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We introduce new classes of generalized convex n-set functions that we call d-weak strictly pseudo-
quasi type-I univex, d-strong pseudo-quasi type-I univex and d-weak strictly pseudo type-I univex 
functions. We focus on multiobjective subset programming problem. Sufficient optimality conditions 
are obtained under the assumptions involving such functions. Duality results are also established for 
Mond-Weir and general Mond-Weir type dual problems in which the functions involved satisfy 
appropriate generalized d-type-I univexity conditions. The results obtained in this paper present a 
refinement and improvement of previously known results in the literature. 
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1. PRELIMINARIES 

Let Rn be the n-dimensional Euclidean space and nR+  its positive orthant. The following conventions  
for vectors in nR  will be followed throughout this paper: , 1, 2,..., ;k kx y x y k n> ⇔ > =  

kk yxyx ≥⇔≥ , nk ,...,2,1=  and yx ≠ ; .,...,2,1, nkyxyx kk =>⇔>  We write nRx +∈  iff 0>x . Let 

( ), ,X A µ  be a finite atomless measure space with ( )1 , ,L X A µ  separable and let d be the pseudometric on 
nA  defined by  

( ) ( )
1/ 2

2

1

,
n

k k
k

d S T S T
=

 
= µ ∆ 
 
∑ , ( )1 2, , ..., n

nS S S S A= ∈ ,  ( ) n
n ATTTT ∈= ,...,, 21 , 

where ∆  stands for symmetric difference; thus, ( )dAn ,  is a pseudometric space. For ( )1 , ,h L X A∈ µ and 

AZ ∈ with characteristic function ( ), ,Z L X A∞χ ∈ µ , the integral d
Z

h µ∫  will be denoted by , Zh χ . 

We next define the notions of differentiability for n-set functions. This was originally introduced by 
Morris [6] for set functions, and subsequently extended by Corley [1] to n-set functions. 

A function : A Rφ →  is said to be differentiable at AS ∈0  if there exists ( ) ( )0
1 , ,D S L X Aφ ∈ µ , 

called the derivative of 0at Sφ  and RAA →×:ψ  such that ( ) ( ) ( ) ( )0
0 0 0, ,S SS S D S I I S Sφ = φ + φ − + ψ  

for each AS ∈ , where ( )0,S Sψ  is ( )( )0, SSdo , that is, 
( )

( )
( )0

0

0, 0

,
lim 0

,d S S

S S

d S S→

ψ
= . 

A function RAF n →:  is said to have a partial derivative at  ( )00
2

0
1

0 ,...,, nSSSS =  with respect to its 
pth argument if the function   

( ) ( )0 0 0 0
1 1 1,..., , , , ...,k k k k nS F S S S S S− +φ =  
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has derivative ( )0
kD Sφ  and we define ( ) ( )0 0

k kD F S D S= φ . If ( ) ,,...,2,1,0 nkSFDk = all exist, then we put 

( ) ( ) ( ) ( )( )00
2

0
1

0 ,...,, SFDSFDSFDSDF n=  . 
A function RAF n →:  is said to be differentiable at 0S if there exist ( )0SDF and 

: n nA A Rψ × → such that  

( ) ( ) ( ) ( )0
0 0 0

1

, ,
k k

n

k S S
k

F S F S D F S I I S S
=

= + − + ψ∑ , 

where ( )0,S Sψ is ( )( )0, SSdo  for all nAS ∈ . 
Consider the nonlinear multiobjective subset programming problem 

(P) Minimize ( ) ( ) ( ) ( )[ ]SFSFSFSF p,...,, 21=  

subject to ( ) ( ) ,,...,,,,0 21
n

nj ASSSSMjSG ∈=∈<  

where nA  is the n-fold product of a σ -algebra A of subsets of a given set X, { }pPiFi ,...,2,1, =∈  and 
{ }mMjG j ,...,2,1, =∈  are real-valued functions defined on nA . Let ( ){ }MjSGASX j

n ∈<∈= ,0:0  be 
the set of all feasible solutions to (P). 

Definition 1.1. A feasible solution 0S to (P) is said to be an efficient solution to (P) if there exists no 
other feasible solution S to (P) such that ( ) ( )0SFSF ≤ . 

Definition 1.2. A feasible solution 0S  to (P) is said to be a weakly efficient solution to (P) if there 
exists no other feasible ( )0SSS ≠  to (P) such that ( ) ( )0SFSF < . 

