and required to maximize some additional induced demand. This 
specific DMC sub-problem could be viewed as one of the two elementary components of our decomposition 
scheme, the other one consisting in scheduling and assigning the vehicles on a given circuit family. The 
general decomposition scheme which we used in order to deal with the STNDP problem was such that the 
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DMC component had to be handled several times, eventually a large number of times, throughout the 
execution of the general resolution process.  This DMC problem, which is going to be now at the center of 
this paper, can be formulated as follows: 

The Demand Maximizing Circuit Problem DMC(k)   

When we deal with this problem, we suppose that we are provided with the following input data:   
Input Data for the DMC(k) Problem 

• A network G = (X,E), which is supposed to represent the current transit infrastructure: thus, solving 
DMC(k) will aim at constructing a new shuttle route on G;  

• A length threshold parameter k: the length of a new route is not going to exceed the value k; 
• a function Shuttle-Time TNA which, to any arc e in E, makes correspond some expected duration 

TNA(e) of the transit of a vehicle of the new route along the arc e;   
• a function No-New-Time TP which, to any vertex pair (x,y) in X.X, makes correspond some expected 

time TP(x,y) for a user which would go from x to y without using the new route: we suppose that, for 
any arc e = [x, y], we have TP(x,y) ≤ TNA([x, y]); 

• a standard frequency w0 : vehicles running along a new route are likely to do it according to a mean 
frequency equal to w0. Thus, the mean induced waiting time will not exceed 1/2 w0. 

• a (large scale) set OD = {(xi,yi), i ∈ I}, of origin/destination pairs of vertices of G;   
• related Maximal Demand coefficients D*

i, i ∈ I: coefficient D*
i, i ∈ I is going to provide us with an 

evaluation of the maximal number of users which might ask for an access to the new shuttle route, 
whatever be  the way this route is designed; 

• an Elasticity Function K, from Δ = {(u, v) such that u ≤ v} ⊂ R2 to [0, 1], such that: 
-    K(u, v) decreases from 1 to 0 when v grows  from u to + ∞; 
-    K(u, v) converges to 0 when u converges to 0, (while v remains fixed).  
The meaning of this function K is that if tγ(xi,yi) denotes the expected time which is required from a 
user of the shuttle service when going from origin xi to destination yi while using the new route γ, 
and if TNA

*(xi,yi) denotes the Shuttle TNA–shortest-path distance from x to y,  then only 
Di

*.K(TNA
*(xi,yi), tγ(xi,yi)) users are going to ask for an access to the new route γ when trying to go 

from xi to yi . 
 

Related additional notations. 
If x and y are two vertices of G, we denote by TNA

*(x,y) the shortest path distance from x to y which is 
defined by the TNA Shuttle-Time function.  A related shortest path will be called a Geodesic Path.     

If γ is a circuit of G, and if x and y are two vertices of γ, then following γ from x to y means travelling 
along a path γx,y which will be called the restriction of γ from x to y. The TNA-length of this path is then 
denoted by TNA-Length(γx,y).  
 

• Output object for DMC(k) Problem : according to these hypothesises, we want to compute some 
circuit γ of G whose TNA-length does not exceed the value k, and which is going to maximize the 
following quantity Global-Demand(γ), which is defined by : 

 Global-Demand(γ) = ∑ i ∈ I Di
*.K(TNA

*(xi,yi), tγ(xi,yi)) (1)

(x,y) = Inf [TP(x,y), Inf u,v∈γ(TP(x,u)+1/2w0+TP(v,y)+ TNA-Length(γu,v))]} (2)

According to this model, the Shuttle-Time function TNA allows us to compute the expected running 
times of a shuttle which travels along a new route γ. The No-New-Time function TP provides us with the 
expected transportation times of a user which moves through the network G without using this new route.   
So, the quantity tγ(x,y) provides us with an approximation of the expected transportation time of a user which 
moves from vertex x to vertex y and which uses in an optimal way a shuttle which travels along a new route 
γ according to a frequency  w0, under the hypothesis that this user expects his waiting time to be equal to 
1/2w0.  Consequently, the quantity  Di

*.K(TNA
*(xi,yi),tγ(xi,yi)) provides us with an evaluation of the demand 
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for an access to the new shuttle route which is likely to emanate from users willing to go from origin xi to 
destination yi. 

