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TOTALLY SINGULAR CONTROL FOR SYSTEMS WITH PARAMETERS 
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In the present paper we study problems of singular optimal control for which the index of 
performance, the differential constraints and the final conditions contain parameters. We determinate 
the trajectory of the neighbouring extremal for the initial point perturbed and perturbed final 
manifold. This allows to obtain the second variation in the singular case. The sufficient conditions of 
minimum are a consequence of the non-negativity condition for the second variation. 
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1. FORMULATION OF THE PROBLEM 

We consider the problem of optimality containing parameters with a constant final time and the vector 
of state T

1, 2( , , , ) .nx x x x= …  

We determine the vector of control T
1, 2( , , , )mu u u u= …  and the parameter T

1, 2( , , , )rp p p p= …  
which minimize the performance index 

( )
0

( , ) , , , d
ft

t

J x p L t x u p t= Φ + ∫  (1)

with the differential constraints 

( ),,,, puxtfx =�  (2)

which satisfy the initial conditions 

( ),0,0 00 xxt ==  (3)

and the final conditions 

( ) ,0,, =Ψ= pxtt fff  (4)

where Φ  and L  are scalars and Ψ  is a vector of dimension 1×s  defined by 

( ) ( )
( ) ., 








θ
η

=Ψ
p

x
px f

f  (5)

If ( )fxη  and ( )pθ  are vectors of dimension 1×l  and 1×q , respectively, for nl ≤ , rq ≤ , then 
rns +≤ . 

Let pC  be the class of problems of optimality with parameters defined in (1-5). 

Denote by 
ftC  the class obtained by particularization ftp = , pt f

CC ⊂ . 

With the transformation 
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,ftt=τ  (6)

we can write 

{ }min 1, , , .
ft f f f fJ L t L f t f p t= τ = = = =C  (7)

For 
ftC , the initial conditions are written 

( ),0,0 00 xx ==τ  (8)

and the final conditions become 

( )1, , 0.f f fx tτ = Ψ =  (9)

Thus, the problem with free final time becomes a problem with constant final time 1=τ . 

2. FIRST ORDER VARIATION 

Let us the extended functional  

( ) ( )
0

T, , , , , , d ,
ft

f
t

J G x p H t x u p x tν λ λ′  = + − ∫ �  (10)

where the function of the final values and the Hamiltonian are defined by 
T ,G ν= Φ + Ψ  (11)

T .H L fλ= +  (12)

Along the admissible trajectory 00 =δ x , we obtain 

( ) ( ) ( )
0 0

T T T T Td d .
f f

f

t t

x f f p p x u
t t

J G x G H t t H x H u f x tν
 

 ′  δ = − λ δ + Ψ δ + + δ + + λ δ + δ + − δλ  
 

∫ ∫ � �  (13)

Along the admissible trajectory of comparison, where 0≠δ p , the necessary conditions of minimum 
resulted by vanishing the first variation can be written 

T, ,xx f H= λ = −��  (14a)

0

T 0, d 0,
ft

u p p
t

H G H t= + =∫  (14b)

,given,given 00 == xt  (14c)

T, 0 , ,
ff f f xt t G= Ψ = λ =  (14d)

3. SECOND ORDER VARIATION 

The expression of the second variation is given by 



3 Totally singular control for systems with parameters  199

( ) ( )
0

2 T T T T T d .
f

f f f

f

t x x x u x p
x x x p f

f u x u u u p
px pp t

p x p u p p

H H H xG G x
J x p x u p H H H u t

G G p
H H H p

  δ   δ    ′  δ = δ δ + δ δ δ δ      δ      δ  
∫  (15)

Using the function 

0

d 1, 2, , ,
f

i

t

i p
t

H i rµ = − τ =∫ …  (16)

equation (16) is transformed into the differential equation 
T ,i pHµ = −�  (17)

with the initial condition 

( ) ,000 =µ=µ t  (18)

and the final condition 

( ) T .f pt Gµ = −  (19)

