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Motivated by an interest in material parameter determination for a structure with residual stresses, we 
revisit the classical eversion problem of a spherical shell, as studied by Ericksen, 1955 and more 
recently Johnson and Hoger, 1993. The spherical shell is made of an isotropic, incompressible, 
hyperelastic, Mooney-Rivlin material. In the direct problem, we examine the dependence of the 
elasticity tensor coefficients on residual and initial stresses and represent it for three numerical cases.  
In the inverse problem, we analyse the effect of measurement uncertainties on the determined values 
of material parameters and we suggest an experimental protocol that allows for a robust recovery of 
these parameters. 
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1. INTRODUCTION 

Diagnostic radiology is an exciting and rapidly expanding multi-disciplinary field of clinical medicine 
which links medicine to science and engineering. It enables noninvasive imaging and investigation of 
structure and function of the human body, and a unique insight into disease processes in vivo. In particular, 
computed tomography (CT), magnetic resonance (MR), or other biomedical imaging modalities can be used 
for inspecting the inner surfaces of hollow structures such as the colon and stomach. However, traditional 
visualization techniques can present only a very small portion of inner surfaces in one view, due to the 
limitations of the operator’s perspective and of the field of view with virtual endoscopy.  Thus, navigation is 
typically required in a visualization session, which is time-consuming, tedious, and error-prone particularly 
when features of interest are hidden [3, 5].  

Among the many methods proposed in the literature to overcome the above mentioned difficulties in 
visualizing anatomical cavities, the digital eversion of a hollow structure introduced very recently by Zhao et 
al. [8] is the most promising. As the name of this technique suggests, the turning inside out of a structure is 
done via a computer. The primary advantages of digital eversion over conventional virtual endoscopy 
include the direct visualization of a larger portion of the inner surface and the close correlation to the 
important anatomical features, without the need for difficult and time-consuming navigation. In addition, the 
digital eversion method combined with an appropriate mechanical model of an anatomical structure could 
help in finding the mechanical parameters of the imaged structure which contain important information about 
its pathology since tumors are harder than the surrounding normal tissue. Thus, digital eversion with the help 
of mechanics can help improve screening, diagnosis, surgical planning and medical education. 

Given the relevance that the eversion problem of a spherical shell might have to modern medicine, in 
the present paper we revisit this classic mechanical problem and formulate its corresponding inverse.  If for a 
hollow structure (such as a sock or the uterus), eversion means simply ‘turning inside out’, for a complete 
spherical shell this is possible only preceded by a cut along a diameter and followed by a rejoining that keeps 
formerly neighbouring points still neighbouring. For a spherical shell made of an isotropic, incompressible, 
hyperelastic material, Ericksen [2] had proven that the eversion deformation is compatible with the 
equilibrium equations. Moreover, when the material of the shell is of Mooney-Rivlin type, the everted shell 
can be maintained in a spherical shape with zero or non-zero uniform normal pressures p0 applied to the 
inner and outer shell surfaces.  
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Even when we start from an unstressed configuration, in the everted state the shell maintains non-
vanishing stresses. As shown by Johnson and Hoger [4], the elasticity tensor produced by a small 
deformation from the everted configuration will depend on the stresses in the everted configuration.  In 
section 2 we will represent this dependence, extending the calculation from the case of residual stresses 
considered in [4] to the case of initial stresses, and show the important role played by the non-linearity of the 
material in the relationship between the elasticity tensor and the applied pressure p0.  We represent this 
dependence for three values of the applied pressure p0, as well as three choices of the Mooney-Rivlin 
material constants. 

In section 3 we formulate the inverse problem of the everted spherical shell, in which C1 and C2, the 
material constants of the Mooney-Rivlin material, are computed from measurements in the everted 
configuration.  In particular, we analyse the impact that errors in measurements of the eversion constant A or 
the pressure p0 have in determining C1 and C2. To the best of our knowledge, this is the first time that such a 
study has been performed. Our results suggest novel experimental protocols that will allow a robust recovery 
of the mechanical parameters which ultimately will help differentiate between normal and pathological 
tissues. The paper ends with a section of conclusions. The present work is an expansion of the work 
presented by the authors in [6]. 

