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The determination of the structural response of a cylindrical shell with variable wall thickness and 
loading conditions requires a large amount of computation. For isotropic shells subjected to 
axisymmetric loading analytic solution there is and the transfer matrix technique was developed in 
literature. In what follows this technique is extended for orthotropic cylindrical shells. Cylindrical 
tanks for fluids are used for to illustrate the analyse technique by transfer matrix method. The results 
are verified by FEM and a good agreement is obtained. 
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1. INTRODUCTION 

The cylindrical shells are frequently used in various domains of the technique. Often, they are made by 
orthotropic materials or may to possess a geometric (structural) orthotropy because of stiffening with circular 
and/or longitudinal ribs. The vertical cylindrical tanks for fluids storage are included in the category of 
closed cylindrical shells. 

The vertical cylindrical tanks are frequently made from steel or reinforced/prestressed concrete [1, 2, 3, 
4]. In some industries, such as chemical, food, petrochemical ones and so on, there are used also tanks or 
containers made from composite materials, usually reinforced with different fibers on one or two directions 
[5, 6, 7]. The reinforcing ratios, much different on the two directions, such as the prestressed forces, are 
different at the tanks made of prestressed concrete, involve also different elastic characteristics on the two 
principal elastic directions (material orthotropy). 

In the case of relatively heigh reinforced tanks, the thickness of wall is linear variable achieved, 
increasingly with the pressure exerted by the liquid. At the metal tanks, but also for those from reinforced or 
composite materials tanks, the wall thickness is achieved frequentlly stepwise variable, being maximum at 
where the liquid pressure has the greates value. Some computation assumptions take into account partially 
filled tank, but in the case of prestressing its effect in the circumferential direction are as circular uniform 
forces and on the generatrix direction the effects from prestressing apear as concentrated forces at 
extremities. There is taking into account, simultaneously or successively, the following design parameters 
(Fig. 1.1): 

 

Fig. 1.1 – Different design parameters for cylindrical tanks. 
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– the liquid pressure in case of the partially filled tank; 
– the circumferential prestressing forces; 
– stepwise wall thickness variation; 
– the orthotropy of the material. 
In design is imposing an exhaustive analysis of the stress state corresponding to a bending theory for a 

more adequate reinforcing of reinforced concrete tanks or reinforced composite onse, in order to achieve 
joining and stability checking in the case of the metal or composite materials tanks. 

The determination of the response (the stress and the strain state in the structure) of an orthotropic shell 
with variable geometry and loading conditions requires a large amount of computation. In mechanics of 
structures some variational and computational method for determination of the response was developed 
(finite differences, finite element methods, boundary element methods, differential quadrature and others). 
Only a limited number of loading and boundary conditions for the mentioned structures have exact solution. 
The term “exact solution” is used here to mean finding a solution that satisfies both the differential equations 
and boundary conditions exactly [8]. For isotropic closed cylindrical shells with axisymmetric loading and 
boundary conditions, the differential equation of the wall bending have exact solution [3, 4, 9, 10]. 

In the articles [11, 12], the transfer matrix analyze technique was developed for isotropic tanks. This 
method, frequently used in various domains of technique, allows to order the calculus process and facilitates 
the programation for the automatic computation [13, 14, 15, 16]. In what follows, this technique is extended 
at the orthotropic tanks. 

2. DIFFERENTIAL EQUATION OF THE WALL BENDING AND SOLUTIONS 

It is analyzed the general case, when the internal forces from the base and the top part of the shell 
interact. It is used the Cauchy and the initial parameters methods, in order to determinate particular solutions 
on loaded interval. By means of the transfer matrix, is determinate the state vector at different levels. The 
fundamental state vector, localized frequently at the base of the wall, is determinate from the boundary 
conditions at the top edge. There are considered various boundary conditions, both at the base and the top 
edge of the shell. 