The properties (14a-14d) (defining the extremal trajectory) become 

( ) ( ),,,,,,,,, puxtHpuxtfx x λ−=λ= ��  (20a)

( ) ( ),,,,,0,,,,, puxtHpuxtH T
ux λ=λ=µ�  (20b)

,0,given,given 000 =µ== xt  (20c)

( ) ( ) ( )T T, , 0, , , , , , .
ff f f f x f f p ft t x p G x p G x pν ν= Ψ = λ = µ =  (20d)

The trajectory of the neighbouring extremal corresponding to the perturbed initial point 00 =δ x  and to 
the perturbed final constraints is obtained by the variation of the equations (20). In the case of the totally 
singular control we cannot use the variation of uH  because 0=uuH . Thus, it is necessary to develop a 
method to determine the variation of the control along the optimal trajectory (extremal). 

4. TOTALLY SINGULAR CONTROL 

Consider the controlled systems of the form 

( ) ( ) ,],[,,, 010 ftttuxtfxtfx ∈+=�  (21)

with 

( )0 0 ,x t x=  (22)

( )( ) 0.fx tΨ =  (23)

For the singular control exists a subset of commands ( )tu  where the Hamiltonian is stationary. Hence 
we have 

( ) 0, , , 0 [ , ].u fH t x u t t tλ ≡ ∀ ∈  (24)
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5. NEIGHBORING EXTREMAL IN THE TOTALLY SINGULAR CONTROL CASE 

In the totally singular control case, uuH  is the null matrix. The equation 0=uH  of the nonsingular 
case can no longer be utilized. This condition is substituted by 

2
(2 )

2

d 0,
d

k
u k

uk

H H
t

= =  (25)

where k  is the smallest natural number, such that [6] 

( )(2 ) 0.k
uH

u
∂

≠
∂

 (26)

The equations of the neighbouring extremal with 00 ≠δ x  are obtained using the variation of the 
equations (20) and (25) which substitute the variation of 0=uH . The expressions of the variations become 

,x u px f x f u f pδ = δ + δ + δ�  (27a)

,pHfuHxH px
T
xuxxx δ−λδ−δ−δ−=λδ �  (27b)

,pHfuHxH pp
T
pupxp δ−λδ−δ−δ−=µδ �  (27c)

( ) ( ) ( ) ( )(2 ) (2 ) (2 ) (2 ) 0.k k k k
u u u ux u p

H x H u H H p
λ

δ + δ + δλ + δ =  (27d)

From (27d), we get the control variation on the neighbouring extremal 

( )[ ] ( ) ( ) ( )[ ] .)2()2()2(1)2( pHHuHHu p
k

u
k

ux
k

xu
k

u δ+λδ+δ−=δ λ

−
 (28)

Replacing (28) in (27) the equations of the neighbouring extremal can be written 

1 1 1 ,x A x B u C pδ = δ + δ + δ�  (29a)

2 2 2 ,A x B u C pδλ = δ + δ + δ�  (29b)

3 3 3 ,A x B u C pδµ = δ + δ + δ�  (29c)

where 

( ) ( )
1

(2 ) (2 )
1 ,k k

x u u uu x
A f f H H

−
 = −    (30a)

( ) ( )
1

(2 ) (2 )
1 ,k k

u u uu
B f H H

λ

−
 = −    (30b)

( ) ( )
1

(2 ) (2 )
1 ,k k

u u u pu p
C f H H f

−
 = − +   (30c)

( )[ ] ( ) ,)2(1)2(
2 x

k
uu

k
uuxxx HHHHA

−
−=  (30d)

( ) ( )
1

(2 ) (2 ) T
2 ,k k

x u u u xu
B H H H f

−

λ
 = − −   (30e)

( ) ( )
1

(2 ) (2 )
2 ,k k

xu u u ppu p
C H H H H

−
 = − −   (30f)
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( ) ( )
1

(2 ) (2 )
3 ,k k

px pu u uu x
A H H H H

−
 = −    (30g)

( ) ( )
1

(2 ) (2 ) T
3 ,k k

pu u u pu
B H H H f

−

λ
 = − +   (30h)