2. FORMULATION OF THE DIRECT PROBLEM 

As in Johnson and Hoger [4], we consider a spherical shell made of a homogenous, isotropic, 
incompressible, hyperelastic, Mooney-Rivlin material.  We denote by R1 and R2 the internal and external 
shell radius, with B0 the relaxed, stress free configuration of the shell and with B1 the shell configuration after 
an eversion.  The eversion deformation maps the material coordinates R, Θ, Φ in the spatial coordinates r, θ, 
φ as follows:  

313)( RAr −= , Θ−π=θ , Φ=φ , (1)

where π is the constant 3.14.., 21 RRR ≤≤ , π<Φ≤ 20  and π<Θ≤0 , and the constant A>R1
3. 

Through deformation (1) the surfaces initially at R1, R2 are transformed in the surfaces at r1, r2 
respectively, with R1<R2 and r1>r2.  In physical (spherical) coordinates, the gradient of deformation (1) [F1] 
has the form: 
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and the corresponding left Cauchy-Green deformation tensor [B1] and its inverse are given by: 
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The strain energy function for a Mooney-Rivlin material is:  

)3()3(ˆ 21 −+−=σ IICIC ,  (4)

with C1, C2 material constants and I, II the first two invariants of deformation (1): 

1BtrI = , ( )2 2
1 11 2II tr B tr B = −  . (5)

The constitutive equation for incompressible, isotropic, hyperelastic materials is: 
1

11111 1 −
−α+α+−= BBpT , (6)
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where the alpha coefficients depend on the strain energy function as follows: 
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Computing (7) for the Mooney-Rivlin strain energy (4) and substituting in (6), we obtain the following 
form for the stress due to eversion: 

1
12111 221 −−+−= BCBCpT . (8)

As seen in (3), [B1] and [B1
-1] have diagonal forms in the physical system of coordinates, and from (8) 

this is also true for T1. In fact, from (3) and (6) we obtain the following physical components of stress: 

φφ=θθ 11 TT , .0111 =θφ=φ=θ TrTrT  (9)

In the everted configuration, B1, the body is still in equilibrium. Using (9), the equilibrium equations (in 
physical coordinates) reduce to )(rpp =  and 
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Substituting (6) and (7) in equation (10), as well as a reversed chain rule for the strain energy, we 
obtain the integral form: 

( ) ||
1

1

1

3

1
ˆ

r

r

r
r

rrTd
A

ArrT +ρ
ρ∂
σ∂ρ−

= ∫ , (11)

where r is the radius at a point in the shell wall and ρ is an integration variable. 
Until now we have not used any boundary conditions for the spherical shell.  We assume further that 

the stress on the internal and the external surfaces of the shell are equal to a given pressure p0 where, unlike 
Johnson and Hoger [4], p0 can be non-zero.  Substituting this boundary condition in (11) and rewriting this 
integral over the undeformed domain, we obtain: 
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where g(A, R) was calculated after a tedious integration as: 
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As shown by Ericksen in [1], for given C1, C2, R1, R2, there exists a unique value of A that satisfies both 
(12) and A>R1

3. With A known, (11) can be written explicitly as: 

011 ),(),(| pRAgRAgrrT
r

+−= , (14)

where R is transformed through eversion in r. Finally, comparing (14) and the radial component of (8), we 
can obtain the following expression for the pressure: 
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With configuration B1 perfectly determined, let us turn our attention to an infinitesimal deformation of 
B1 into a new configuration B2. As shown in [4], the state of stress in the new configuration will depend both 
on the deformation from B1to B2.and the state of stress in B1, through 
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( ) [ ]2211211 EWTTWTpT cζ+−++−= . (16)
Here E2 and W2 are the symmetric and anti-symmetric part, respectively, of the displacement gradient 

H2: 
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It can be shown that the elasticity tensor [ ]2Ecζ  simplifies for this case to: 
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with ΝΜΛ ,,  some expressions of C1, C2, p, I and II, as given in Johnson and Hoger [4]. 
Using three numerical examples, we will show further how the elasticity tensor [ ]2Ecζ  depends on 

initial stresses. We consider R1=1 cm, R2=2 cm and different Mooney- Rivlin material constants C1, C2. The 
computed values for the eversion constant A, the everted radii and the pressure on boundaries (up to the 
choice of p0) are presented in Table 1, while the dependence of the elasticity tensor on the initial stress is 
presented graphically in Fig. 1.   

 

 

 
Fig. 1 – Variation of elasticity tensor coefficients with respect to everted radius r for different values of the pressure p0 = 0 kg f/cm2, 

0.9 ⋅ 1011 kg f/cm2, 1.8 ⋅ 1011 kg f/cm2. Top row C1=0.75 kg f/cm2, C2=0.25 kg f/cm2, middle row C1=1.70 kg f/cm2, C2=0.25 kg f/cm2, 
bottom row C1=0.75 kg f/cm2, C2=1.2 kg f/cm2. The case p0=0 kg f/cm2 corresponds to the residual stress case of [4]. 