Along the lines of Jayswal and Kumar [2], we now define several classes of n-set functions, that we 
call d-weak strictly pseudo-quasi type-I univex, d-strong pseudo-quasi type-I univex and d-weak strictly 
pseudo type-I univex functions. 

Definition 1.3. We say that the pair of functions ( )GF ,  is d-weak strictly pseudo-quasi type-I univex at 
nAS ∈0  with respect to ( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, , ..., nη = η η η , if there 

exist : n n nA A Rη × → , { }: \ 0 ,n n
i A A R+γ × →  ,,...,2,1 pi = { }: \ 0 ,n n

j A A R+δ × →  ,,...,2,1 mj =  

nonnegative functions 0b  and 1b , also defined on nn AA × , and 0 : R Rφ → , 1 : R Rφ → , such that for all 

0XS ∈  the implications 

( ) ( ) ( ) ( ) ( )0 0 0 0
0 0

1 1

, , , 0
p p

i i i i
i i

b S S S S F S S S F S
= =

 
φ γ − γ ≤ 

  
∑ ∑  
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0 0

1 1

, , 0
k k

p n

k k i S S
i k

S S D F S I I
= =

⇒ η − <∑∑ , 

( ) ( ) ( )0 0
1 1

1

, , 0
m

o
j j

j

b S S S S G S
=

 
− φ δ < 

  
∑  

( ) ( ) 0
0 0

1 1

, , 0
k k

m n

k k j S S
j k

S S D G S I I
= =

⇒ η − <∑∑  

do hold. 

Definition 1.4. We say that the pair of functions ( )GF ,  is d-strong pseudo-quasi type-I univex at 
nAS ∈0  with respect to ( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, , ..., nη = η η η , if there 

exist : n n nA A Rη × → , { }: \ 0 ,n n
i A A R+γ × →  ,,...,2,1 pi = { }: \ 0 ,n n

j A A R+δ × →  ,,...,2,1 mj =  
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nonnegative functions 0b  and 1b , also defined on nn AA × , and 0 : R Rφ → , 1 : R Rφ → , such that for all 

0XS ∈  the implications    

( ) ( ) ( ) ( ) ( )0 0 0 0
0 0

1 1

, , , 0
p p

i i i i
i i

b S S S S F S S S F S
= =

 
φ γ − γ ≤ 

  
∑ ∑  

( ) ( ) 0
0 0

1 1

, , 0
k k

p n

k k i S S
i k

S S D F S I I
= =

⇒ η − ≤∑∑ , 

( ) ( ) ( )0 0
1 1

1

, , 0
m

o
j j

j

b S S S S G S
=

 
− φ δ < 

  
∑  

( ) ( ) 0
0 0

1 1

, , 0
k k

m n

k k j S S
j k

S S D G S I I
= =

⇒ η − <∑∑  

do hold. 

Definition 1.5. We say that the pair of functions ( )GF ,  is d-weak strictly pseudo type-I univex at 
nAS ∈0  with respect to ( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, , ..., nη = η η η , if there 

exists : n n nA A Rη × → , { }: \ 0 ,n n
i A A R+γ × →  ,,...,2,1 pi = { }: \ 0 ,n n

j A A R+δ × →  ,,...,2,1 mj =  

nonnegative functions 0b  and 1b , also defined on nn AA × , and 0 : R Rφ → , 1 : R Rφ → , such that for all 

0XS ∈  the implications  

( ) ( ) ( ) ( ) ( )0 0 0 0
0 0

1 1

, , , 0
p p

i i i i
i i

b S S S S F S S S F S
= =

 
φ γ − γ ≤ 

  
∑ ∑  

( ) ( ) 0
0 0

1 1

, , 0
k k

p n

k k i S S
i k

S S D F S I I
= =

⇒ η − <∑∑ , 

( ) ( ) ( )0 0
1 1

1

, , 0
m

o
j j

j

b S S S S G S
=

 
− φ δ < 

  
∑  

( ) ( ) 0
0 0

1 1

, , 0
k k

m n

k k j S S
j k

S S D G S I I
= =

⇒ η − <∑∑  

do hold. 
Remark 1.6. The above definitions extend to n-set functions the concept of weak strictly pseudo-quasi-

d-V-type-I univex, strong pseudo-quasi-d-V-type-I univex and weak strictly pseudo-d-V-type-I univex of 
Jayswal and Kumar [2]. They also extend to univexity the concept of d-weak strictly-pseudoquasi-type-I,  
d-strong-pseudoquasi-type-I and d-weak strictly pseudo-type-I of Mishra et al. [5]. 