As was told during the introduction, few network transportation design problems involve non fixed 
demands (see for reference on vehicle routing problems: [2] [9] [23-24]. We can mention contributions of 
Florian [12] and Gartner [25] to optimal traffic assignment problems, and also from Leblanc [11] to mode 
split assignment problems. This is partially due to the difficulty related to the estimation and to the prediction 
of time dependent origin-destination flows (see for instance [10]). The DMC problem itself is somewhat 
new, and its formulation gives rise to several remarks: 

- The DMC model clearly contains a lot of approximations: thus we should focus on avoiding 
“poor” solutions; 

- A first analysis of the problem shows us that whatever be the kind of neighbourhood structure 
which will be used, a local search heuristic will have to cope with the existence of a large number of 
poor local optima; 

- Dealing with time dependent demands means here dealing with the complex quantity Global-
Demand(γ). Since the DMC problem is one of the basic components of a more general problem, we 
must control the computational costs related to the management of this quantity.   

If we were focusing on mathematical precision, we would try do deal with the above DMC problem 
while using decomposition scheme for non linear optimization (Lagrangean, Benders or Proximal 
decomposition: see for instance [26-28]), or multicommodity flow models: see for instance [26] [29-31]. But, 
because of the above remarks, the methods which we are going to propose here will essentially aim at 
producing acceptable solutions while avoiding excessively high computational costs, and they will be based 
upon the introduction of a rewriting mechanism involving auxiliary criterion families. This approach might 
be compared with the large neighbourhood techniques used by [22] [32-33], or with the smoothing 
techniques used by [19]. The following sections 3 and 4 will be devoted to a general description of what we 
shall call Pursuit Control Approach, while section 5 will be devoted to a description of comparative 
numerical experiments.    

3. BASIC TOOLS FOR AN ALGORITHMIC TREATMENT OF THE DMC PROBLEM :  
DOMAINS, NEIGHBOURHOODS AND APPROXIMATION SCHEME. 

3.1. A Generic formulation of the DMC(k) Problem. 

The DMC(k) problem admits a generic formulation P : {Search for an object γ  in a domain Ω which 
satisfies a constraint C(γ) and which maximizes a quality criterion Φ(γ)}, where C is some constraint, i.e 
some expression whose evaluation yields a Boolean value. We introduce here, while keeping ourselves 
inside a generic optimization framework, the main algorithmic tools which we are going to use in order to 
deal with our problem. 

 We choose to define the domain Ω as the domain Ω-GEOD(k) of the circuits γ  which may be written 
as records of: 

• Some integer  N ≥ 2 ; 
• A concatenation of N geodesic paths γ0.. γN-1 such that :  

o For any i = 0..N-1, Extremity(γi) = Origin(γi+1), i+1 being computed modulo N ; 
o ∑i = 0..N-1 TNA-Length(γi ) ≤  k. 

The choice of this representation, which may look more complicated than the standard representation 
of γ as a circuit TNA-Length no more than k, comes from the following intuition: the quality of a feasible 
circuit γ, will strongly depend here on its ability to connect in a fast way a few number of  key vertices. This 
intuition, which is confirmed by both usual life and an analysis of simple case instances of the DMC(k) 
problem  (one may, for instance, try to study what is happening when the network G is a 2-dimensional grid), 
suggests us that efficient DMC routes are likely to be circuits which may be decomposed according to the 
definition of the objects of Ω-GEOD(k), with a small related value N (N = 2..5).     
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3.2. Local Transformation Operators. 

Designing an algorithm for the above generic problem P usually means defining Local Search 
operators :  such an operator TL acts on an object γ of Ω, through some parameter value t which belongs to 
some domain UTL(γ), and it turns γ into an object TL(γ)(t) of Ω. Two objects γ and γ’ of Ω are TL-neighbors 
if there exists a value t in UTL(γ) such that γ’ = TL(γ)(t). We shall use here an operator TL-HOM, which acts 
on an object γ = (N, γ0..γN-1) of Ω-GEOD(k) according to one of the following modes : 

• Incrementation of N and insertion of a new geodesic single vertex path γN  = {x0} into the sequence 
{γ0..γN-1}; 

• Replacement of the vertex xi+1 = yi by a vertex z adjacent or equal to x = xi+1 = yi and replacement of 
both geodesic paths γi and γi+1 by two other geodesic paths which connect respectively xi to z and z to 
yi+1 in such a way that the TNA-Length of the resulting circuit does not exceed the value k.  