In order to establish the differential equation of the wall bending, it is considered orthotropic 
cylindrical tanks having walls with constant or variable thickness, with geometrical, elastic, supporting and 
loading symmetry against the vertical axis (Fig. 2.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

On the current section i, where the geometrical parameters Ri and hi, also the elastic properties Exi, Eθi, 
νxi, νθi, are constant, we can use the equation [7, 9, 11]: 

Fig. 2.1 – Geometric and loading characteristics of the cylindrical tank. 
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where: wi – is the radial displacement from the bending of the wall; ξi = xi/si – is the reduced length; qi – is 
the distributed radial loading; si – is the decreasing coefficient; Dxi – is the bending rigidity in the generatrix 
direction: 
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The si diminution coefficient is the reversal of the damping coefficient βi: 
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The displacements wi, φi and the internal forces Mxi, Vxi, Nθi, in the points of the „i” segment, are 
expressed with the next relations: 
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where wj-1, φj-1, Mx,j-1, Qx,j-1 are the displacements and the internal forces in the extremity j–1 of the i tronson, 
considered of the origin (Fig. 2.1), and f1i, f2i, f3i, f4i are the Krilov functions: 
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wpi is the particular solution of the differential equation (2.1) and it can be determined using the Cauchy 
method: 
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where η is the current variable on the interval [0, ξi]. 
The hydrostatic pressure on the interval i, whose extremity are j–1 and j, varies trapezoidally and it 

can be considered as the sum of a loading with constant intensity qj = γ(HL–xj), and a triangular one with 
maximum intensity γ(xj–xj-1). From the relation (2.6), we can obtain: 
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where λi = Hi/si (Hi is the length of the interval). 
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The first three derivatives of the particular solution for the loading with trapezoidal variation are: 
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The effects of a concentrated couple, respectively of a concentrated force in the direction of the 
generatrix or a radially uniform distributed  force on the circumference, are introduced by analogy with those 
from the origin. The concentrated forces can proceed particularly from the circumferential or longitudinal 
prestressing in the case of the tank from prestressed concrete. The particular solutions in the case of loading 
with a couple M and a force P are: 
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with λm = lm/si, λp = lp/si, where lm and lp are lenghts wich are distributed M and P. 

3. THE USE OF THE TRANSFER MATRIX METHOD 

The parameters of the static response w, φ, Mx, Vx and the unit are considered as components of the 
vector {S}, named state vector, for wich a current section from the interval „i”, are written in line: 

 { } { } T; ; ; ; 1x xi
S w M V= φ  (3.1) 

The state vector from the extremities j–1 and j of the interval „i” are written: 
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For express the state vector {Sj}i depending on {Sj-1}i the relations (2.4), in which ξi = Hi/si = λi are 
written in the matrix shape: 
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where [ ] j
jT 1−  is the segment matrix or the interval matrix for the continuity interval (j–1, j) [11, 12, 13]: 
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The axial force Nθ,j is determined knowing wj. 
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The last column of the matrix [ ] j
jT 1−  depends on the loading and for the hydrostatic pressure is 

determinated from the relations (2.7), (2.8), in which ξi = λi. If the interval (j–1, j) is unloaded, than the last 
column is zero, excepting the last term, which remains 1. 

At the passing over a concentrated couple or a radial concentrated force, which are uniform on the 
circumference direction and, possible, over an axial force, which is distributed also uniformly on the 
circumference, are used crossing matrix. Such a relation, which connect the state vectors from the adjacent 
sections k and k–1, is: 

 { } [ ] { }ik
k
kik STS 11 −−=  (3.5) 

or detailed, when the crossing matrix has all three loading cases: 
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The couple M has been considered clockwise, the force P having the radial direction on the towards 
centre and the axial force N in the direction of x axis, therefore of the tension at the wall. Obviously, some of 
these actions can to be absent. 

The change of stepwise thickness impose an adequate segmentation, which put into evidence differents 
stiffnesses. In a series of relations between the succesive state vectors it is achivied requrance relationships. 
The state vector from the section „j” is: 
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If the index j and i have certain values, the state vector is expressed in any section. In „n” extremity the 
vector is: 
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=
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is an orderly product from the right to the left of the transfer matrix; [ ]nT 0  is the transfer matrix 

between the two extremities of the tank. 
In order to determinate the state vector {S0}1, means to set the boundary (supporting) conditions at the 

top part of the tank. The relation (3.8) express the connection between the state vector from the section 
situated on the base and the superior part of the tank, the last term has the boundary conditions. The relation 
(3.8) becomes: 
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The „t” coefficients are the terms of the multiplication matrix [ ]nT 0 . For the tanks which has the walls 
fixed at the base, w0 = 0, φ0 = 0, and for the wall which is hinged at the base w0 = 0, Mx0 = 0. The equations 
(3.9) for the two cases are: 
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In what follows, if the wall is free at the top edge, we have Mxn = 0, Vxn = 0 and, from the Eq. (3.10) we 
determine Mx0, Vx0 and, from Eq. (3.11) we can calculate φ0, Vx0, therefore the vector {S0}1 is completely 
determined. 

