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Let F be a distribution on [0,∞), with F(x):=F((x,∞)) its right tail. Suppose that F has a finite first 

moment 
0

( )dF x x
∞

µ = ∫ . The Lorenz curve of F is the graph of  L(F):[0,1] → [0,1] defined by 

( )( ) ( )1

0

1 d
y

L F y F t t−=
µ ∫ , where F-1(y) = sup{x : F(x) ≤ y} is the pseudoinverse of F. As L(F)(0)=0, 

L(F)(1)=1 and LF is increasing, it is the distribution function of some other measure F1. Tzvetan 
Ignatov proved [5] that if we construct the sequence defined by the recurrence Fn+1=L(Fn), this 
sequence has always a limit which does not depend on F. From a geometric point of view L(F)(y) is 
the ratio A(y)/A(0) where A(y) is the area of the set {(x,z) : y ≤ z ≤ F(x) }. If we replace this ratio by 
B(x)/B(0), B(x) being the area of the set {(t,z): 0 ≤ z ≤ F(t), t ≥ x} we obtain the tail of another 
distribution which is denoted by FI and it is called the integrated tail of F [1, 3, 8, 13, 14]. Ignatov 
conjectured that if we construct the sequence defined by the recurrence Fn+1=(Fn)I, this sequence has 
always a limit which is an exponential distribution. We prove that this is true in some cases if we 
agree to add Dirac’s measure δ0 and the null measure δ∞ to the family of exponential distributions 
under the name Exp(∞) and Exp(0).   
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1. DEFINITIONS AND STATEMENT OF THE PROBLEM 

Let (Ω,K,P) be a probability space and ( ), ,pL P+= Ω∩L K . So, X ∈ L iff X ≥ 0 (a.s.) and EXp < ∞ for 

every 1 ≤ p < ∞. Let M be the set of the distribution of the random variables X ∈ L. Thus F ∈ M iff F([0,∞)) 

= 1 and ∫ )(d xFx p < ∞ ∀ 1 ≤ p < ∞. The integral pp XxFx E:)(d =∫ will be denoted by µp(F). For p = 1 it 

will be simply denoted µ(F). µp(F) is called the pth moment of X. We shall denote by F(x) the distribution 
function of F and by F(x) its right tail. Precisely, F(x) will stand for F([0,x]) and F(x) for F((x,∞)). 

Let g:[0,∞) → ℜ be a continuous function. Suppose that it is differentiable at almost all its points, with 
the possible exception of a discrete set. We shall often use the formula (integration by parts). 

∫∫
∞

+=⇒∈
0

d)()(')0(d xxFxggFgF M . (1.1)

For instance, if g(x) = (x-a)+ we get ( ) ∫
∞

+ =−⇒≥
a

xxFaXEX d)(0 E(X-a)+ =  ∫
∞

a
xxF d)( . 

In renewal and ruin theories the following distribution is of interest: it is called the integrated tail. Its 
tail is defined by 
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∫∫=
∞∞

0
d)(d)()( yyFyyFxF

x
I . (1.2)

We shall to study the mapping T: M → M defined by T(F) = FI and the sequence defined by   

F0 = F, Fn+1 = (Fn)I. (1.3) 

For the history of the operator “integrated tail” the reader can consult [1] or [3]. 

2. STRAIGHTFORWARD PROPERTIES 

Let M ac be the family of absolutely continuous (with respect to Lebesgue measure) distribution from 
M. If F ∈ M ac we denote by f its density. 

The first remark is that no matter F ∈ M , T(F) is absolutely continuous. Its density is    

)(
)()(

1 F
xFxfI µ

= . (2.1) 

Here are some simple properties of the operator T. 

Proposition 2.1.  

(i) ( )
1

)(E
E

)(E
µ
−

=
−

= ++ xX
X

xXxFI , where X ~ F. 

(ii) T(F) ∈ M ac  for every F ∈ M  and Range (T) = {G∈ M ac g is non-increasing}; the range consists 
of all absolutely continuous distribution with non-increasing densities.   

(iii) Let ( ) ie d ( )txt F xϕ = ∫  be the characteristic function of F and ϕI(t) = ie d ( )tx
IF x∫  the 

characteristic function of FI. Suppose that µ1> 0.  Then ( ) ( )
( )0'

11)(

1 ϕ
−ϕ

=
µ
−ϕ

=ϕ
t

t
it
ttI . 

(iv) Let ( ) e d ( )txt F x= ∫m be the m.g.f. of F and ( ) e d ( )tx
It F x= ∫Im the m.g.f. of FI. Suppose that µ1 >0.  