1. SUFFICIENT OPTIMALITY CONDITIONS 

The theorem below gives sufficient optimality conditions for a weakly efficient solution to (P) under 
the assumptions of generalized d-type-I univexity introduced in Section 1. 

Theorem 2.1. (Sufficient optimality conditions). Let 0S  be a feasible solution to (P). Assume that there 

exist 0 0,i i Pλ > ∈ , 0

1

1
p

i
i=

λ =∑  and 0 0 ,jµ > ( ){ }0
0 : 0jj M j M G S∈ = ∈ = , such that  

( ) ( ) ( ) ( ) 0
0 0 0 0 , 0

k k
k k S SD F S D G S I Iλ + µ − >  
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for all nAS ∈  Moreover, assume  any one of the conditions below. 
(S1) 0λ >  and ( ),F Gµ  is d-strong pseudo-quasi type-I univex at 0S  with respect to 

( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, , ..., nη = η η η ;   

(S2) ( ),F Gµ  is d-weak strictly pseudo-quasi type-I univex at 0S  with respect to 

( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, , ..., nη = η η η ;   

(S3) ( ),F Gµ  is d-weak strictly pseudo type-I univex at 0S  with respect to 

( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, , ..., nη = η η η ;  

with η  satisfying 0 0T
kη α < ⇒α <  for at least one { }1, 2,...,k n∈ .  

Further, assume that for Rr∈  we have 
( )00 0r r≤ ⇒ φ ≤ , ( )10 0r r< ⇒ φ <  

and       ( ) 0, 0
0 >SSb , ( )0

1 , 0b S S > , 0XS ∈∀ . 

Then 0S  is a weakly efficient solution to (P). 

Definition 2.1. A feasible solution 0S  is said to be a regular feasible solution if there exists 
nAS ∈ˆ such that  

( ) ( ) 0
0 0

ˆ
1

, 0, .
k k

n

j k j S S
k

G S D G S I I j M
=

+ − < ∈∑  

The following result below will be needed in the sequel. 

Lemma 2.1 (Zalmai [7], Theorem 3.2). Let 0S be a regular efficient (or weakly efficient) solution to 
(P) and assume that PiFi ∈, and MjG j ∈,  are differentiable at 0S . Then there exist 

1

, 1,
p

p m
i

i

R and R+ +
=

λ∈ λ = µ∈∑ such that  

( ) ( ) 0
0 0

1 1 1

, 0
k k

pn m

i k i j k j S S
k i j

D F S D G S I I
= = =

λ + µ − >∑ ∑ ∑    for all nAS ∈ , 

( )0 0,j jG S j Mµ = ∈ . 

3. MOND-WEIR DUALITY 

In this section, we associate the problem (P) with the Mond-Weir dual problem (MD): 
(MD)  maximize )(TF subject to 

( ) ( ) ( ) ( ) , 0,
k k

n
k k S TD F T D G T I I S Aλ + µ − > ∀ ∈ , 

( )
1

0
m

j j
j

G T
=

µ >∑ , 

0,i i Pλ > ∈ and 
1

1
p

i
i=

λ =∑ , 

0 ,j j Mµ > ∈ and nAT ∈ . 

Theorem 3.1 (Weak duality). Let S and ( ), ,T λ µ be feasible solutions to (P) and (MD), respectively. 
Assume  any one of the conditions below 
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(WD1) 0λ >  and ( ), .F Gµ  is d-strong pseudo-quasi type-I univex at T  with respect to 

( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, , ..., nη = η η η ;   

(WD2) ( ),F Gµ  is d-weak strictly pseudo-quasi type-I univex at T  with respect to 

( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, , ..., nη = η η η ;   

(WD3) ( ),F Gµ  is d-weak strictly pseudo type-I univex at T  with respect to 

( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, , ..., nη = η η η ;  

with η  satisfying 0 0T
kη α < ⇒α < for at least one { }nk ,...,2,1∈ .  

