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We introduce new classes of generalized convex n-set functions that we call d-weak strictly pseudo-
quasi type-I univex, d-strong pseudo-quasi type-I univex and d-weak strictly pseudo type-I univex
functions. We focus on multiobjective subset programming problem. Sufficient optimality conditions
are obtained under the assumptions involving such functions. Duality results are also established for
Mond-Weir and general Mond-Weir type dual problems in which the functions involved satisfy
appropriate generalized d-type-I univexity conditions. The results obtained in this paper present a
refinement and improvement of previously known results in the literature.
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1. PRELIMINARIES

Let R" be the n-dimensional Euclidean space and R! its positive orthant. The following conventions
for vectors in R" will be followed throughout this paper: x > yox > y, k=12,..,n;
X2y x, 2y, k=12.,nand x#y; x>y x, >y, k=12,..,n Wewrite xeR] iff sz . Let
(X ,A, u) be a finite atomless measure space with L, (X , A, u) separable and let d be the pseudometric on
A" defined by

1/2
d(S,T):{ZIu2 (SkATk)} ,S=(58,,8,,...5,)ed", T=(1\,T,,...T,)e 4",
k=1

where A stands for symmetric difference; thus, (A”,d ) is a pseudometric space. For he L, (X ,A,u)and

Z € A with characteristic functiony, € L, (X ,A, u) , the integral J.z hdp will be denoted by <h, Az >

We next define the notions of differentiability for n-set functions. This was originally introduced by
Morris [6] for set functions, and subsequently extended by Corley [1] to n-set functions.

A function ¢:A4— R is said to be differentiable at S° € 4 if there exists Dd)(SO)e L (X , A,u),
called the derivative of ¢ at S° and y: Ax 4 — R such that ¢(S):¢(S°)+<D¢(SO),1S —1S0>+\V(S,S°)
s,s°
for each S € 4, where \V(S,SO) is o(d(S,SO)), thatis, lim M:o
d(s.5°)0 d(S, SO)

A function F:A4" — R is said to have a partial derivative at S° = (SIO ,8Y,..,80 ) with respect to its
p™ argument if the function

O(Se )= F (S0 S0 1S a SEonsnS) )
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has derivative Dd)(S,?) and we define DkF(SO)zD(I)(S,? ) If DkF(SO)k =1,2,...,n,all exist, then we put
DF(s°)=(D,F(s°) D, F(s)... D, F(s")).
A function F:A4" >R is said to be differentiable at S°if there exist DF (SO )and
y: A" x A" — R such that
F(S)=F(8°)+ Y (DF(S).1g, =1y ) +w(s.5°),
k=1
where w(S,SO)is o(d(S,SO)) forallS e A4".
Consider the nonlinear multiobjective subset programming problem
(P) Minimize F(S)= |F,(S), F, (S ).... F, (S)]
subject to G ,(S) < 0, je M, S =(S,.S,,...5,)e 4",
where 4" is the n-fold product of a o -algebra4 of subsets of a given set X, F,,ie P= {1,2,...,p} and
Gj,j eM = {1,2,...,m} are real-valued functions defined on 4". Let X, = {S eA” :Gj (S) < 0, eM} be
the set of all feasible solutions to (P).

Definition 1.1. A feasible solution S°to (P) is said to be an efficient solution to (P) if there exists no
other feasible solution S to (P) such that F(S)< F (S 0 )

Definition 1.2. A feasible solution S° to (P) is said to be a weakly efficient solution to (P) if there
exists no other feasible S (S S 0) to (P) such that F(S)< F (S 0 )

Along the lines of Jayswal and Kumar [2], we now define several classes of n-set functions, that we
call d-weak strictly pseudo-quasi type-I univex, d-strong pseudo-quasi type-I univex and d-weak strictly
pseudo type-I univex functions.

Definition 1.3. We say that the pair of functions (F , G) is d-weak strictly pseudo-quasi type-I univex at
S% e 4" with respect to by, b, ¢y, 0y, :(yl,yz,...,yp) ,0 =(81,62,...,8m) and n =(nl,n2,...,nn), if there
exist n:A4"xA" >R", vy,:4"xA" >R, \{0}, i=12,.,p,9, A" x A" >R, \{0}, j=12,...m
nonnegative functions b, and b,, also defined on 4" x A", and ¢,:R— R,, : R — R, such that for all
S e X, the implications

by ($.5° ), {Zp;y (5,8°)F (S)- lZ::y[ (S,SO)F[(SO)} <0
= i ne (8.8 )<Dsz (8°)-15, ~ 1

i=l k=l

—bl(S,So)d)]{iSJ(S,SO)Gj(SO)} <0

J=1

=33, (S,S°)<Dij (5°).15, —1S2> <0

j=1 k=1

N

<0,

~—

do hold.

