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Some function becomes convex after adding to it a quadratic term. In this paper we extend some
properties of convex function to convexifiable case of operators.
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1. INTRODUCTION

Convex functions are often used in applied mathematics. They have many uses in optimization and
numerical methods. Using convexity, one can also study non-convex problems in two directions:
transformation of arbitrary continuous functions to convex-like function and transformation of mathematical
programs with such functions to equivalent programs.

For a given function f: R— R, defined on a bounded convex set J of a real line R, we can construct the

convex function by adding simple quadratic term o.-x” - x to f'where a is a sufficiently large non-negative

number. The numerical value of the ,,convexifier” (&) depends on the function f'and the interval where f'is
»convexified”. For a<0 the quadratic term is strictly convex, so f'is called ,,weakly convex”[7]. Also, if there
is o, convexifier of £, then there are a lot of such values o.* < o which are also convexifiers.

Therefore every convexifiable function f can be written as the sum of a convex function

o . o L .
f(x)—- 2 -x" - x and a concave quadratic term ) -x" - x, for every o which is sufficiently small.

Convexifiable functions have been studied also on R" and characterized using the fact that for
continuous functions a class of convexifiable function is large: beside convex and twice continuously
differentiable functions, also continuously differentiable functions with Lipschitz derivative. In [10] Zlobec
showed that there exist continuously differentiable functions and also differentiable Lipschitz functions that
can not be convexified.

Here we extend some of results from [5] to convexifiable case of convex operator.

2. SOME PRELIMINARY RESULTS

Definition 2.1. If f: R"—>R is a continuous function of n variables defined on a convex set J, JcR"
then the function is said to be convex (concave) on J if

JSOx+(1-M)y) £ () Mx) + A1) (V) x, vy € J, (V)L €][0, 1]. 0]

Theorem 2.2 [2]. If f is a continuous, real function on an interval J, the following conditions are
equivalent:
(1) fis operator concave.
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(i1)) AC*AC+t(I-C*C)) = C*fA)C + fit))(I-C*C) for an operator C with ||C||<1 and a self-adjoint
operator A with o(A)=) and for fixed real number tyeJ.

(i) f[z C'4,C, + z{] B Neate) D >3 f(4,)C, + £ (1, )[1 B Nenre jj for operators
= =1 = =

C; with ZCJ,*CJ. < I and self-adjoint operator A; with o(4;) < J, j=1, 2, ..., n, and for a fixed

Jj=1
real number tyeJ.

(iv) f[z; Cj*A_/ij > Z;Cj*f(Aj)ijor operators C; with Z;C;C_/ = I, self-adjoint operator A;
J= J= J=
with 6(4;) < J, j=1, 2, ..., n, where n>2.
v) f(PAP+t,(I-P))=P-f(A)-P+ f(¢t,)( — P)for a projection P and a self-adjoint operator

A with 6(4) < J and for a fixed real number #e.J.

Definition 2.3. [8] Given a continuous f/ : R' —R defined on a convex set J=R", consider the
parametric function ¢ : R"x R — R defined by

cp(x,a)=f(x)—%wcfx, @)

. . . * .
where x” is the transposed of x. If @(x,a) is a convex function on J for some a=o., then @(x,0) is a
. . * . . . . . . . . . .
convexification of fand a is its convexifier on J. Function fis convexifiable if it has a convexification.

Remark 2.4. If a. is a convexifier of f, then so is every a*< a.

Theorem 2.5 [9]. If f is a continuous function [ : R" — R defined on a convex set J— R" then f is
convex if and only if f is mid-point convex, i.e.,

f(x;yjfé(f(XHf(y)),Vx,yEJ- 3)

Remark 2.6. Every convex function defined on a convex set from Euclidean space is mid-point convex.
Over non-Euclidean space (e.g. the scalar field of rational numbers) we can construct a non-convex mid-
point convex function.

With every continuous function f: R" — R we can associate a particular function y: R" x R"—>R. We

denote the norm of ue R" by |jul| = (u"u)".

Remark 2.7 [10]. Given a continuous function f: R" — R and a compact convex set J in R" the mid-
point acceleration function of f'on J is the function

4
lx=y I

X+y
2

y(x,y) = {f(X)+f(y)—2f[ ﬂ (V) x,y &), xzy. “4)

Remark 2.8. (Justification of function’s name). If we take x, y in J then their mid point is 1/2(x+y) and
also is x+1/2(y—x). Using the notation Ax = 1/2(y—x), the mid point can be written as x+Ax, which is the same
as y—Ax. Then the distance from x and x +Ax, i.e. ||Ax]||, so the average displacement of f at x in the direction
of mid-point x+Ax, over distance is Af(x) = [ fix+Ax) —fx)] / ||Ax|] .