Then 
)0(
1)(1)()(

1 m'
mmmI t

t
t
tt −

=
µ
−

= . 

(v) Unicity up to mixtures with δ0:  F,G ∈ M  ⇒  FI = GI iff G = (1 – p)F + pδ0   for some p ∈ [0,1].  
(vi) Let M 0 = {F  ∈ M F((0,∞))=1} ={F ∈ M F(0) = 0}. The mapping T : M 0 → M ac is one to one.   
Proof. (i). Apply (1.1) for g(t) = (t-x)+. (iii) and (iv) are consequences of (1.1) for gt(x) = eitx and for 

g(x) = etx: for instance i i i

1 10 0 0

( ) 1( ) e d ( ) e d e ( )dtx tx tx
I I

F xt F x x F x x
∞ ∞ ∞

ϕ = = =
µ µ∫ ∫ ∫ .  

By (1.1), ( ) i

0

1 e ( )dtxt it F x x
∞

ϕ = + ∫ , hence i

0

( ) 1e ( )dtx tF x x
it

∞ ϕ −
=∫  and (iii) follows. Equality (iv) has the 

same proof. 
(ii) For the second assertion, let G be an absolutely continuous distribution on [0,∞) such that its 

density g is non-increasing and right-continuous. Then 
)0(
)()(

g
xgxF =  is the tail of some distribution F and  

G = FI. To prove the first assertion, we have to check that FI has finite moments or, which is the same thing, 
that ϕI is indefinitely differentiable at 0; or, which is the same thing, that ( )1)(lim

0
−ϕ−

→
tt I

n
t

 does exist and is 

finite. But that is obvious, by Hospital’s rule 
1
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and the last quantity does exist since ϕ is indefinitely differentiable.  
As a byproduct we have 

Corollary 2. 2. The moments of FI are given by 

( ) 1

1

( )
d ( ) :

( 1) ( )
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= µ =

+ µ∫   ∀ k ≥ 0. 
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Proof. µk(FI) =
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Now, we study continuity properties of T. To begin with, notice that T is not continuous in the weak 
topology since for any distribution F the sequence ( ) 0

111 δ+−= −− nFnFn obviously converges to F but the 

tails 
1)(

)(d)(11
)()(

1 +µ

−
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

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=
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∞
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In  converge to 

1)(
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1 +µ

+∫
∞

F

ttF
x  as n → ∞. The limit function does not 

vanish at infinity, hence it is not the tail of a distribution from M. 
However, T is monotonously continuous.  

Definition. Let F and G be two distribution on the real line. We say that F is stochastically dominated 
by G, and write F ≺st G  iff F ≤ G. (For a survey on stochastic orderings the reader may see [8, 12, 13] and 

the references therein). We write Fn ↑ F (respectively   Fn ↓ F ) iff Fn ⇒ F and n ≤ n+1 ⇒ Fn ≺st Fn+1 

(respectively Fn+1 ≺st Fn ).  
Proposition 2.3. If Fn , F ∈ M and Fn ↑ F (respectively Fn ↓ F), then T(Fn) ⇒ T(F). 

Proof. Apply Beppo-Levi’s theorem: if Fn ↑ F , then ∫
∞

x
n yyF d)( ↑ ∫

∞

x
yyF d)(  for any x. For x = 0 we see 

that µ1(Fn) → µ1(F). Thus, (Fn)I converges weakly to FI. 
If we are interested in the possible limits of the sequence (Fn)n defined by (1.3), we should study the 

fixed points of T. 

Proposition 2.4. Let F ∈ M . Then T(F) = F ⇔ F = δ0 or if  F = Exp(λ) for some λ > 0.  
(By Exp(λ) we denote the distribution F with tail F(x) = e - λx). 
Proof. Let F ∈ M  be such that T(F) = F and let ϕ be its characteristic function. Let µ be its 

expectation. If µ = 0, then F = δ0 and of course, T(F) = F. Suppose that µ > 0. According to Proposition 

2.1(iii), ϕ should satisfy the equation  
11 1

1)(1)()(
µ−

=ϕ⇔
µ
−ϕ

=ϕ
it

t
it
tt . But this is the characteristic function 

of Exp(1/µ). The uniqueness theorem says that F = Exp(1/µ). 
After that, we should study the monotonicity of T. Say that T is increasing if F ≺st G ⇒ F ≺st G and 

decreasing if F ≺st G ⇒ G ≺st F. The fact is that T is not monotonous. Indeed, if F(x) = (1 – x/2 )+ and G(x) = 
= 1[0,1)(x) + (1 – x/2 )+ then F ≤ G, but there is no domination between FI and GI : indeed, 0 < x < 4/5 ⇒ FI(x) < 
< GI(x) and x ≥ 4/5 ⇒ FI(x) ≥ GI(x) . 