Further, assume  that for Rr∈  we have 
( )00 0r r≤ ⇒ φ ≤ , ( )10 0r r< ⇒ φ <  

and       ( ) 0, 0
0 >SSb , ( ) 0, 0

1 >SSb , 0XS ∈∀ . 

Then  ( ) ( )TFSF ≤  cannot holds. 

Theorem 3.2 (Strong duality). Let 0S be a regular weakly efficient solution to (P). Then there exist 
0 0

1

, 1,
p

p
i

i

R
=

λ ∈ λ =∑  and 0 mRµ ∈  such that ( )0 0 0, ,S λ µ  is a feasible solution to (MD) while the values of the 

objective functions of (P) and (MD) are equal at ( )0 0 0 0and , ,S S λ µ , respectively. Furthermore, if the 

conditions of weak duality Theorem 3.1 also hold, for each feasible solution ( ), ,T λ µ  to (MD), then 

( )0 0 0, ,S λ µ  is a weakly efficient solution to (MD). 

4. GENERALIZED MOND-WEIR DUALITY 

In this section, we associate the problem (P) with the generalized Mond-Weir dual problem (GMD): 
(GMD) maximize ( )

0

( ) j j
j J

F T G T e
∈

+ µ∑  subject to 

( ) ( ) ( ) ( ) , 0,
k k

n
k k S TD F T D G T I I S Aλ + µ − > ∀ ∈ , 

( ) 0 for 1j j
j J

G T r
α∈

µ > < α <∑ , 

0,λ > 0µ >  and 
1

1
p

i
i=

λ =∑ , 

where ( ) pRe ∈= 1,1,...,1  and , 0J rα < α <  is a partition of M , with = for s tJ J s t∩ φ ≠ and 

 
r

s
s

J M
=

=∪
0

. 

Theorem 4.1 (Weak duality). Let S and ( ), ,T λ µ be feasible solutions to (P) and (GMD) respectively. 
Assume any one of the conditions below. 

(GWD1) 0λ >  and ( ) ( ) ( )
0

,j j j j
j J j J

F G e G
α∈ ∈

 
 ⋅ + µ ⋅ µ ⋅ 
 
 

∑ ∑  is d-strong pseudo-quasi type-I univex at 

T with respect to ( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, , ..., nη = η η η  for any 

, 1 rα < α < ;   
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(GWD2) ( ) ( ) ( )
0

,j j j j
j J j J

F G e G
α∈ ∈

 
 ⋅ + µ ⋅ µ ⋅ 
 
 

∑ ∑  is d-weak strictly pseudo-quasi type-I univex at T with 

respect to ( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, ,..., nη = η η η  for any , 1 rα < α < ;     

(GWD3) ( ) ( ) ( )
0

,j j j j
j J j J

F G e G
α∈ ∈

 
 ⋅ + µ ⋅ µ ⋅ 
 
 

∑ ∑  is d-weak strictly pseudo type-I univex at T with respect 

to ( ) ( )0 1 0 1 1 2 1 2, , , , , , ..., , , , ...,p mb b φ φ γ = γ γ γ δ = δ δ δ  and ( )1 2, ,..., nη = η η η  for any , 1 rα < α < ;     

with η  satisfying 0 0T
kη α < ⇒α < for at least one { }1, 2,...,k n∈ .  

Further, assume that for Rr ∈  we have 

( )00 0r r≤ ⇒ φ ≤ , ( )10 0r r< ⇒ φ <  

and                                     ( ) 0, 0
0 >SSb , ( ) 0, 0

1 >SSb , 0XS ∈∀ .           

Then ( ) ( ) ( )
0

j j
j J

F S F T G T e
∈

≤ + µ∑  cannot holds. 

Theorem 4.2 (Strong duality). Let 0S be a regular weakly efficient solution to (P). Then there exist 
0 0

1

, 1
p

p
i

i

R
=

λ ∈ λ =∑  and 0 mRµ ∈ , such that ( )0 0 0, ,S λ µ  is a feasible solution to (GMD) and 

( )0 0
0 0J JG Sµ = , while the values of the objective functions of (P) and (GMD) are equal at 

( )0 0 0 0 , ,S and S λ µ , respectively. Furthermore, if the conditions of weak duality Theorem 4.1 also hold for 

each feasible solution ( ), ,T λ µ  to (GMD), then ( )0 0 0, ,S λ µ  is a weakly efficient solution to (GMD).  

The proofs will appear in [3]. 
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