This is repeated at the mid-point and y, so we obtain Af{x+Ax) = [f(y) — fix+Ax)] / ||Ax||. Hence the
average “displacement of the displacement”, i.e. the “acceleration” is

[Af(x+Ax) — AV [[Ax]] = w(x.y).
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Theorem 2.9 [10]. Given a continuous function f: R" — R on a compact convex set J in K", function f
is convexifiable on J if and only if its mid-point acceleration function is bounded on J.

Proof. From f convexifiable we have @(x, o) = fix)-1/2ax’x convex for some a. But for ¢ we have

o((xty,0)/2) < 1/2-(o(x,0) + 0(y,0)), X, y €J.
After substitution, this is

2ACAY2) )] < 0 (1A *+2-6 ) HWIF2-[IPHYIPT = = o4 b -y
So, finally
o < wy(x, ), for every x, yeJ, x=y.

Theorem 2.10 [11]. [Jensen’s inequality for convexifiable functions). If fis a convexifiable function on
a bounded nontrivial convex set JCR", and o, is its convexifier, then

y4 y4 o y4 )
iy st,f(x,A)—E Dol —x, (5)
i=1 i=1

i,j=1
i<j

P
for every set of points {x;} =1, ..., from J and all real scalar A,> 0 withi=1, 2, ..., p and Zki =1.
i=1
Definition 2.11. Let F' be an operator over Hilbert space H. F'is convex (concave) operator over JCH if

Floxtfy) < (2) aF(x)+BF(y) (6)
for any real a, B with at+B=1, a,, p >0 and x, yeJ.

Definition 2.12. Let F be an operator over J—H, a Hilbert space. We say that F is an convexifiable
operator if exists some real number a so that for 4 € B(H) the new operator

o(A,a) =F(A>—%aATA )

1S convex over J.

Remark 2.13. (generalization of Jensen inequality). Let A, B be self-adjoint operators with o(4)c J and
o(B)c J. If fis an convexifiable operator on an interval J then for s, # > 0, s+¢ =1 we have

f(s-A+z~B)sS-f(A)H.f(B)—%[s-t-||A—B||2]. @®)

Proof. 1If f is convexifiable with a its convexifier then there is a convex operator ¢ such that
o(C, o) =fiC) —a/2C"C.
If we apply Jensen’s inequality for convex function to o, for 4, B, s, t with s+ =1 we have

0(sA4 + tB) < s@(A) + to(B). 9
After substitutions, the inequality is

AsA+t-B) <s-fid) + t-f(B) - %[SAZ +1tB* —(sA+tB)2].

Finally, from s + ¢ = 1 the conclusion follows.

3. OPERATOR INEQUALITIES FOR CONVEXIFIABLE CASE

Theorem 2.14. The following conditions are equivalent for an operator F: J—> R, J_R.



4 Some inequalities for convexifiable function with applications 221

il. F is a convexifiable operator with o its convexifier.
12. For an operator C with ||C||<1 and a self-adjoint operator A with c(A)< J and for fixed real number
toeJ, the operator F with its convexifier o satisfy

F(CTAC+t,(I-C'C))<C F(A)C+F(t,)I-C C)+ %Dl , (10)

where

D, =(C"AC+t,(I-C'C))’ -C A’C-t;(I-C"C). (11)

13. For operators C; with ZCJ*CJ < I and self-adjoint operators A; with o(4))c J,j=1, 2, ... n,
=

and for fixed real number tyeJ, F verify the inequality
F(z C, A4,C, + zo[l ->c/ ¢, D <>'C,'F(4,)C, +F(t, )(1 - ZC_/*C_/]+%D2, (12)
j=1 Jj=1 Jj=1 Jj=1

where . is its convexifier and
2
D, = (ch*Ajcj +r0(1—ZCj*cjﬂ -Y.Cc,'4iC, —tg[l—z;cj*cj]. (13)
J=1 Jj=1 j=1 =

4. If we have a particular case when operators C; satisfy condition z C.].*C ; =1 then for self-adjoint
=1
operators A; with o(4;) cJ for j =1, 2, ... n, and for fixed real number t,eJ, F verify the inequality

2
n N n " o n N n "
F[ZC_,- AA,C.,-]SZC, F(4)C; +5 (ZC,- A,C,-j -G, 4C; (14)
J=1 J=1 j=1 Jj=1

i5. If we consider an operator projection P then for a self-adjoint operator A with o(A)c J and for
fixed real number t,eJ, the operator F with its convexifier o satisfy the inequality

F(PAP+1,(I-P))<P-F(A)-P+F(t,)(I - P)+

—%[PA2P—PAPAP+ (5 1)1 =P)]. (15)

Proof. The equivalence will be done following i1=12=13=i4=i1 and i2=i5=1il.
il= 12 From definition, if /' is convexifiable then there is some real number o so that new operator

o(4,0) = F(A) - %ATA
is convex. For every convex function the inequality holds (Theorem 2.2)
O(C"AC +1,(I - C"C),0) < C"9(4,0)C + ¢(ty,0)(I — C C).