However, T has a weaker monotonicity: it is HR - increasing. 

Definitions. Suppose that F ∈ M is absolutely continuous. Then its tail can be written as 

0
( )d

( ) e
x

y y
F x

− λ∫
=  

(2.3)

with )(/)(')( xFxFx −=λ . 
The mapping λ = λF :[0,∞) → [0,∞] defined by (2.3) is called the hazard rate of F. We make the 

convention that if F(x) = 0 then λF(x) = ∞ (see [2] or [12] ).  
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Let F and G ∈ M ac . If λF ≥ λG we say that F is HR-dominated by G and write F ≺HR G. It is obvious 

that F ≺HR G ⇒ F ≺st G. (Indeed, 0 0
( )d ( )d

( ) e e ( )
x x

F Gy y y y
F x G x

− λ − λ∫ ∫
= ≤ =  !).  

If T is an operator from M ac to M ac with the property that F ≺HR G ⇒ T(F) ≺HR T(G), we say that T is 
HR-increasing. 

Proposition 2.5. (i) Let F ∈ M be have the hazard rate λ. Then the hazard rate of FI is 

( ) ( ) ( )dI
x

x F x F y y
∞

λ = ∫ . (2.4)

(ii). The mapping T(F) = FI is HR-increasing. 

Proof. (i) The density of FI is fI(x) =F(x)/µ(F) and its tail is ( )( ) ( )dI
x

F x F y y F
∞

= µ∫ . Thus, its hazard 

rate is their ratio, hence ( ) ( ) ( )dI
x

x F x F y y
∞

λ = ∫ . 

(ii) Notice that if F, G ∈ M are absolutely continuous, then 

F ≺HR G ⇔ x 6 
)(
)(

xG
xF  is non-increasing. 

      
(2.5) 

Indeed, let λF and λG be the hazard rates of F and G. F ≺HR G ⇔ λF ≥ λG ⇒ 0

( )( )d( ) e
( )

x

G F y yF x
G x

λ −λ

=
∫

is 

obviously non-increasing. Conversely, if the mapping x 6 
)(
)(

xG
xF  is non-increasing, then the mapping 

( ) ( )( )∫ λ−λ=
x

GF yyxh
0

d  is non-decreasing, hence its derivative should be non-negative: λF – λG ≥ 0. So, (2.5) 

is true.  To prove that T is HR-monotonous, Let F ≺HR G. According to (2.5) we can write F = ΛG with Λ 

non-increasing. Then ∫ ΛΛ=∫=λ
∞∞

xx
F yyGyxGxyyFxFx

I
d)()()()(d)()()( . 

We claim that )(x
IFλ  ≥ )(x

IGλ . Indeed, the inequality ∫≥∫ ΛΛ
∞∞

xx
yyGxGyyGyxGx d)()(d)()()()(  is  

equivalent to   ∫ Λ≥∫Λ
∞∞

xx
yyGyyyGx d)()(d)()(  and the last inequality is obvious. 

From the point of view of the hazard rates, there are two interesting classes of distributions from Mac: 
the IFRs and the DFRs. 

Definition. Let F ∈ Mac. We write F ∈ IFR ( = Increasing Failure Rate) iff  λF is non-decreasing. If λF 
is non-increasing, then we write F ∈ DFR ( = Decreasing Failure rate) [2, 6, 7, 9, 10 or 13]. 

It happens that the operator T = (٠)I preserves these two classes.   

Proposition 2.6. F ∈ IFR ⇒ FI ∈ IFR while F ∈ DFR ⇒ FI ∈ DFR. 
Proof. Suppose that F ∈ IFR. Let λ be its hazard rate. By our assumption, λ is non-decreasing. We 

want to show that the mapping λI(x) = ( ) / ( )d
x

F x F y y
∞

∫  is increasing, too.  
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Write
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λ
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110dd
00

. Thus, λI is non-decreasing 

hence FI ∈ IFR. The proof for the DFRs is similar. 

3. ITERATED INTEGRATED TAIL 

Our problem is: when the sequence of measures defined by the recurrence 

F0 = F, Fn+1 = T(Fn) (3.1) 

does have a weak limit? The main help will come from the HR-monotonicity of  T = (٠)I . 

