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1. INTRODUCTION 

Convex functions are often used in applied mathematics. They have many uses in optimization and 
numerical methods. Using convexity, one can also study non-convex problems in two directions: 
transformation of arbitrary continuous functions to convex-like function and transformation of mathematical 
programs with such functions to equivalent programs. 

For a given function f:R→R, defined on a bounded convex set J of a real line R, we can construct the 
convex function by adding simple quadratic term α xxT ⋅⋅  to f where α is a sufficiently large non-negative 
number. The numerical value of the „convexifier” (α) depends on the function f and the interval where f is 
„convexified”. For α<0 the quadratic term is strictly convex, so f is called „weakly convex”[7]. Also, if there 
is α, convexifier of f, then there are a lot of such values α* ≤ α which are also convexifiers.  

Therefore every convexifiable function f can be written as the sum of a convex function 

xxxf T ⋅⋅−
2
α)( and a concave quadratic term xxT ⋅⋅

2
α

, for every α which is sufficiently small. 

Convexifiable functions have been studied also on R n and characterized using the fact that for 
continuous functions a class of convexifiable function is large: beside convex and twice continuously 
differentiable functions, also continuously differentiable functions with Lipschitz derivative. In [10] Zlobec 
showed that there exist continuously differentiable functions and also differentiable Lipschitz functions that 
can not be convexified.  

Here we extend some of results from [5] to convexifiable case of convex operator. 

2. SOME PRELIMINARY RESULTS 

Definition 2.1. If  f : Rn→R is a continuous function of n variables defined on a convex set J, J⊆Rn 
then the function is said to be convex (concave) on J if 

f(λx+(1–λ)y) ≤ (≥) λf(x) + (1–λ)f(y) (∀) x, y ∈ J, (∀)λ ∈[0, 1]. (1) 

 
Theorem 2.2 [2]. If f is a continuous, real function on an interval J, the following conditions are 

equivalent: 
(i) f is operator concave. 
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(ii) f(C*AC+t0(I–C*C)) ≥ C*f(A)C + f(t0)(I–C*C) for an operator C with ||C||≤1 and a self-adjoint 
operator A with σ(A)⊆J and for fixed real number t0∈J. 

(iii) 
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* and self-adjoint operator Aj with σ(Aj) ⊆ J, j=1, 2, ..., n, and for a fixed 

real number t0∈J. 
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with σ(Aj) ⊆ J, j=1, 2, ..., n, where n≥2. 
(v) ))(()())(( 00 PItfPAfPPItPAPf −+⋅⋅≥−+ for a projection P and a self-adjoint operator 

A with σ(A) ⊆ J and for a fixed real number t0∈J. 
 
Definition 2.3. [8] Given a continuous f : Rn →R  defined on a convex set J⊂Rn, consider the 

parametric function ϕ : Rn × R → R defined by 

1( ,α) ( ) α
2

Tx f x x xϕ = − , (2) 

where xT is the transposed of x. If ϕ(x,α) is a convex function on J for some α=α*, then ϕ(x,α) is a 
convexification of f and α* is its convexifier on J. Function f is convexifiable if it has a convexification.  

Remark 2.4. If α is a convexifier of f, then so is every α*≤ α. 

Theorem 2.5 [9]. If f is a continuous function f : Rn → R  defined on a convex set J⊂ Rn then f is 
convex if and only if f is mid-point convex, i.e., 

( ))()(
2
1

2
yfxfyxf +≤






 +

,  ∀ x, y∈J. (3) 

Remark 2.6. Every convex function defined on a convex set from Euclidean space is mid-point convex. 
Over non-Euclidean space (e.g. the scalar field of rational numbers) we can construct a non-convex mid-
point convex function. 

With every continuous function f : Rn → R we can associate a particular function ψ : Rn × Rn→R. We 
denote the norm of u∈ R n by ||u|| = (uTu)1/2. 

Remark 2.7 [10]. Given a continuous function f : Rn → R  and a compact convex set J in Rn the mid-
point acceleration function of f on J is the function 

2
4( , ) ( ) ( ) 2

2|| ||
x yx y f x f y f

x y
 + ψ = + −   −   

, (∀) x, y ∈J, x≠y. (4) 

Remark 2.8. (Justification of function’s name). If we take x, y in J then their mid point is 1/2(x+y) and 
also is x+1/2(y–x). Using the notation ∆x = 1/2(y–x), the mid point can be written as x+∆x, which is the same 
as y–∆x. Then the distance from x and x +∆x, i.e. ||∆x||, so the average displacement of f at x in the direction 
of mid-point x+∆x, over distance is ∆f(x) = [ f(x+∆x) – f(x)] / ||∆x|| . 

This is repeated at the mid-point and y, so we obtain ∆f(x+∆x) = [f(y) – f(x+∆x)] / ||∆x||. Hence the 
average “displacement of the displacement”, i.e. the “acceleration” is  

[∆f(x+∆x) – ∆f(x)]/ ||∆x|| = ψ(x,y). 
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Theorem 2.9 [10]. Given a continuous function f : Rn → R on a compact convex set J in Rn, function f 
is convexifiable on J if and only if its mid-point acceleration function is bounded on J. 

Proof. From f convexifiable we have ϕ(x, α) = f(x)–1/2αxTx convex for some α. But for ϕ we have  
ϕ((x+y,α)/2) ≤ 1/2⋅(ϕ(x,α) + ϕ(y,α)), x, y∈J. 

After substitution, this is 
        2⋅f((x+y)/2)–[f(x)+f(y)] ≤ α⋅{1/4⋅[||x||2+2⋅(x, y)+||y||2]–1/2⋅[||x||2+||y||2]} = – α/4⋅ ||x - y||2. 