In the case of an elastically supporting at the base of the wall, which has spring ties for displacement 
and for rotation, Mx0 and Vx0 can be expressed in terms of φ0 and respectively w0: 

 0 0 0 0,x x wM k V k wφ= φ = , (3.12) 

where kφ and kw are the rotation, respectively displacement stiffneses of the springs, simulating the elastical 
connection wall-foundation. In the case of the free tank at the superior part, we can obtain the following 
relations in w0 and φ0: 
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After the determination of the fundamental state vector from the boundary conditions at the superior 
part, we can express with the help of the transfer matrix, the state vectors at the different levels (3.7). The 
developed analysis technique arranges the computation process and facilitates the programation for the 
automatic calculus. 

4. NUMERICAL RESULTS 

For the proposed of this procedure it is considered a cylindrical tank with the radius Ri = R =15m and 
the height H = 8m, made of prestressed concrete that is considered: 

a) isotropic material with Ex = Eθ = E = 300 000 daN/cm2, νx = νθ = ν = 0.2; 
b) orthotropic material with Ex = 240,000 daN/cm2, Eθ = 300,000 daN/cm2, νx = 0.16, νθ = 0.2. 
The tank is partially filled with water (γ = 10 kN/m3); the liquid has the height from the base HL = 6m. 

The wall of the tank has a thickness h1 = 25cm, for a height H1 = 3m from the base, untill the superior part 
the thickness is 15 cm. The wall of the tank, fixed at the base and free at the superior part, is divided in three 
segments for the calculus (Fig. 4.1). 

It is calculated the segment matrix [ ] [ ] [ ]3
2

2
1

1
0 ,, TTT  and than, the multiplication matrix [ ] [ ] [ ] [ ]102

1
3
2

3
0 TTTT = , 

by which is written the state vector from the free end { } [ ] { }10
3
033 STS = . Using the boundary conditions Mx3 = 0, 

Vx3 = 0, is determinated the components of the fundamental state vector. The state vectors from the sections 
0, 1, 2 in the two cases of material are presented in the Table 4.1: 

Table 4.1 

The state vectors in three sections of the tank wall 

Section 0 1 2 State vector 
Material a b a b a b 

w [cm] 0 0 0.113 0.117 0.018 0.017 

φ [rad] 0 0 2.0358E-04 1.8086E-04 –3.1177E-04 –2.9735E-04 

xM [daN] –4965.712 –4481.515 628.69 516.54 –196.97 –169.88 

xV [daN/cm] 75.112 71.664 –1.451 –1.289 –0.167 0.046 

xN [daN/cm] 0 0 6780 5834 54 51 

 
The plotting of the internal forces Mx and Vx on the interval (1) (where they have significant values), is 

presented in Fig. 4.2 (for the case of the isotropic material). 
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Fig. 4.1 – Geometric and loading conditions of the tank.                   Fig. 4.2 – Bending moment and shear force variation. 
 
Tests have been made with some automatic calculus programs, which are based on FEM. The results 

obtained for the displacements are close to those obtained with the transfer matrix method (1.1585 mm with 
ANSYS, 1.188 mm with ROBOT and 1.163 mm with AXIS VM software towards 1,17mm by the transfer 
matrix method). 

5. CONCLUSIONS 

1. The determination of the stress state in the structure of an isotropic shell with variable geometry and 
loading conditions implies a large number of design parameters. This number of parameters is bigger for the 
orthotropic shells, and this fact lead to the complications in the calculus. 

2. Analyze technique with transfer matrix has some advantages: 
• allow to take into account the various loading conditions, variable geometry of the shell walls and 

various boundary conditions; 
• allow to order the calculus process and facilitates the programation for the automatic computation. 
3. The results obtained from the calculus example show that, in the case “b” (the tank made from 

orthotropic material), the values of the internal forces is smaller than in the case “a” (isotropic tank) – with 
10% for Mx and 5% for Vx in section 0 at the base of the tank wall. 

4. The values of the radial displacements w is bigger in the case “b” that in the case “a” (with 3,5% in 
section 1, at 3m from the base of the tank). 
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