Proposition 3.1. If F ∈ IFR then T(F) ≺HR F while if F ∈ DFR then  F ≺HR T(F). 
Proof (i). Let λ:[0,∞) → [0,∞) be the hazard rate of F and λI be the hazard rate of T(F):= FI.  By the 

definition, we have to prove that  if λ is non-decreasing then ( ) ( )xFyyFx
x

≤∫λ
∞

d)( and if λ is non-increasing, 

then  ( ) ( )xFyyFx
x

≥∫λ
∞

d)( . As 0
( )d

( ) e
x

t t
F x

− λ∫
= , the claimed inequalities become ( )

( )d

e d 1

y

x

t t

x

x y
− λ∞

λ ≤
∫

∫ (if λ is 

non-decreasing) and ( )
( )d

e d 1

y

x

t t

x

x y
− λ∞

λ ≥
∫

∫  (if λ is non-increasing).  

In the first case ( ) ( )( )xyxtt
y

x
−λ≥∫ λ d  and in the second one ( ) ( )( )xyxtt

y

x
−λ≥∫ λ d . Thus, in the first 

case ( ) ( ) ( )( ) ( ) ( ) ( )( )
( )d ( )d

( )

0

e e e d e d ( )e d 1

y y

x x

t t t t
x y x x y x x t

x x

x x x y x y x t
− λ − λ∞ ∞ ∞

−λ − −λ − −λλ ≤ λ ⇒ λ ≤ λ = λ =
∫ ∫

∫ ∫ ∫  while in 

the second one the converse inequality holds. 

Corollary 3.2. If F ∈ IFR then the sequence Fn = T n(F) is HR-decreasing while if F ∈ DFR the 
sequence is HR-increasing.  

Proof. Obvious from Proposition 3.1.  

Corollary 3.3. If F ∈ IFR, then T n(F) has a limit, G. If F ∈ DFR then the sequence of non-increasing 
right continuous functions (T n(F))n has a limit  G too. If G(∞) = 0, then T n(F) weakly converges to G. 

 Proof. Obvious. If Fn = T n(F) then the sequence of the tails (Fn)n is monotonic – either increasing, or 
decreasing.   

Proposition 3.4. 
I. (The IFR case). Let F ∈ IFR have the hazard rate  λ.  
(i) If λ(∞) < ∞ then limn→∞Tn(F) = Exp(λ(∞)). 
(ii) If λ(∞) = ∞ then limn→∞ Tn(F) = δ0. 
II. (The DFR case). Let F ∈ DFR have the hazard rate λ.  
(i) If λ(∞) > 0 then limn→∞Tn(F) = Exp(λ(∞)). 
(ii) If λ(∞) = 0 then the limit does not exist anymore. 

Remark. In case II(ii) we could say that the limit is δ∞, but that makes little sense for distribution. 
Proof.  
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I. Let λn be the hazard rate of Fn = T n(F). Then  

( ) ∫=λ
∞

+
x

nnn yyFxFx d)(/)(1 . 
      
(3.2) 

(i). The sequence (λn)n is non-decreasing. Therefore, it has a limit, λ*. Let F* be the distribution with 

tail 
*

0

( )d
* ( ) e

x
t t

F x
− λ

=
∫

. As λn → λ* monotonously, Fn(x) converges to the tail F*(x). We claim that  
F* = Exp(λ(∞)). The first step is to check that λ* must be a constant. Anyway, the fact that λ(0) ≤ λ(x) ≤ 
λ(∞) means that Exp(λ(∞)) ≺HR F≺HR Exp(λ(0)). By Proposition 2.5, T is HR-monotonic hence 

T(Exp(λ(∞))) ≺HR T(F)≺HR T(Exp(λ(0)). By Proposition 2.4, the exponential distributions are fixed points for 

T. Therefore, Exp(λ(∞)) ≺HR F1≺HR Exp(λ(0). By induction, we see that 

Exp(λ(∞)) ≺HR Fn ≺HR Exp(λ(0). (3.3) 

Letting n → ∞, we get  Exp (λ(∞)) ≺HR F*≺HR Exp (λ(0). Or, in terms of hazard rates, 

λ(0) ≤ λ*(x) ≤ λ(∞) ∀ x ≥ 0. (3.4) 

Proposition 2.3 says that T is monotonically continuous: if Fn ⇒ F* monotonically , then T(Fn) ⇒ 
T(F*). On the other hand, T(Fn) = Fn+1 converges to F* hence F* = T(F*). According to Proposition 3(iii), the 
only fixed points of T are the exponential distributions. Thus λ* = const. As λ* ≥ λ (recall that the sequence 
(λn) is increasing !) , λ* ≥ λ(x) for any x ≥ 0. Letting x → ∞, λ* ≥ λ(∞). On the other hand, inequality (3.4) 
points out that λ* ≤ λ(∞).  
(ii). We reason as before: λ* ≥ λ(x) ∀ x ≥ 0 ⇒ λ* ≥ λ(∞) i.e. λ* = ∞. The limit is δ0.  