The choice of this operator TL-HOM derives from the analysis of simple instances of the DMC 
problem, related to 2-dimensional grids or to triangulated planar graphs. In such cases, it will happen that 
any initial solution can be turned into an optimal solution through some well driven sequence of applications 
of the TL-HOM operator. 

3.3. Pseudo-Random Approximating Functions. 

Part of the difficulty of the DMC problem comes from the fact that the complexity of the Global-
Demand quantity.  Its management involves updating (after application to the current object γ of the operator 
TL-HOM) and  a priori testing (testing the impact of an application of TL-HOM to the current object γ, 
before effectively applying this operator to γ).  Besides, one can check, by studying some simple case 
examples (for instances examples related to grids) that the TL-HOM operator may induce the existence, for 
the Global-Demand function, of a large set of locally optimal solutions. In order to cope with those two 
difficulties, we are going to introduce auxiliary performance criteria, which will simultaneously work as 
approximations and as pseudo-random perturbations of the original criterion Global-Demand.  While we 
shall wait until Section 4 in order to detail the way such a family of auxiliary functions will find its place 
inside a generic PURSUIT CONTROL algorithmic scheme, we already may guess that these functions will 
have to be definitely less time consuming than the original Global-Demand function, while statistically 
behaving in a similar way in relation to the TL-HOM operator. According to this purpose, we are going to 
define those auxiliary criteria while taking into account the following remarks:         

• The quality of γ will strongly depend of its ability to induce fast connections between those of its 
vertices x and y which are close to high-level demand origin/destination vertices;   

• The quality of γ will grow as γ is going to contain arcs located on a large number of short paths 
connecting high-level demand pairs (xi, yi ),  i in I, of the set OD.  

In order to make those auxiliary criteria act like pseudo-random perturbations of the original criterion 
Global-Demand, we shall make them depend on a parameter vector λ which will be managed through 
random sorting.   

So, we associate, with any circuit γ in Ω-GEOD(k), auxiliary quantities Aux-Qualityλ(γ), which define 
what we call a Pseudo-Random Approximating Function Family, and which depend on a control 
parameter vector λ ∈ Λ, according to the following equations : 

For any λ ∈ Λ, Aux-Qualityλ(γ) =  Σ x,y in Jλ(γ) Qλ x,y. Kλ(TNA*(x,y), TNA-Length(γx,y))   
where: 

• Every function Kλ is an elasticity function from R+2 to [0, 1], which linearly depends on the 
vector  λ, and which is such that : 
o Kλ(TNA*(x,y), TNA-Length(γx,y)) = 1 iff TNA*(x,y) =  TNA-Length(γx,y); 
o Kλ(TNA*(x,y), TNA-Length(γx,y)) decreases and converges to 0 when TNA-Length(γx,y) 

increases, TNA*(x,y) remaining fixed;  
• The coefficients Qλ

x,y only depend on x and y and on the control vector λ: they provide an 
evaluation of the closeness of x and y in relation to the  highest level demand pairs (xi, yi ), i in 
I; 

• Jλ(γ) is an ad hoc set of vertex pairs of γ ; 
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Testing the behaviour of the pseudo-random approximating functions Aux-Qualityλ.  

It is not easy to formalize this notion of pseudo-random approximation, which means here the ability of 
the low computing cost quantities Aux-Qualityλ(γ) to simultaneously behave as approximations and random 
perturbations of the original criterion Global-Demand(γ). But we may test this concept in an experimental 
way. We did it on quasi-planar networks G = (X, E) with 100 vertices, 300 arcs, 200 origin/destination pairs, 
which are such that, for any value of the parameter k, the domain Ω-GEOD(k) is connected for the TL-
HOM neighbourhood relationship. Then, while using:   

• a value of the parameter k which is located between 1and 3 times the value of the TNA–diameter of 
the network G; 

• a piecewise linear elasticity function K ; 
we have been performing the following experiment :   

Randomly generate a set Σ of circuit pairs (γ, γ’) of  Ω-GEOD(k), which are TL-HOM-neighbors, and 
some set Λο of positive values  of the control vector λ > 0 ; 

For any pair γ, γ’ in Σ and any λ in Λο, compare the signs of (Global-Demand(γ) – Global-Demand(γ’)) 
and (Aux-Qualityλ(γ)  -   Aux-Quality-λ(γ’)).  