So, finally     
 α ≤ ψ(x, y), for every x, y∈J, x≠y. 

 
Theorem 2.10 [11]. [Jensen’s inequality for convexifiable functions]. If f is a convexifiable function on 

a bounded nontrivial convex set J⊂Rn, and α is its convexifier, then  

2

1 1 , 1

α( ) || ||
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∑ ∑ ∑  (5) 

for every set of points {xi}i=1, ..., p from J and all real scalar λI ≥ 0 with i =1, 2, ..., p and 
1

1
p

i
i=

λ =∑ . 

Definition 2.11. Let F be an operator over Hilbert space H. F is convex (concave) operator over J⊂H if 

F(αx+βy) ≤ (≥) αF(x)+βF(y)      (6) 

for any real α, β  with α+β=1, α, β ≥ 0 and x, y∈J. 

Definition 2.12. Let F be an operator over J⊂H, a Hilbert space. We say that F is an convexifiable 
operator if exists some real number α so that for A∈B(H) the new operator 

1( ,α) ( ) α
2

TA F A A Aϕ = −  (7) 

is convex over J. 

Remark 2.13. (generalization of Jensen inequality). Let A, B be self-adjoint operators with σ(A)⊆ J and 
σ(B)⊆ J. If f is an convexifiable operator on an interval J then for s, t ≥ 0, s+t =1 we have  

[ ]2||||
2
α)()()( BAtsBftAfsBtAsf −⋅⋅−⋅+⋅≤⋅+⋅ . (8) 

Proof.  If  f  is convexifiable with α its convexifier then there is a convex operator ϕ such that  
  ϕ(C, α) = f(C) – α/2C*C. 
If we apply Jensen’s inequality for convex function to ϕ, for A, B, s, t with s+t =1 we have 

ϕ(sA + tB) ≤ sϕ(A) + tϕ(B). (9) 

After substitutions, the inequality is 

f(s⋅A+t⋅B) ≤ s⋅ f(A) + t⋅ f(B) - [ ]222 )(
2
α tBsAtBsA +−+ .  

Finally, from s + t = 1 the conclusion follows.                                            

3. OPERATOR INEQUALITIES FOR CONVEXIFIABLE CASE 

Theorem 2.14. The following conditions are equivalent for an operator F: J→R, J⊂R. 
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i1. F is a convexifiable operator with α its convexifier. 
i2. For an operator C with ||C||≤1 and a self-adjoint operator A with σ(A)⊆ J and for fixed real number 

t0∈J, the operator F with its convexifier α satisfy 

1
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and for fixed real number t0∈J, F verify the inequality 
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where α is its convexifier and 
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i4. If  we have a particular case when operators Cj satisfy condition ICC
n

j
jj =∑

=1

* then for self-adjoint 

operators Aj with  σ(Aj) ⊂ J for j =1, 2, ... n, and for fixed real number t0∈J, F verify the inequality         
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i5. If we consider an operator projection P then for a self-adjoint operator A with σ(A)⊆ J and for 
fixed real number t0∈J, the operator F with its convexifier α satisfy the inequality 

0 0

2 2
0 0

         ( ( )) ( ) ( )( )
α                                               ( )( ) .
2

F PAP t I P P F A P F t I P

PA P PAPAP t t I P

+ − ≤ ⋅ ⋅ + − +

 − − + − − 
 (15) 

Proof. The equivalence will be done following i1⇒i2⇒i3⇒i4⇒i1 and i2⇒i5⇒i1. 
          i1⇒ i2  From definition, if F is convexifiable then there is some real number α so that new operator  

ϕ(A,α) =  F(A) – AAT

2
α

  

is convex. For every convex function the inequality holds (Theorem 2.2)  
* * * *

0 0( ( ),α) ( ,α) ( ,α)( ).C AC t I C C C A C t I C Cϕ + − ≤ ϕ + ϕ −   
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Since 
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i2 ⇒ i3. For a convex function ϕ we can prove the inequality (Theorem 2.2) 
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where D2 is defined by (13). 
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i3⇒ i4. If we have ICC
n

j
jj =∑
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*  then for a convexifiable operator, from (12) and (13) we have  
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i4⇒ i1. If we take real numbers C1, C2 and Ci = 0 for I ≥ 3, we obtain C1
2 + C2

2 = 1 and (14) became: 

F(C1
2A1 + C2

2A2) ≤ C1
2F(A1) + C2

2F(A2)+α/2[(C1
2A1+C2

2A2)2 – C1
2A1

2 – C2
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2],  

the convexifiable definition of F. 
i2 ⇒ i5. If we consider C=P, a projection operator in (10) and (11), then F satisfy the relation 
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Finally we have (15). 
i5 ⇒ i1. For the self-adjoint operators C, D with σ(C), σ(D) ⊆ J and λ∈[0,1] we construct some new 

operators over H⊕H  

0
0
C

X
D

 
=  
 

, 
1/ 2 1/ 2

1/ 2 1/ 2

(1 )
(1 )

I I
U

I I
 λ − − λ

=  
− − λ λ 

, 
0

0 0
I

P
 

=  
 

.  

We have that σ(X)= σ(C)∪ σ(D) ⊆ J, X is an self-adjoint operator, U is unitary and P is projection. Now, 
relative to F, we proceed as in [1]. Since σ(λC+(1–λ)D) ⊆ J  we get 

F(λC+(1–λ)D) ≤ λ F(C) + (1–λ) F(D) – α/2{λC2+(1–λ)D2–[λC+(1–λ)D]2}.  

 Remark.2.15. On the line of papers [3, 4, 5, 6] we can formulate a problem of such type. 
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