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Existence of periodic motions in a roll-coupling model of an aircraft under the action of a periodic 
force due to gravitational terms is investigated. Some general sufficient conditions for exponential 
asymptotic stability of such a periodic solution are deduced and applied to a particular case. 
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1. INTRODUCTION 

The paper addresses the problem of existence and Lyapunov stability of periodic motions during the 
flight of an aircraft. It can be seen as a contribution to understanding undesirable events that occur during 
aircraft-pilot coupling in a generic model that includes the interaction between aircraft dynamics, flight 
control, pilot’s characteristics and gravitational forces. For details on the model, we refer to [1, 2, 3, 4]. The 
state variables areα , the angle of attack, β , the angle of side slip, rqp ,,  the angular velocity components in 
body axes. The flight control consists in a feedback component and a component due to pilot’s action that 
will be taken as a constant vector. With g the gravity acceleration, V the velocity of the aircraft mass centre 
and ),,,,( rqpx βα=  the system that will be investigated is: 
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Here 0ϕ  and m are nonzero constants and 51 ,, ff … , are polynomials. Denote ),,( 51 fff …= . We analyze the 
situation when the system described by: 

)(xfx =  (1.2)

has an asymptotically stable equilibrium point and shows how a stable periodic solution of (1.1) can appear 
as an effect of the action of gravitational terms given by: 
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0 0 0( ) cos , sin , 0, cos , 0 .g g gG t t t m t
V V V
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 (1.3)

Stability of equilibrium in (1.2) is achieved by the feedback flight control system and is preserved under 
pilot’s action. Pilot’s actions influence the value of these equilibrium thus the spectrum of the Jacobian 
matrix calculated in these equilibrium and this, together with the higher order terms of f around the 
equilibrium point, will play an important role in the existence and stability of periodic solutions. 

The paper is organized as follows. In Section 2, a criterion of existence of periodic solutions for (1.1) 
will be proved as well as a condition that implies its stability. In Section 3, a case study will be presented. A 
final section is dedicated to concluding remarks. 

2. EXISTENCE AND STABILITY OF PERIODIC SOLUTIONS 

System (1.1) will be written as: 

)()( tGxfx += , (2.1)

where ttGtG ∀=ω+ )()( , 
0

2
ϕ
π

=ω . We take 0x  with 

0)( 0 =xf  (2.2)

and we define 

)(' 0xfA = . (2.3)

In what follows by  will be denoted the Euclidean norm on R5 and for B∈M(R), the space of quadratic 
matrices ( 55×  in our case) with real entries, B  will denote the operatorial norm of B when the Euclidean 
norm is considered on R5. Recall from [6, 7] the following definition. 

 Definition. For A∈M(R), the initial growth rate )(Aµ  (called )(2 Aµ  in [6]) is defined by: 

{ }( ) min e e 0 ,At tA tµµ = µ∈ ≤ ∀ ≥R  

with the norms chosen as mentioned above, 

{ })(max
2
1)( *AAA +σ∈λ=µ  (2.4)

(see [6]). Suppose that 0)( <µ A . Then A is Hurwitz (the spectrum of A, )(Aσ , is contained in 
C_={ }0Re <∈ zz C . One defines 

).(0 Ac µ−=  (2.5)
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. Perform next a translation to zero through 

0xxy −=  and rewrite (2.1) as 

)()( tGyRAyy ++= , (2.6)

where )(yR  contains the terms of order greater of equal to two in the Taylor expansion of f around 0x , thus 
0)0( =R . Recall (see, e.g. [5]) that a fundamental matrix of solutions for the linear system η=η A  is given 

by ( )( , ) e A t sC t s −= . To find conditions for existence of ω -periodic solutions of (2.6) we follow [5], §3.3: the 
ω -periodic solution must be a fixed point of the operator 55 ),,0([),,0([: RR ∞→∞Ω CC  defined through 
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Since A is Hurwitz, 1( e )AI ω −−  is well defined and Ω is a compact operator (called also completely 
continuous). 

 Theorem 2.1. Define, for R given in (2.6), 

}.1|||||||)(sup{|| ≤=δ yyR  (2.8)

For c0 defined in (2.5) suppose (see (1.1)) that 
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2
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V
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Then (2.6) has an ω-periodic solution. 