Then we got the following results:       
• Test 1: in 82% of the cases, λ being fixed, (Global-Demand(γ) – Global-Demand(γ’)) and (Aux-

Qualityλ(γ)  -   Aux-Quality-λ(γ’)) have identical signs, with a small dependency on the choice of λ. 
That means that Global-Demand and Aux-Qualityλ behave in a similar way when submitted to an 
optimization process involving the local operator TL-HOM: thus the functions Qualité-Auxλ, λ in Λ, 
behave like an approximating family for the Global-Demand criterion.    

• Test 2 : we get similar results when we fix the pair γ, γ’, with a small dependency on the choice of 
the pair γ, γ’: that means the functions Qualité-Auxλ, λ in Λ, behave like pseudo-random 
perturbations of the Global-Demand criterion, when submitted to an optimization process 
involving the local operator TL-HOM.    

3.4. A small scale instance exact method BENCH. 

In order to provide a benchmark for a heuristic testing process, we implemented a branch and bound 
algorithm BENCH, which aims at solving DMC for small scale instances and whose design comes as 
follows : 
-  a recursive representation of the DMC(k) problem is obtained by considering, for any pair of disjoint 

arc subsets  EI and EF  ⊂ E, the sub-problem DMC(k)EI, EF which is induced by requiring γ to contain 
every arc of EI and to contain no arc of EF. Then branching the DMC(k)EI, EF sub-problem means picking 
up some arc e in E – (EI  ∪ EF ) and trying both cases : e  ∈ EI and  e ∉ EF .  

- Bounding the DMC(k)EI, EF problem can then be done by computing, for any pair (xi, yi), I in I, some 
shortest path (in a sense which mixes TNA et TP), which uses no shuttle arc of EF. While denoting Ti(EI, 
EF), the length of this shortest path, we obtain an upper bound VEI, EF of the optimal value of the 
DMC(k)EI, EF problem by setting : VEI, EF  = Σ i in I Di*. K(TNA*(xi, yi ), Ti(EI, EF)).  

This algorithm BENCH does not enable us to deal with large or even medium scale instances, since it 
is based on a bounding process which is not powerful enough. Still, BENCH may be applied to small 
instances in order to provide us (Section 5) information about the behaviour of the heuristic scheme which 
will be described all throughout the section 4.   

3.5. Two simple local search algorithms SIMPLE and SIM-SIMPLE. 

The SIMPLE heuristic performs a simple TL-HOM based descent process. The SIM-SIMPLE 
performs a TL-HOM based Simulated Annealing process: the related Temperature parameter τ decreases 
from 1 to 0 in an arithmetic way (in 20 steps if we refer to the tests of the experimental section 5); for every 
value of the parameter τ, TL-HOM is tried M times, where M is a parameter of the process (M = 50 for most 
tests of Section 5), while the probability for the process to accept a non improving application of TL-HOM 
is equal  to τ.  
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4. REWRITING APPROXIMATION SCHEME AND PURSUIT METAHEURISTICS 

4.1 A PURSUIT Process 

Let us now go back to our generic optimization problem P. We suppose that we are provided, in order 
to deal with P, with a local operator TL. We shall talk about a Rewriting Scheme if P may be reformulated 
through a family of problems {Pλ, λ in Λ}, globally equivalent to P in some sense.  For instance:  

• We shall talk about a Strong Rewriting Scheme if for any λ in Λ, the local (for the TL operator) and 
global optimal solutions of P and Pλ are the same.   

• We shall talk about a Probabilistic rewriting Scheme if Λ is an event domain endowed with a 
probability measure such that maximizing Π(γ) = (Probability for γ in Ω to be an optimal solution of 
Pλ)  means solving a problem which admits the same TL-local optima and global optima as P. 