So, we have

* * * * T * *
F(C"AC+1t,(I-C C))—%(C AC+1,(I-C C)) (c AC+1,(I-C C))

<C’ (F(A) —%ATAJCJr(F(tO) —%té](l -C0).
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Since
(C*Ac+z0(1—c*C))T(C*AC+z0(1—C*C)):
* T * T * * * * 2
=((C"ACY +1,(1 -C°O) )(C"AC +1,(1 -C C)):(c AC+t,(I-C C))
we obtain
* * o * * 2
F(C"AC +1,(I-C C))—E(C AC+1,(I-C C)) <
<C'F(A)C —%(C*AZC) 4 (F(to) —%téj([ —C'0).
So,

F(C'AC +t,(I-C"C) <C'F(A)C +F(t,)(I - C"C) +

+%[(C*AC +ty(I - c"c))2 —C A C-2(I - C*C)}.
i2 = i3. For a convex function ¢ we can prove the inequality (Theorem 2.2)

(p[chAjcj +t0(1—ch*cj),a} <D CTo(4,0)C +9(ty,0)I - Y C,'C))  ie.
Jj=1 Jj=1 Jj=1 j=1

J=1

F[ZM:CAC +to( ic ¢, H“[ZC‘AJCJHO[I_ZM:C/*C/J] .

Jj=1 Jj=1
[ZC,A,CI +1 [l—icj"c‘,J]s
sz":cj(F(Aj)—%AjTAjjcj+(F(t0)—%ng[1—icj*cjj.

But,

T 2
[Zn:C;A/C_/ +[1_Zn:CjC_/D [Zn:C;A_/Cj +{1_Zn:C;C_/J] Z{Zn:C;A/Cj “{I _Zn:C_jC_/D :
J=1 J=1 Jj=1 Jj=1 Jj=1 Jj=1
So

{ Ci4,C, +1, 1 ZC;C‘/.NS

J=1

J=1 Jj=1

2
O P a O
C'F(4, )C+—{ZC/AIC/ +[I—ZC/.CJ.D —EZIC/.A_?C, +(F(t0)—5th[l—zlc,C/J.
Jj= Jj=

If we distribute the term, we obtain

n " n % n % n " o
F(z Ci4,C,+ zo(l -yc/c, D <Y CF(4,)C, + f(to)(l - ZC‘/CJ.JJrEDZ,
= F=

J=1 J=1

where D, is defined by (13).
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13= i4. If we have z C j*C ;= I then for a convexifiable operator, from (12) and (13) we have
j=1
n n n 2 n
FIXC 4,0, [<YCFUNC +2 | X646, | -3¢ 4C,
j=1 J= =1

j=1
i4= il. If we take real numbers C;, C; and C; = 0 for I > 3, we obtain C,*+ C,* = 1 and (14) became:
F(CA, + C?A,) < CP°F(4y) + CAF(A2)+0/2[(C?A,+Co*A5)* — 4% — G247,

the convexifiable definition of F.
i2 = i5. If we consider C=P, a projection operator in (10) and (11), then F satisfy the relation

F(P AP +1,(I - P'P))< P"F(A)P+ F(t,)(I - P"P)+ %D,
with
D=(P AP +t,(I- P P))’ —P"A*P-1;(I-P'P).
If P is a projection then P’=P and P"=P so we obtain

D =(PAP +t,(I — P))* = PA’P—t; (I — P) = PAPAP +t,(I — P)* — PA*P—t}(I - P) =
= PAPAP - PA’P—(t; —t,)(I - P).

Finally we have (15).
i5 = il. For the self-adjoint operators C, D with o(C), o(D) < J and A€[0,1] we construct some new

operators over HOH
C 0 1/2 —(1_ 1/2 I 0
X< U= AT Q=11 p= .
0 D —(1-2)"21 AT 00

We have that 6(X)= o(C)u o(D) < J, X is an self-adjoint operator, U is unitary and P is projection. Now,
relative to F, we proceed as in [1]. Since o(AC+(1-A)D) < J we get

FOLC+(1-M)D) < A F(C) + (1-)) F(D) — /2 {LC*+(1-0)D*~[AC+H(1-L)DT?}.

Remark.2.15. On the line of papers [3, 4, 5, 6] we can formulate a problem of such type.
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