Proof for the DFR case. Now, the sequence (λn)n is decreasing. As in the proof of I, the limit λ* must 
be a constant such that λ(∞) ≤ λ* ≤ λ(0) and λ* ≤ λ(x) ∀ x. If this constant is equal to 0, there is no limit 
among distributions from M since all the mass vanishes. The limit, G, provided that it does exist, should 
dominate all the distributions Exp(λ), meaning that G(x) ≥ e-λx  for any λ ⇒ G(x) = 1 for any x , or G = δ∞. 

Now we prove our main result. 

Theorem 3.5. Let F ∈ Mac be a distribution such that the limit λ := λF(∞) does exist. Then 
– if λ∈ (0,∞) then Tn(F) ⇒ Exp(λ); 
– if λ = ∞ then Tn(F) ⇒ δ0; 
– if λ = 0 then  Tn(F) diverges. Precisely, Tn(F) (x) → 1 as n → ∞.  
Proof. Let us define λ*(x) = infy≥0λF(x+y) and λ*(x) = supy≥0λF(x+y). Consider the first case, 

λ∈(0,∞).Then λ* is non-decreasing and λ* is non-decreasing. Moreover, λ*(∞) = λ*(∞) = λ and 

λ*(x) ≤λF(x) ≤ λ*(x) ∀ x ≥ 0. (3.5) 

Let F*, F* be distributions from Mac such that *Fλ = λ* and 
*Fλ = λ*. Then  

F* ∈ IFR, F* ∈ DFR and F* ≺HR F ≺HR F*. (3.6) 

As T is HR-increasing, we infer from (3.6) that  

T n(F*) ≺HR T n(F) ≺HR T n(F*). (3.7) 

According to Proposition (3.4), T n(F*) ⇒ Exp(λ*(∞)) = Exp(λ). In the same way, T n(F*) ⇒ Exp(λ*(∞)) = 
= Exp(λ). Thus, both sequences (T n(F*))n and (T n(F*)) have the same limit. But clearly  

Gn ≺st Fn ≺st Hn , Gn ⇒ F, Hn ⇒ F (3.8) 

implies that (Fn)n  is convergent and Fn ⇒ F. Indeed, (3.8) means  Gn≤ Fn≤ Hn , Gn → F, Hn → F  as n→∞. 
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Therefore, (T n(F))n must converge to the same limit, namely Exp(λ). 
Consider now the case λ= ∞. Then T n(F*) ⇒ δ0 ⇔ the tails of T n(F*) converge to 0. The fact that  

T n(F) ≺st T n(F*) implies that the tails of T n(F) converge to 0, too, hence T n(F) ⇒ δ0. 
The last case is  λ = 0. Then the distribution T n(F) dominates the DFR distributions T n(F*). Their mass 

vanishes to infinity, so the same must happen with the mass of T n(F). 
Do we have a clue to find the limit when we are not able to compute the hazard rate λF? The answer is 

YES, we have. If we are able to prove somehow that λF(∞) does exist.  We should look at the mgf of F.  

Proposition  3.6. Let F ∈ Mac and 
0

( ) e d ( ) 1 e ( )dtx txt F x t F x x
∞

= = +∫ ∫m  be its mgf.  

Let t* = sup{t ∈ ℜ: m(t)<∞} . If λF(∞) does exist, then λF(∞) = t*.  

Proof. If t* > 0, then m(t) < ∞ ⇔ 
0

e ( )dtx F x x
∞

∫ < ∞.  Let λ = λF. Write F(x) = 0

( )d

e

x
y y− λ∫

. Then 

0

e ( )dtx F x x
∞

∫ = 0

( )d

0

e d

x
tx y y

x
− λ∞ ∫

∫  = 0

( ( ))d

0

e d

x
t y y

x
−λ∞ ∫

∫ . 