Provided with such a Rewriting Scheme P -> {Pλ, λ in Λ}, and with a TL based algorithmic process 
σ which takes in input a vector value λ in the control domain Λ, an initial solution γ in Ω, and which 
compute, in the search domain Ω, a TL-local optimum γ’ of Pλ, we may use the parameter λ in Λ as a 
Control Parameter and deal with the problem P according to the following algorithmic scheme, which will 
be called PURSUIT scheme (the pursuer parameter λ tries to catch the evader γ) :   
 

Scheme 1: PURSUIT scheme 

Initialize λ in Λ;  Not Stop; 
Initialize γ in Ω; 
While Not Stop do 

Locally Solve the problem Pλ, through application of the σ local search process to γ; 
 (I0) 
Let γ’ = σ(γ,λ) in Ω be the resulting object; 
Depending on the characteristics of γ’, Replace or not γ by γ’;    
         (I1) 
Update Stop; If Not Stop Then Generate another value λ; 

 
The above PURSUIT process takes in a straightforward way advantage of the rewriting scheme P -> 

{Pλ, λ in Λ}. It works like a local search process, while involving a topology (neighbourhood structure) 
REG(σ) which is defined in an implicit way on the domain Ω by : two objects γ and γ’ of Ω are REG(σ)-
neighbours iff there exists λ in Λ such that γ’ = σ(γ, λ). In the case when σ is itself some local search 
process, related to some topology r, the REG(σ) topology appears at the same time as a regularization and 
as an amplification of r. One may compare this approach to the smoothing approach which was proposed by 
[19], or to the large neighbourhood approach developed by [4] or [32]. 

4.2 PURSUIT Scheme, Pseudo-Random Approximating Functions and the DMC Problem. 

Let us keep on with our generic problem P, which we supposed to be given together with some local 
transformation operator TL.  Coming back to the pseudo-random approximating function families of Section 
3, we are going to study the way such a family can be used in order to provide us with a kind of convenient 
rewriting scheme.  According to this prospect, we define:    

Pseudo-random approximating function family for the problem P.    

It will be any family of real valued functions {Φλ, λ in Λ}, defined on the domain Ω, and such that: 
- the following problems Pλ, λ in Λ: {Search for γ in Ω such that C(γ) and that Φλ(γ) is the largest 

possible},  may be viewed as defining a probabilistic rewriting scheme of  P;  
- computing a local solution of Pλ through the application of a TL-local search process σ induces the same 

kind of computational costs as testing the effect of an application of the TL operator on the criterion 
value Φ(γ). In such a case, we say that the resulting topology REG(TL) which is defined by : γ 
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REG(TL) γ’ iff there exists λ such that it is possible to get the local solution γ’ of Pλ by applying of σ 
from γ, is the regularization of the TL topology through the  family {Φλ, λ in Λ}.   
The above formulation « may be viewed » is voluntarily ambiguous. Formalizing it would be possible. 

But it will happen that, in any practical application, the Pλ  problem family is going to be defined in an 
empirical way. Intuitively, what we are expecting from the function family {Φλ, λ in Λ} is that, for any λ in 
Λ:  
- the computational costs related to the management of Φλ  are smaller (in a significant way) than similar 

computing costs induced by  Φ. 
- Φλ  simultaneously behave as an approximation and as a perturbation of Φ.   

Then it will come that using the related regularization REG(TL) of the TL local operator will help us in 
driving the object γ until promising areas, without requiring an increase of the computing costs.   

Casting the DMC Problem into the PURSUIT framework.  

Clearly, in the case of the DMC problem, the functions Aux-Qualityλ which we introduced in Section 3 
are going to play the role of a Pseudo-random approximating function family: so we consider the quantities 
Aux-Qualityλ(γ) as pseudo-random approximations of the quantities Global-Demand(γ), and we do as if the 
problems CDM(k)λ: 
  {Search for a circuit γ  in Ω-GEOD(k) which maximizes the auxiliary criterion Aux-Qualityλ(γ)},  
were defining a probabilistic rewriting scheme for the DMC(k) problem.  Depending on the strategy we may 
want to apply when performing a local search process according to the regularized topology REG(TL-
HOM), this yields several algorithms. Let us propose three of them, which will be tested in the following 
section 5.    
 

Scheme 2: RANDOM-PURSUIT scheme, a random walk version of the generic PURSUIT scheme. 