( ) ( )
1

(2 ) (2 )
3 .k k

pu u u ppu p
C H H H H

−
 = − +   (30i)

The initial conditions for the neighbouring extremal are given by 

,0,given,given 000 =µδ=δ= xt  (31)

and the final conditions are obtained by the variation of conditions (20d). 
Thus, we have 

T ,
f f f ff x x f x x pG x G pνδλ = δ + Ψ δ + δ  (32a)

,
fpx f px pδΨ = Ψ δ +Ψ δ  (32b)

T ,
ff px f p ppG x G pνδµ = δ + Ψ δ + δ  (32c)

where 

.0==Ψδ  (33)

Then, the variations of λδ , Ψδ , µδ  

1 1 1 ,fP x Q R pνδλ = δ + δ + δ  (34a)

2 2 20 ,fP x Q R pν= δ + δ + δ  (34b)

3 3 3 ,fP x Q R pνδµ = δ + δ + δ  (34c)

where the final conditions of system (34), are obtained by identification with (32) 

( ) ( ) ( )T
1 1 1 ,

f f f fx x x x pf f f
P G Q R G= = Ψ =  (35a)

( ) ( ) ( )2 2 20 ,
fx pf f f

P Q R= Ψ = = Ψ  (35b)

( ) ( ) ( )T
3 3 3 .

fpx p ppf f f
P G Q R G= = Ψ =  (35c)

In the following, we determinate the differential equations with the unknowns iP , iQ , iR  )3,2,1( =i  
satisfying the final conditions (35). In our developments, we consider 0=δ=νδ p�� . 

6. DIFFERENTIAL SYSTEM FOR iP , iQ , iR  

By the derivation of the equation (34a) and by the substitution of x�δ  given by (29a), using the 
expression of λδ ¸ from (34a), the identification with (29b) of the coefficients of xδ , νδ , pδ  one obtains a 
differential system ( )Σ  in 1P , 1Q , 1R . The differential system ( )Σ , with the conditions at the limit (35) we 
determinate the coefficients iP , iQ , iR  )3,2,1( =i  of the variations λδ , Ψδ , µδ . 
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7. EXTREMAL NEIGHBORING TRAJECTORY 

The equations 

2 2 20 ,P x Q R pν= δ + δ + δ  (36a)

3 3 3 ,P x Q R pνδµ = δ + δ + δ  (36b)

,0,given 00 =µδ=δ x  (36c)

solved with respect to the initial point, simultaneous for νδ  and pδ , have the solution 

1
0 0 0 ,V U x

p
ν

−
δ 

= − δ δ 
 (37)

where 

2 2 2

3 3 3

, .
Q R P

V U
Q R P
   

= =   
   

 (38)

From the expression λδ ¸ given by (34a) and using (37), we have 

( ) ( ) 1
0 1 1 1 0 0 0 0 00 0

,P Q R V U x K x− δλ = − δ = δ   (39)

where 

( ) ( ) 1
1 1 1 .K t P Q R V U−= −  (40)

If 0xδ is given, then 0λδ  and pδ  are calculated from the equations (39) and (37). As 00 =µδ , with 
the initial conditions ( 0xδ , 0λδ , 0µδ ), the variations ( xδ , λδ , µδ ) are obtained by integrating the system 
(29). Knowing the variations xδ , λδ , pδ , by (28) and (34a) we can determinate the control perturbation 
on the neighbouring extremal, 

( )[ ] ( ) ( )[ ]{ }
( )[ ] ( )[ ] ( ) ( )[ ]{ }.)2(

1
)2(

1
)2(1)2(

1
)2()2(1)2(

pHRHQHH

xPHHHu

p
k

u
k

u
k

uu
k

u

k
ux

k
uu

k
u

δ++νδ

−δ−=δ

λλ

−

λ

−

 (41)

Using (37) and (39), we obtain the following proposition: 

Proposition 1. If the matrices 0
1

0 UV −  and 0K  are finite, then any admissible compared trajectory 
)(tς , does not in  the class of neighbouring extremals. 