Definition 1.4. We say that the pair of functions (F , G) is d-strong pseudo-quasi type-1 univex at
S e A" with respect to bo,bl,d)o,d)l,y=(y1,y2,...,yp) ,6=(81,82,...,6m) and nz(nl,nz,...,nn), if there
exist mMm:4"xA" >R", y,:A4"xA" >R, \{0}, i=12,..,p, 8‘/. :A"x A" >R, \{0}, j=12,...m
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nonnegative functions b, and b,, also defined on 4" x 4", and ¢,:R—> R ,,: R —> R, such that for all
S € X, the implications

by (S.5° ), {Zp:yi (5.8°)F, (S)—Zyi (5.5°)F, (SO)} <0

do hold.

Definition 1.5. We say that the pair of functions (F ,G) is d-weak strictly pseudo type-I univex at
S% e A" with respect to bo,bl,d)o,d)l,y=(y1,y2,...,yp) ,6=(81,82,...,6m) and nz(nl,nz,...,nn), if there
exists n:d"xA">R", vy, :A"xA" >R \{0}, i=12..,p 8 :4"xA" >R \{0}, j=12..m

nonnegative functions b, and b,, also defined on 4" x 4", and ¢,:R—> R ,$, : R—> R, such that for all
S € X, the implications

(5"} S0 557 (5) S .57} ()| <0

i=1 i=1

=3y nk(S,S°)<Dij(S°),ISk —[S£><O

Jj=1 k=1
do hold.

Remark 1.6. The above definitions extend to n-set functions the concept of weak strictly pseudo-quasi-
d-V-type-1 univex, strong pseudo-quasi-d-V-type-I univex and weak strictly pseudo-d-V-type-I univex of
Jayswal and Kumar [2]. They also extend to univexity the concept of d-weak strictly-pseudoquasi-type-I,
d-strong-pseudoquasi-type-I and d-weak strictly pseudo-type-I of Mishra et al. [5].

1. SUFFICIENT OPTIMALITY CONDITIONS

The theorem below gives sufficient optimality conditions for a weakly efficient solution to (P) under
the assumptions of generalized d-type-I univexity introduced in Section 1.

Theorem 2.1. (Sufficient optimality conditions). Let S® be a feasible solution to (P). Assume that there

exist?»?z 0, ieP,Zp:K?zlandug > 0, jeMO:{jeM:Gj(SO):O},Suchthat

l: <Dk (2°F)(8°)+ Dy (w'G)(S°). 15, ~ I >zo
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forall S e A" Moreover, assume any one of the conditions below.
(S1) A>0 and (F , uG) is d-strong pseudo-quasi type-I univex at S° with respect to

bo’bl’(l)(]’q)l’y:(YI’YZ""’Yp) ’8:(81’62"“’8m) and n=(n1,n2,---,m);

(S2) (F , },lG) is d-weak strictly pseudo-quasi type-I univex at S° with respect to
bO’bl’(I)O’d)l’yZ(Y1=Y2"”’Yp) ,5=(51,52,...,5m) and n=(m,nzw-,m);

(S3) (F , MG) is d-weak strictly pseudo  type-I umivex at S°  with respect to
b07b1,¢07¢lﬂy:(Y17Y2,"'3Yp) 76:(617827'"78”,) and n:(nlanZa"',nn);

with n satisfying " o< 0=> o, <0 for at least one ke{l,2,...,n}.

Further, assume that for r € R we have
r < O:>¢O(r) <0,r < 09 (r)<0

and by(5.5°)> 0,5, (5.5°) >0, VS € X,.

Then S° is a weakly efficient solution to (P).

Definition 2.1. A feasible solution S° is said to be a regular feasible solution if there exists
S e A" such that

G, (S0)+Z<Dij (50),1§k —1Sk0> <0, jeM.
k=1
The following result below will be needed in the sequel.

Lemma 2.1 (Zalmai [7], Theorem 3.2). Let S "be a regular efficient (or weakly efficient) solution to
(P) and assume that F;,i€ePand G, ,jeM are differentiable at S°. Then there exist

)
LeR! inzl, and pweR! such that

i=1

i=

n )4 m
< A,D,F, (S0)+2ujDij (SO),ISk —[S£>20 forall Se 4",
T

k=1 j=1

u,G,(8°)=0, jeM.