Parameter: a control parameter K1 ; 
Process:  
Initialize γ; I <- 1 ;  
Solcour <- γ ; Valcour <- Global-Demand(γ) ;  
While I  ≤ K1 do 
Randomly Generate λ ; I <- I+ 1 ; γ’ <- γ ;   (3) 
While t exists in UTL-HOM(γ’) such that  
Aux-Quality-λ(T(γ’)(t) > Aux-Qualityλ(γ’) do   γ’ <- TL-HOM(γ’)(t);  
γ <- γ’ ;  
If Global-Demand(γ) > Valcour  
Then {Solcour <- γ;  
Valcour <-  Demande-Globale(γ)}. 

 
Running RANDOM-PURSUIT means driving the object γ along some kind of random walk on the 

domain Ω-GEOD(k): the involved transitions derive from the regularization of the TH-HOM topology 
through the pseudo-random approximating function family {Aux-Qualityλ, λ in Λ}. The (3) instruction is 
performed through a random sorting process which enables us to enlarge in a powerful way the moves of γ.  
 

Scheme 3: DESCENT-PURSUIT scheme, a descent version of the generic PURSUIT scheme. 

Parameters: a control parameter K2. 
Process :  
Initialize γ; Not Stop ;   
While Not Stop do 
Stop; I <- 1 ; Not Stop1;  
While Not Stop1 and I  ≤ K2 do  
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Randomly Generate λ ; I <- I+ 1 ; γ’ <- γ ;   (3) 
While t exists in UTL-HOM(γ’) such that  
Qualité-Auxλ(T(γ’)(t) > Qualité-Auxλ(γ’) do   
γ’ <- TL-HOM(γ’)(t); 
γ <- γ’ ;  
If Demande-Globale(γ’) > Demande-Globale(γ)  
Then {γ <- γ’; Stop1; Not Stop}.    

 
Running the DESCENT-PURSUIT process means driving the object γ throughout the search domain 

Ω-GEOD(k) according to a simple descent control, while using transitions which derive from the 
regularization of the TH-HOM topology through the pseudo-random approximating function family  {Aux-
Qualityλ, λ in Λ}.  
 

Scheme 4: SIM-PURSUIT scheme, a Simulated Annealing version of the generic PURSUIT Scheme. 

Parameters :  
• A function K12 which associates, with any temperature value τ in [0,1], some iteration 
number  K12(τ) ; 
• An increasing function V12 which, with any temperature value τ in [0,1], associates an 
acceptation threshold value V12(τ) in [0,1] in such a way that V12(0) = 0 et V12(1) = 1;  
• A decrementation step δ. 
 
Process :   
Initialize γ; τ = Initial Temperature  <- 1 ;  
Solcour <- γ ; Valcour <- Global-Demand (γ);  
While  τ ≠  0 do 
I <- 0 ; 
While I  ≤ K12 do 
Randomly Generate λ; I <- I+ 1; γ’ <- γ ;   (3) 
 While t exists in UTL-HOM(γ’) such that 
 Aux-Qualityλ(T(γ’)(t) > Aux-Qualityλ(γ’)  
do  γ’ <- TL-HOM(γ’)(t); 
Randomly Generate  V in [0,1] ;  
If Global-Demand(γ’) > Global-Demand(γ’) or (V ≤ V12(τ)) Then γ <- γ’ ;  
If Global-Demand(γ) > Valcour Then  
{Solcour <- γ; Valcour <-  Global-Demand(γ)} ; 
Decrementation of τ:  τ <- τ – δ; 
 

Running SIM-PURSUIT means driving the object γ throughout the search domain Ω-GEOD(k) 
according to a simulated annealing control, while using transitions which derive from the regularization of 
the TH-HOM topology through the pseudo-random approximating function family {Aux-Qualityλ, λ in Λ}.  

 
Initializing γ when launching the processes SIMPLE, SIM-SIMPLE, RANDOM-PURSUIT, 

DESCENT-PURSUIT and SIM-PURSUIT is done through successive applications of a construction 
operator S in such a way that at any time during this construction process, we choose the parameter value for 
this operator S as if we were trying to maximize a quantity Aux-Qualityλ (γ*)}. That means that we follow 
the guidelines of the general PURSUIT framework in order to provide a non deterministic greedy version 
GREEDY-PURSUIT of the generic PURSUIT scheme. This non deterministic algorithm is applied a 
number K3 of times, and this number K3 becomes a control parameter of the initialization procedure 
GREEDY-PURSUIT.     