Proof. Consider the set of compared admissible trajectories 

{ }.0)()()( 0 =δ=ς txtxt  (42)

We consider 0
1

0 UV −  to be finite. Then, for )()( ttx ς∈ , from (37) and (39) we have 

0,δν =  (43a)

0,pδ =  (43b)

0 0,δλ =  (43c)

For 0=δ p , the variational equations (29a) and (29b) become 
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1 1 ,x A x Bδ = δ + δλ�  (44a)

2 2 ,A x Bδλ = δ + δλ�  (44b)

The solution of the system (44) for the initial conditions 00 =δ x  and 0 0δλ = , is 0=δ x  and 0=λδ . 
Then, from (38) we obtain either 0=δu  or Γ∉ς )(t . 

Proposition 2. If 0
1

0 UV −  is infinite, then any admissible trajectory can be a neighbouring extremal. 

Proof. Along the admissible trajectory of comparison 00 =δ x . Then we obtain 

.0000 ≠δ=λδ xK  (45)

Therefore, 0≠δu or Γ∈ς )(t . 

8. SUFFICIENT MINIMUM CONDITIONS IN THE TOTALLY SINGULAR CASE 

Substituting the control of the perturbation along the neighbouring extremal (41) in the expression of 
the second variation for 0=uuH , we obtain 

( ) ( )
0

11 12 13
2 T T T T T T T

12 23
T
13 23 33

0 d ,
f

f f f

f

t
x x x p f

f
px pp t

S S S xG G x
J x p x u p S S u t

G G p
S S S p

δ    δ    ′  δ = δ δ + δ δ δ δ      δ      δ  
∫  (46)

where 

( )
1

(2 )
11 12 ,k

xx xu u u
S H H H D

−
 = −    (47a)

( )
1

(2 )
12 2 ,k

xu u u
S H H D

−
 = −    (47b)

( ) ( ){ }T1 1
(2 ) T (2 )

13 3 1 ,k k
xp xu u u upu u

S H H H D D H H
− −

   = − −     (47c)

( )
1

(2 )
23 2 ,k

pu u u
S H H D

−
 = −    (47d)

( )
1

(2 )
33 32 ,k

pp pu u u
S H H H D

−
 = −    (47e)

( ) ( )[ ] ,1
)2()2(

1 PHHD k
ux

k
u λ+=  (47f)

( )[ ] ,1
)2(

2 QHD k
u λ=  (47g)

( ) ( )(2 ) (2 )
3 1 .k k

u u p
D H R H

λ
 = +   (47h)

Two cases are possible: 
Case 1. The matrices 0

1
0 UV −  and 0K  are finite. In this case, as the variations νδ , pδ  and λδ  are 

null for any ],[ 0 fttt ∈ , from (46) we have 



 Mihai POPESCU 8 204 

.02 =′δ J  (48)

Case 2. The matrix 0
1

0 UV −  is infinite. As 00 =δ x along the admissible trajectory of comparison, we 
can obtain a finite 0λδ  different from zero and we can have a neighbouring extremal trajectory that can also 
be an admissible trajectory. 

Theorem 1. The sufficient condition 02 ≥′δ J  for ( ) 0, =Ψ px f , imposes the existence of a symmetric 
positive semidefine matrix )(tM  and of a  symmetric positive semidefine matrix N  , such that 

0

2 T T T T
11 21 22

1 1 1d ( ).
2 2 2

ft

t

J x M x M x M t y Ny tα α α ′δ ≥ + + + 
 ∫  (49)

The expression (46) of the second variation can be rewritten as 

( )

( )( )
0

2

11 12
TT 1

0 0 0
T 1

12 22 0 0 0

d ,

f f f

f

f

x x x p f
f

px pp

t

t

G G x
J x p

G G p

S S x
x V U x t

S S V U x

−

−

  δ ′  δ = δ δ +   δ  
  δ 
   δ δ    

   δ  
∫

#
" " " "

#

 (50)

where 

( ) ,312121 SSS #=  (51)

23

22

23 33

0
,

S
S

S S

 
 =  
 
 

#
" " "

#
 (52)

If we take 

11 12

T
12 22

( ) ( ) ,
S S

M t S t
S S

 
 

= =  
 
 

#
" " "

#
 (53)

and 

.f f f

f

x x x p

px pp

G G
N

G G

 
 =
 
 

 (54)

then the using of the Theorem 1, the sign of the second variation is equivalent  with the determination of the 
conditions of no negativity of the symmetric matrices )(tM and N . 