3. MOND-WEIR DUALITY

In this section, we associate the problem (P) with the Mond-Weir dual problem (MD):
(MD) maximize F(T) subject to

(D (WF)(T)+ D, (WG)(T), 15, ~ 15, )>0, VSed",
i“jGj (7)>0,

p

% >0, iePand D A, =1,
i=1

u, >0, jeMand T e A4".

Theorem 3.1 (Weak duality). Let S and (T A, ;,L) be feasible solutions to (P) and (MD), respectively.

Assume any one of the conditions below
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(WD1) A>0 and (F , uG). is d-strong pseudo-quasi type-I univex at T with respect to
boby - 017 = (11272007, ) :8=(8,.8,....8,,) and n=(n,.n5....m, )

(WD2) (F , ;,LG) is d-weak strictly pseudo-quasi type-I univex at T  with respect to
bo’bl’(l)(]’q)l’y:(YI’YZ""’Yp) ’8:(81’62""’8m) andn=(m,nz,---,m);

(WD3) (F , uG) is d-weak strictly pseudo type-I univex at T  with respect to
bo’bl’(l)(]’q)l’y:(YI’YZ""’Yp) ’8:(81’62""’8m) and n=(n1,nz,---,m);

with n satisfying 0" o< 0=> o, <0for at least one k € {1,2,..., n}
Further, assume that for r € R we have
r < 0=¢(r)<0,r<0=¢,(r)<0

and bo(5,5°)>0,5,(5,5°) > 0, VS € X,

Then F(S)< F(T') cannot holds.

Theorem 3.2 (Strong duality). Let S°be a regular weakly efficient solution to (P). Then there exist

P
A’ eR?, Z A =1, and u’ € R™ such that (SO, 20, uo) is a feasible solution to (MD) while the values of the
i=1

objective functions of (P) and (MD) are equal at S° and (S O,XO,MO), respectively. Furthermore, if the
conditions of weak duality Theorem 3.1 also hold, for each feasible solution (T A, u) to (MD), then
(S0 AL, po) is a weakly efficient solution to (MD).

4. GENERALIZED MOND-WEIR DUALITY

In this section, we associate the problem (P) with the generalized Mond-Weir dual problem (GMD):
(GMD) maximize F(T)+ Z 1,;G; (T)e subject to

Jjedy

(D, (WF)(T)+ D, (WG)(T), 15, ~ 15, )>0,  ¥Sed",
0

ZPU‘GJ (7)>

]EJ(‘L

forl<a<r,

P
A>0,u>0and D 2, =1,
i=1
where ez(l,l,...,l)eR” and J,, O<a<r is a partition of M, with J NJ, =¢fors=rand

UJS :M'
s=0

Theorem 4.1 (Weak duality). Let S and (T A, u) be feasible solutions to (P) and (GMD) respectively.
Assume any one of the conditions below.

(GWD1) A>0 and F(-)+ z w,G; (-)e , Z u,G; () is d-strong pseudo-quasi type-1 univex at
jedy jeJy
T with respect to bo,bl,(l)o,(bl,y=(y1,y2,...,yp) ,8:(81,82,...,8m) and nz(nl,nz,...,nn) for any

a, Il<a<r;
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(GWD2) | F () + Z u,G; (-)e, Z u,G; () is d-weak strictly pseudo-quasi type-I univex at T with

Jjedy JeJy

respect to bo,bl,d)o,(j)l,y=(y1,yz,...,yp),6=(81,82,...,8m) and nz(nl,nz,...,nn)forany a, liair;

(GWD3) | F () + Z w,G; (-)e, Z u,G; () is d-weak strictly pseudo type-1 univex at T with respect

Jjedy JeJy

to bo,bl,(l)o,(bl,y=(y1,y2,...,yp),8=(81,82,...,8m) and nz(nl,nz,...,nn)forany a, liair;
with n satisfying 1" o< 0=> o, <0for at least one ke{l,Z,...,n}.

Further, assume that for r € R we have

rSO:d)O(r)SO,riO:d)l (r)iO
and bo(5,5°)>0,5,(5,5°) > 0, VS e x,.

Then F(S) SF(T)+ Z u,G, (T)e cannot holds.

Jjedy

Theorem 4.2 (Strong duality). Let S°be a regular weakly efficient solution to (P). Then there exist

P
XOERP,ZX?zl and ' eR", such that(SO,kO,uo) is a feasible solution to (GMD) and
i=1

1, G (S 0 ) =0, while the values of the objective functions of (P) and (GMD) are equal at
S° and (S IV RNTE ) respectively. Furthermore, if the conditions of weak duality Theorem 4.1 also hold for

each feasible solution (T,k, u) to (GMD), then (SO, 20, uo) is a weakly efficient solution to (GMD).
The proofs will appear in [3].
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