 Alain QUILLIOT, Loic YON 10 

4. NUMERICAL EXPERIMENTS 

We have been performing two classes of experiments:    
• The first one (Section 5.1) is devoted to medium scale networks and it aims at providing us with a 

comparative analysis of the behaviour of the algorithms SIMPLE, SIM-SIMPLE, DESCENT-
PURSUIT, RANDOM-PURSUIT, SIM-PURSUIT, GREEDY-PURSUIT of sections 3 and 4.   

• The second one (Section 5.2) is devoted to small scale networks and it aims at providing us with an 
evaluation, for such networks, of the quality of the results which are computed by the above-
mentioned heuristics. It involves comparisons with the results produced by the exact method 
BENCH of Section 3. 

5.1 A comparative analysis related to medium scale networks. 

We have been working here on networks G = (X, E) with n = 100 vertices, m = 300 arcs, I = 200 
origin-destination pairs. We tested, while using such randomly generated networks, the behaviour of the 
descent procedure  SIMPLE and of the simulated annealing procedure SIM-SIMPLE-REC, (see Section 3), 
both based upon the use of the  TL-HOM local search operator on the original criterion Global-Demand, 
and we compared it to the behaviour of the PURSUIT procedures RANDOM-PURSUIT, DESCENT-
PURSUIT and SIM-PURSUIT of Section 4. While doing it, we focused on both the computational times 
and on the quality level of the solutions which were obtained: that means that we kept the memory, every 
time we tested a procedure on a given instance, of the value VAL which provides us with the ratio between 
the value Global-Demand(γ) of the solution γ which was obtained through this procedure and the best value 
we could obtain on the same instance, as well as of the following quantities related to the computational 
costs:       

• The number NΦ of times a quantity Global-Demand(γ) is computed during the execution of the 
procedure; 

• The numbers NTLΦ and NTLΦλ of times an evaluation of the impact on the quantities Global-   
Demand(γ) and Aux-Qualityλ(γ) of an application of the TL-HOM local operator is performed; 

• The CPU time CPU which was  required by the procedure in order to run the given instance;  
We used the following Hardware and Software supports: C++ programming language C++ ;  Unix  

SUN Sparc 10 working stations. 
Then we got results which could be summarized inside the table 1 below, which correspond to the 

value K3 = 1 of the diversification parameter: every procedure SIMPLE, SIM-SIMPLE, DESCENT-
PURSUIT, RANDOM-PURSUIT and SIM-PURSUIT is launched exactly once for every instance, while 
starting from the initial solution computed by GREEDY-PURSUIT.  
 

Table 1: A comparative study. 

 VAL NΦ NTLΦ NTLΦλ CPU (s) 

GREEDY-PURSUIT 0.64 1 0 0 3 

SIMPLE 0.72 2 205 0 94 

SIM-SIMPLE 0.85 2 1000 0 497 

 RANDOM-PURSUIT 0.86 41 0 3480 128 

 DESCENT-PURSUIT 0.88 63 0 3860 160 

 SIM-PURSUIT 0.92 200 0 13850 758 
 

 Not surprisingly, SIMPLE and SIM-SIMPLE do not yield good results, due to the lack of power of 
the neighbourhood topology defined by TL-HOM. For such a local optimum γ, there exist many values λ 
such that γ is not a local optimum for Aux-Qualityλ. Thus, performing a descent process from γ while using 
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the auxiliary criterion Aux-Qualityλ get us out deadlock situations. It comes that both processes RANDOM-
PURSUIT and DESCENT-PURSUIT yield better results than SIMPLE, and induce computational costs 
which are far less than those induced by SIM-SIMPLE. As a matter of fact, one can check that the 
computing costs related to a trial of the TL-HOM operator to Global-Demand are twice hundred times more 
than those related to a trial of the same operator to Aux-Qualityλ. It means that using the PURSUIT rewriting 
scheme together with the pseudo-random approximating functions Aux-Qualityλ, provides us with an 
« intelligent » strategy for the management of enlarged neighbourhoods, and this without inducing any 
significant growth of the computational costs. In a not surprising way, it is the mixed procedure SIM-
PURSUIT which yields the best results while the greedy non deterministic procedure GREEDY-PURSUIT, 
which is efficient as an initialization/diversification procedure, scarcely succeeds in yielding efficient 
solutions by itself.  