9. CONCLUSIONS 

The current study refers to the singular total case in which the second variation cannot be strongly 
positive. This confirms that the Riccati differential matricial equation attached to the non-singular problem 
cannot be used. In literature [4–9] the necessary and sufficient conditions of non-negativity of the second 
variation are represented by a set of differential and algebraically equations. Our method analyzes the 
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possibility when the neighbouring extremal to can be the admissible trajectory and it determines the variation 
of the command along the extremal. Thus, if the singular arcs defined by means of abnormal curves belong 
to the extremals, then the normal extremal curves do not admit solutions with the variation of the state 
identically null in any time interval. This propriety demonstrates the uniqueness of the Jacobi solution along 
the normal extremal [7]. The mathematical model elaborated here determines the conditions of no negativity 
of the second variation, resulted from the variation of the control along the extremal, representing the 
sufficient conditions of minimum for the class of the problems of optimum with parameter. 

REFERENCES 

1. HULL, D. G, On the Variational Process in Optimal Control Theory, Journal of Optimization Theory and Applications, 67, 3,  
pp. 447–462, 1990. 

2. HULL, D. G., Sufficient Conditions for a Minimum of the Free-Final-Time Optimal Control Problem, Journal of Optimization 
Theory and Applications, 68, 2, pp. 275–287, 1991. 

3. HULL, D. G., Sufficiency for Optimal Control Problems Involving Parameters, Journal of Optimization Theory and Applications, 
97, 1, pp. 579–590, 1998. 

4. JACOBSON, D. H., Sufficient Conditions for Nonnegativity of the Second Variations in Singular and Nonsingular Control 
Problems, SIAM J. Control, 8, pp. 403–423, 1970. 

5. JACOBSON, D. H., SPEYER, J. L., Necessary and Sufficient Conditions for Optimality for Singular Control Problems, J. Math. 
Analysis Applic., 34, pp. 239–266, 1971. 

6. POPESCU, M., Singular Opitmal Control for Dynamical Systems, Edit. Academiei Române, Bucharest, 2002. 
7. POPESCU, M., Singular Normal Extremals and Conjugate Point for Bolza Functionals, Journal of Optimization Theory and 

Applications, 115, 2, pp. 267–282, 2002. 
8. KAZEMI-DEHKORDI, Necessary Conditions for Optimality of Singular Control, Journ. of Optim. Theory and Applic., 43, 4,  

pp. 629–637, 1984. 
9. GIFT, S. J., Second Order Optimality Principle for Singular Control Problems, Journ. of Optim. Theory and Applic., 76, 3,  

pp. 477–484, 1993. 
10. POPESCU, M., Control of Affine Nonlinear Systems with Nilpotent Structure in Singular Problems, Journal of Optimization 

Theory and Application, 124, 5–7, pp 1985–1997, 2005. 
11. POPESCU, M., On Minimum Quadratic Functional Control of Affine Nonlinear Systems, Nonlinear Analysis, 36, pp.1165–1173, 

2004. 
12. POPESCU, M., Control of nonlinear systems in singular problems, Nonlinear Analysis, 63, 5–7, pp. 1985–1997, 2005. 
13. POPESCU, M., PELLETIER, F., Courbes optimales pour une distribution affine, Bull. Sci. Math., 129, pp. 701–725, 2005. 
14. POPESCU, M., Sweep method in analysis optimal control for rendez-vous problems, J. Appl. Math. & Comput., 23, 1–2,  

pp. 243–256, 2007. 

Received December 21, 2009 