Suppose that t < λ(∞). There exists some ε > 0 and some a > 0 such that y > a ⇒ λ(y) > t –  ε ⇔  
t – λ(y) ≤ – ε. For x > a we have  

( )( ) ( )( ) ( )( ) ( )( )
0 0

d d d ( ) ( ) ( )
x a x x

a a

t y y t y y t y y C a t y C a x a− λ = − λ + − λ = + − λ ≤ − ε −∫ ∫ ∫ ∫ = K – εx .  

It follows that  F(x) ≤ Ae- εx for some A > 0 hence 
0

e ( )dtx F x x
∞

∫ < ∞.  

We thus proved that  t < λ(∞) ⇒ t  ≤ t* hence λ(∞) ≤ t*.  
On the other hand, if t > λ(∞), we can find some a > 0 and ε > 0 such that y > a ⇒ t – λ(y) ≥ ε and the 

same reasoning as before yields etxF(x) ≥ Beεx for some constant B. Obviously, this means that  

∫
∞

0

d)( xxFetx =∞ ⇔ t ≥ t*. 

Thus,  t* = λ(∞). 

In the same way one can proves the exception cases. If λ(∞) = ∞ then 
0

e ( )dtx F x x
∞

∫ < ∞ for every t, hence 

t* = ∞ and if λ(∞) = 0 then t* = 0.  
 
If we agree to denote the measure δ∞ by Exp(0) (the sense is that the tail of this measure is equal to 1), 

then we can restate Theorem 3.5. as 

Corollary 3.7. Let Let F ∈ Mac and m(t) its mgf. Let t* defined as in Proposition 3.6. Suppose that the 
limit λ(∞) does exist. Then Tn(F) converges to Exp(t*).  

Remark. We could call a distribution F short tailed if t* = ∞, medium tailed if t* ∈ (0,∞) and long 
tailed if t* = 0. This agrees with the various definitions for long tailed distributions from [1, 4, 7].  

Example 3.8. The Poisson distribution F = Poisson(λ) has the mgf m(t)= ( )e 1
e

tλ −
. As t* = ∞, T n(F) 

should converge to δ0.  F is not absolutely continuous, hence we cannot speak about its hazard rate. But F1 

has the density f =∑
∞

=
+

0
)1,[1

k
kkkq with qk = F(k)/λ = 

1

1

e
!

j

j k j

∞ −
−λ

= +

λ∑ and the tail F1(x) = ∫
∞

x

yyf d)( . 
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The ratio λ(x) = )(/)( 1 xFxf  is increasing on [k, k+1). We claim that λ(∞) = ∞. Indeed, it is enough to prove 

that λ(k) → ∞ as k → ∞. We have  

( ) ( )
1 1 2 3

1 2/ ... .... / 2 3 ...
( 1)! ( 2)! ( 2)! ( 3)! ( 4)!

k k k k k

k k kk q q q
k k k k k

+ + + +

+ +

   λ λ λ λ λ
λ = + + = + + + + + =   

+ + + + +   
  

= 









+

++
λ

+
+
λ

+









+

++
λ

+
+
λ

+
λ
+ ...

)4)(3(
3

)3(
21/....

)3)(2(2
12 22

kkkkkk
k  

which converges to ∞ as k →∞ . Thus if F = Poisson(λ), then T n(F) → δ0.  

Example 3.9. The lognormal distribution belongs to the class DFR and t* = 0. This means that the limit 
does not exist. The distribution Gamma(ν,λ) are IFR distributions (see, for instance [5, 6, 10]) hence the 
limit is Exp(λ). An interesting example is the inverse Gaussian distribution IG(µ,λ) which naturally arises 
from first passage problems for Brownian motion (see for instance[11]). This time the hazard rate λ is not 

monotonous: these distributions are neither IFR nor DFR. Its density is 
( )2

22
3( ) e

2

x

xf x
x

λ −µ
−

µλ
=

π
and its tail is 

F (x) = 1 – 
λ2λ λ λ λe

µ
x x

x x
µ

    
 Φ − + + Φ − −           µ

. Then λ(∞) = ( ) 22µ
λ

=∞λ  (use twice 

L’Hospital rule).  

Open problem. We still do not know at this stage if it is possible that (T n(F))n have no limit at all in 
other cases than the one stated in Proposition 3.4 II(ii). In the stated case it is true that the sequence of 
distributions (T n(F))n has no limit because all the mass vanishes; however the sequence of tails (T n(F))n 
converges to 1. Is it possible that this sequence of tails have no limit? 
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