The fact that the computational times are high enough comes from the fact that our codes have not been 
optimized.   

5.2 Impact of the Diversification parameter K3. 

The following table 2 provides us with an evaluation of the influence of the initialization process  
GREEDY-PURSUIT on the quality of the whole local search processes. Every procedure SIMPLE, SIM-
SIMPLE, DESCENT-PURSUIT, RANDOM-PURSUIT and SIM-PURSUIT is launched exactly K3 = 5 
times for every instance, while starting every time from an initial solution computed by GREEDY-
PURSUIT.  

Table 2: impact of the diversification parameter K3 

 VAL 
GREEDY-PURSUIT 0.73 
SIMPLE 0.79 
SIM-SIMPLE 0.94 
RANDOM-PURSUIT   0.96 
DESCENT-PURSUIT 0.97 
SIM-PURSUIT 1.00 

 
Diversification clearly improves our results. Since the above local search procedures are sensitive to 

the way initialization is performed, it is likely that, in many cases, we did not obtain the best DMC solution.   

5.3 Impact of the control parameters K1 and K2 

The table 3 below provides us with an evaluation of the influence of the behaviour of RANDOM-
PURSUIT an DESCENT-PURSUIT of both control parameters K1 and K2. We try here the values K1 = 40, 
100, 200 and K2 = 20, 40, 80, while the diversification parameter K3 remains equal to 1.   

Table 3: impact of the control parameters K1 and K2 

 VAL  NΦ NTLΦλ CPU 

RANDOM-PURSUIT(40) 0.86 41 3480 128 

RANDOM-PURSUIT(100) 0.93 101 7500 302 

RANDOM-PURSUIT(200) 0.97 201 14200 588 

DESCENT- PURSUIT (20) 0.88 63 4560 160 

DESCENT- PURSUIT (40) 0.93 112 7800 308 

DESCENT- PURSUIT (80) 0.95 196 13400 597 
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As expected, giving more time to the search process improves the results, without ensuring us to get the best 
solution.   

5.4 Comparison with the exact method BENCH in the case of small networks. 

We have been working here on small scale networks with n = 30 vertices, m = 90 arcs and I = 50 
origin-destination pairs, which, in most cases, allowed us to compute an optimal solution through the branch 
and bound procedure BENCH.  Then we focused on precision, and computed, for a 10 instance package and 
for both procedure BENCH and SIM-PURSUIT, the following quantities:    

• VALUE = ratio between the best value which could be computed by the tested procedure and the 
theoretical optimal value (obtained through the BENCH procedure); 

• EMAX = the worst ratio which was obtained by the tested procedure;   
• RATE = the number of times the tested procedure could compute an optimal solution. 

Then we get results which can be summarized as follows.  
Table 4: A small scale instance analysis 

 VAL RATE EMAX CPU(s) 
SIM-PURSUIT 0.98 8 0.87 125 
BENCH 1.00 10 1.00 3250 

 
In most cases, SIM-PURSUIT was able to get an optimal solution. 

6. CONCLUSION 

The main purpose of this paper was to study an original network design transportation problem which 
involved elastic demands. This very specific feature made arise difficulties related to the management of 
complex quantities, whose computation tended to be excessively time consuming. Trying to handle those 
difficulties led us to introduce new metaheuristic scheme based upon the used of what we called pseudo-
random approximating function families. This scheme, which involves a kind of rewriting technique, aims at 
simultaneously making the computational costs decrease and regularizing the topology of the search domain. 
We tested it on academic instances, and we got satisfactory results.     

We should now try to go ahead with this study while working at two levels:   
•    The application level: we are attending the emergence of a class of innovative transportation services, 

which involve shared vehicles, autonomous vehicles… Relevant demand models and efficient related 
network design software should help in ensuring the economic viability of those services.   

•    The level of the algorithm design methods: it should be interesting to go further with the scheme of 
Section 4, and to study the way pseudo-random approximating function families can be defined.   
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