Proof. We show that Ω defined in (2.7) invariates the unit ball in C([0,∞), R5) so the result in the 

theorem follows by applying Schauder’s fixed point theorem. Since 21)( m
V
gtG +≤ , if 

01||)(|| ≥∀≤ tty   we infer from (2.7) and (2.9) that, for every 0≥t , 
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Schauder’s fixed point theorem implies the existence of a fixed point of Ω in the unit ball of C([0,∞), R5) so 
(2.6) has an ω -periodic solution ϕ  and 1≤ϕ  in C([0,∞), R5). 

Corollary 2.2. Under the assumption in Theorem 2.1, equation (2.1) ((1.1)) has the periodic solution 
)()( 0 txt ϕ+=ψ  with ϕ  the periodic solution of (2.6) given by Theorem 2.1 and  0x  given by (2.2). 

Proof. Since )()()( 00 xxRxxAxf −+−= , 

).()()()()()()( 00 tGftGxRxAtGRA +ψ=+−ψ+−ψ=+ϕ+ϕ=ϕ=ψ  

Suppose again that 0)( <µ A   and that (2.9) holds. Let ϕ   be a periodic solution of (2.6) given by Theorem 
2.1 so 01)( ≥∀≤ϕ tt . To study its stability performs a translation to zero through ϕ−=ξ y . Then 

).,(:)()( ξ+ξ=ϕ−ϕ+ξ+ξ=ξ tFARRA  (2.10)

Theorem 2.3 Suppose that, for F defined in (2.10), the following holds 
5( , ) 0, , 1F t K tξ ≤ ξ ∀ ≥ ∀ξ∈ ξ ≤R  (2.11)

and suppose also that, with c0 defined in (2.5), 

0cK < . (2.12)

Then the zero solution of (2.10) is exponentially asymptotically stable thus the solution ϕ  is exponentially 
asymptotically stable for (2.6) and the same is true for the solution ϕ+=ψ 0x  of (2.1). 
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Proof. The proof consists in an adaptation of the proof of Theorem 1.7 in [5]. 
The formula of variations of constants applied to (2.10) gives for ),;( 00 ξξ tt , the solution of (2.10) that 
verifies 00 )( ξ=ξ t , that 
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If 1),;( 00 ≤ξξ tt  for tst ≤≤0 , (2.11) implies that ||),;(||)],;(,[ 0000 ξξ≤ξξ tsKtssF  and then 
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With 0
0 0( ) e ( ; , )c tu t s t= ξ ξ , (2.13) is rewritten as 

0
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inequality (see, e.g. [5], Lemma I.6) gives 0( )
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finally 0 0( )( )

0 0 0( ; , ) e 1,K c t tt t − −ξ ξ ≤ ξ ≤  if ,10 ≤ξ  due to (2.12). It follows that if 0 1ξ ≤  then 
0( )

0 0( ;0, ) e 0K c tt t−ξ ξ ≤ ξ ∀ ≥  
and since 00 <− cK  the theorem is proved. 

1. CASE STUDY 

Consider in (1.1) 0=β=α  and 
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where, in the framework of the model in [1], 9709.1511 −=a , 1171.1813 =a , 952.01 =i , 0387.1711 =b , 

13 2.12983,b =  22 14.4124,a = −  594.03 =i , 22 6.38593,b = −  31 6.1768,a = −  33 15.4735,a = −  2 0.247,i =  

31 1.23357,b =  33 2.00459,b = −  81.9=g , 5.84=V , 26416.5−=m . With 
101
π

−=δ , 02 =δ , 
153
π

=δ  one 

finds  

)0485.0,00050415.0,252214.0(),,( 0000 −−== rqpx . 
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The initials growth rate of A calculated by (2.4) is 4106.14)( −=µ A  so 4106.140 =c  .  Since   
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it follows that 574489.0
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Then (3.1) has a periodic solution ϕ .  For it, the function F in (2.10) is 

))(),(),((),( 122121313313122332321 ξϕ+ξϕ+ξξ−ξϕ+ξϕ+ξξξϕ+ξϕ+ξξ−=ξ iiitF . 

Since 
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so 03K c= δ <  and by Theorem 2.3 the solution ϕ   is exponentially asymptotically stable. 

2. CONCLUDING REMARKS 

The emergence of periodic motions during an aircraft flight might be extremely dangerous. A situation 
when this becomes possible was presented in this paper. The criterion involves aerodynamic data and pilot 
action thus can be seen as a contribution to the research on Pilot Induced Oscillations. The conclusion is that, 
in certain particular situations, a combination of automatic flight control and pilot action can enable the 
gravitational forces to produce undesired stable periodic motions. 
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