Coefficients of E2<r, r> (kg f/cm2) Coefficients of E2<r, θ> (kg f/cm2) Coefficients of E2<θ, θ> (kg f/cm2) 
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We notice that the case p0 = 0 kg f/cm2, corresponding to the presence of residual stresses in the shell, 
is in agreement with the results presented by Johnson and Hoger [4]. In addition, the elasticity tensor 
coefficients vary little with p0 compared with the variation through the radius of the shell. Moreover, 
compared with Case 1 (see Table 1), the magnitude of the variation, both with respect to the shell radius and 
to p0, increases with increasing C1 (Case 2) or C2 (Case 3). Even if Cases 2 and 3 conserve a combination of 
the material constants (C1 + C2 = 1.95 which represents 1/2 of the shear modulus G of the corresponding 
linearized elastic constitutive model, see [1]), a variation in C2 produces a larger variation in magnitude of 
the elasticity tensor coefficients compared with a similar variation in C1.  

Table 1 

Three numerical cases: computed eversion constant A, everted radii r1 and r2,  
and boundary pressures for three given pairs of material constants C1, C2 

Case # C1 (kg f/cm2) C2 (kg f/cm2) A (cm) r1 (cm) r2 (cm) p1=p(r1) (kg f/cm2) p2=p(r2) (kg f/cm2) 

1 0.75 0.25 10.5189 2.1193 1.3606 -10.0124 6.8957

2 1.70 0.25 10.7222 2.1343 1.3963 -10.2112 14.1934

3 0.75 1.20 9.9848 2.0789 1.2567 -44.7483 9.2477

3. INVERSE PROBLEM FORMULATION 

In this section we formulate the inverse problem for the eversion of the spherical shell presented 
previously. We presume known the value of the pressure p(r) on one of the surfaces of the shell (either R=R1 
or R=R2) and the value of the eversion constant A, and we look for the material constants C1, C2. For this, we 
consider the linear system of two equations with the unknowns C1, C2 formed by equations (12) and (15) at 
the chosen radius.  While the mathematical problem of finding C1, C2 is well determined, only some of its 
solutions have physical meaning. According to Truesdell and Noll [7] and Beatty [1], based on empirical 
evidence we must have C1> 0, ≥2C  0. 

In what follows, we study how a measurement error in A or p influences the accuracy of the computed 
constants C1, C2.  Throughout this study we keep constant the initial geometric body, that is the undeformed 
spherical shell of radii R1= 1 cm, R2=2 cm. We first consider the numerical case A= 10.5189 cm and  
p1= p(R1) = –10.0123 kg f/cm2 and recover C1 = 0.75 kg f/cm2, C2 = 0.25 kg f/cm2, the same values that we 
used in the direct problem, Case 1, above. We repeatedly solve for C1, C2 when A and p1 are within 5% of 
their nominal values and present in Fig. 2 top, the errors in C1, C2 with respect to their nominal values.  We 
observe that C1 is especially sensitive to errors in A, and a 5% measurement error in A produces almost 950% 
absolute errors in C1 and, in fact, a negative value that has no physical sense. 

We repeat the study in a few other cases, modifying the point where the pressure is measured (i.e.  
p1= p(R1) or p2= p(R2)), and the values for A and pressure. When A = 10.5189 cm and p2 = 6.8956 kg f/cm2, 
we recover C1 = 0.75 kg f/cm2, C2 = 0.25 kg f/cm2, but as shown in Fig. 2 bottom, the errors in C1, C2 are 
moderate.  Once again we observe that an error of 5% in A gives unphysical (negative) values for C2. 

Comparing the top and bottom of Fig. 2 we conclude that, if possible, we prefer to measure p2 since the 
resulting errors for C1 and C2 would be smaller in this case.  We will examine whether this conclusion is true 
for the other considered values of the eversion constant and of the pressure. 

When A = 10.7222 cm and p1 = -10.2112 kg f/cm2, we recover C1 = 1.7 kg f/cm2, C2 = 0.25 kg f/cm2 as 
used in the direct problem, Case 2. We repeatedly solve for C1, C2 when A and p1 are within 5% of their 
nominal values and present in Fig. 3 top, the errors in C1, C2 with respect to their nominal values. As above, 
we observe that C1 is especially sensitive to errors in A, and a 5% measurement error in A produces large 
errors in C1 and, in fact, a negative value that has no physical sense. We repeat the study for  
p2 = 14.1934 kg f/cm2 obtaining the same constants C1, C2. Once again we prefer to measure p2 instead of p1 
since the resulting errors for C1 and C2 would be smaller in this case.   
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Fig. 2 – Percent errors for constants C1 and C2, for up to 5% errors in A= 10.5189 cm and p1 = –10.0123 kg f/ cm2 (Case 1.1, top)  
and p2 = 6.8956 kg f/ cm2

 (Case 1.2, bottom). 
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Fig. 3 – Percent errors for constants C1 and C2, for up to 5% errors in A = 10.7222 cm and p1 = –10.2112 kg f/ cm2 (Case 2.1, top)  
and p2 = 14.1934 kg f/ cm2

 (Case 2.2, bottom). 

Finally, for A =9.9848 cm and p1= –44.7483 kg f/cm2, we recover C1=1.7 kg f/cm2, C2=0.25 kg f/cm2 
as used in the direct problem, Case 3. We repeatedly solve for C1, C2 when A and p1 are within 5% of their 
nominal values and present in Fig. 4 top, the errors in C1, C2 with respect to their nominal values. In contrast 
with the previous cases, now all values computed for C1, C2 have physical meaning.  
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We repeat the analysis for A = 9.9848 cm and p2 = 9.2477 kg f/ cm2 and plot the results in Fig. 4, 
bottom.  Once again all computed values have physical meaning, but this time the errors are larger than in 
Case 3.1.  Based on this example, we could not recommend whether to measure the pressure at R1 or at R2.  

 

Fig. 4 – Percent errors for constants C1 and C2, for up to 5% errors in A =9.9848 cm and p1 = –44.7483 kg f/ cm2 (Case 3.1, top)  
and p2 = 9.2477 kg f/ cm2

 (Case 3.2, bottom). 
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Fig. 5 – Representation of the three cases in the eversion constant-pressure space. When the couple A – p1 is measured as input for 

the inverse problem, cases 1-2 cannot be distinguished with measurement errors of 2% or more; the same relative error have no 
confounding effect on the three cases represented in the space A – p2. Figures on right are zoom-in of figures on the left. 
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To elucidate the question, we plot the three cases in the space eversion constant-pressure (A – p). As it 
can be seen in Table 1, the values of the pressure p1 for the Cases 1 and 2 of the direct problem are very 
close, even if C1 most than doubled. In order to see how close those cases are, we represent in Fig. 5, top left, 
the Cases 1.1–3.1 as points, as well as the rectangular box containing all measurements with 5% relative 
errors from the Case 1.1. In Fig. 5 top right, we zoom around the Case 1.1 and represent also the rectangles 
of Case 1.1 with 1%, 3% and 5% measurement errors. We use a similar representation for the corresponding 
cases in the A – p2 space in Fig. 5, bottom.  

We observe that when the couple A – p1 is measured as input for the inverse problem, having 
measurement errors of 2% or more do not let us distinguish between Cases 1 and 2 (Fig. 5 top), while case 3 
is clearly identified (Fig. 5 top left). In contrast, the same percentage error has no confounding effect on the 
three cases represented in the space A – p2. Based on this observation and the general error behavior in Cases 
2 and 3, we recommend measuring the pressure at the internal radius in the everted configuration (R2). 

4. CONCLUSIONS 

In this paper we have revisited the eversion problem for a spherical shell and studied, for the first time, 
the corresponding inverse problem.  The spherical shell is made of a homogenous, incompressible, 
hyperelastic Mooney-Rivlin material.  For the direct problem, we expanded the study from [4] to the case of 
initial stresses, and noticed that the elastic tensor coefficients vary little with variation of the initial stress 
compared with the variation through the radius of the shell.  In the three numerical cases considered, the 
magnitude of the variation, increases with increasing constant materials C1 or C2 and when a combination of 
the material constants equivalent to constant shear modulus is kept constant, a variation in C2 produces a 
larger variation in magnitude of the elasticity tensor coefficients compared with a similar variation in C1.  

For the inverse problem, we studied how a measurement error in the eversion constant or in pressure 
influences the accuracy of the computed material constants. We found that, in order to minimize the errors in 
the calculated constants, it is preferable to measure the pressure at the internal radius in the everted 
configuration (p2=p(R2)). Our results suggest novel experimental protocols that will allow a robust recovery 
of the mechanical parameters which ultimately will help differentiate between normal and pathological 
tissues. We believe that our study, combined with the digital eversion method for medical images can help 
improve screening, diagnosis, surgical planning and medical education. 
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