SOME INEQUALITIES FOR CONVEXIFIABLE FUNCTION WITH APPLICATIONS

Adriana CLIM
Bucharest University, Academiei 14, Bucharest, Romania
E-mail: clim.adriana@gmail.com

Abstract

Some function becomes convex after adding to it a quadratic term. In this paper we extend some properties of convex function to convexifiable case of operators.

Key words: Convexity; Convexifiable function; Continuous function; Jensen inequality; Operator on Hilbert space.

1. INTRODUCTION

Convex functions are often used in applied mathematics. They have many uses in optimization and numerical methods. Using convexity, one can also study non-convex problems in two directions: transformation of arbitrary continuous functions to convex-like function and transformation of mathematical programs with such functions to equivalent programs.

For a given function $f: R \rightarrow R$, defined on a bounded convex set J of a real line R, we can construct the convex function by adding simple quadratic term $\alpha \cdot x^{T} \cdot x$ to f where α is a sufficiently large non-negative number. The numerical value of the „convexifier" (α) depends on the function f and the interval where f is "convexified". For $\alpha<0$ the quadratic term is strictly convex, so f is called „weakly convex"[7]. Also, if there is α, convexifier of f, then there are a lot of such values $\alpha^{*} \leq \alpha$ which are also convexifiers.

Therefore every convexifiable function f can be written as the sum of a convex function $f(x)-\frac{\alpha}{2} \cdot x^{T} \cdot x$ and a concave quadratic term $\frac{\alpha}{2} \cdot x^{T} \cdot x$, for every α which is sufficiently small.

Convexifiable functions have been studied also on R^{n} and characterized using the fact that for continuous functions a class of convexifiable function is large: beside convex and twice continuously differentiable functions, also continuously differentiable functions with Lipschitz derivative. In [10] Zlobec showed that there exist continuously differentiable functions and also differentiable Lipschitz functions that can not be convexified.

Here we extend some of results from [5] to convexifiable case of convex operator.

2. SOME PRELIMINARY RESULTS

Definition 2.1. If $f: R^{n} \rightarrow R$ is a continuous function of n variables defined on a convex set $J, J \subseteq R^{n}$ then the function is said to be convex (concave) on J if

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq(\geq) \lambda f(x)+(1-\lambda) f(y)(\forall) x, y \in J,(\forall) \lambda \in[0,1] . \tag{1}
\end{equation*}
$$

Theorem 2.2 [2]. If f is a continuous, real function on an interval J, the following conditions are equivalent:
(i) fis operator concave.
(ii) $f\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right) \geq C^{*} f(A) C+f\left(t_{0}\right)\left(I-C^{*} C\right)$ for an operator C with $\|C\| \leq 1$ and a self-adjoint operator A with $\sigma(A) \subseteq J$ and for fixed real number $t_{0} \in J$.
(iii) $f\left(\sum_{j=1}^{n} C_{j}{ }^{*} A_{j} C_{j}+t_{0}\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right) \geq \sum_{j=1}^{n} C_{j}^{*} f\left(A_{j}\right) C_{j}+f\left(t_{0}\right)\left(I-\sum_{j=1}^{n} C_{j}{ }^{*} C_{j}\right)$ for operators C_{j} with $\sum_{j=1}^{n} C_{j}^{*} C_{j} \leq I$ and self-adjoint operator A_{j} with $\sigma\left(A_{j}\right) \subseteq J, j=1,2, \ldots, n$, and for a fixed real number $t_{0} \in J$.
(iv) $f\left(\sum_{j=1}^{n} C_{j}{ }^{*} A_{j} C_{j}\right) \geq \sum_{j=1}^{n} C_{j}{ }^{*} f\left(A_{j}\right) C_{j}$ for operators C_{j} with $\sum_{j=1}^{n} C_{j}{ }^{*} C_{j}=I$, self-adjoint operator A_{j} with $\sigma\left(A_{j}\right) \subseteq J, j=1,2, \ldots, n$, where $n \geq 2$.
(v) $f\left(P A P+t_{0}(I-P)\right) \geq P \cdot f(A) \cdot P+f\left(t_{0}\right)(I-P)$ for a projection P and a self-adjoint operator A with $\sigma(A) \subseteq J$ and for a fixed real number $t_{0} \in J$.

Definition 2.3. [8] Given a continuous $f: R^{n} \rightarrow R$ defined on a convex set $J \subset R^{n}$, consider the parametric function $\varphi: R^{n} \times R \rightarrow R$ defined by

$$
\begin{equation*}
\varphi(x, \alpha)=f(x)-\frac{1}{2} \alpha x^{T} x, \tag{2}
\end{equation*}
$$

where x^{T} is the transposed of x. If $\varphi(x, \alpha)$ is a convex function on J for some $\alpha=\alpha^{*}$, then $\varphi(x, \alpha)$ is a convexification of f and α^{*} is its convexifier on J. Function f is convexifiable if it has a convexification.

Remark 2.4. If α is a convexifier of f, then so is every $\alpha^{*} \leq \alpha$.
Theorem 2.5 [9]. If f is a continuous function $f: R^{n} \rightarrow R$ defined on a convex set $J \subset R^{n}$ then f is convex if and only iff is mid-point convex, i.e.,

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \frac{1}{2}(f(x)+f(y)), \forall x, y \in J . \tag{3}
\end{equation*}
$$

Remark 2.6. Every convex function defined on a convex set from Euclidean space is mid-point convex. Over non-Euclidean space (e.g. the scalar field of rational numbers) we can construct a non-convex midpoint convex function.

With every continuous function $f: R^{n} \rightarrow R$ we can associate a particular function $\psi: R^{n} \times R^{n} \rightarrow R$. We denote the norm of $u \in R^{n}$ by $\|u\|=\left(u^{T} u\right)^{1 / 2}$.

Remark 2.7 [10]. Given a continuous function $f: R^{n} \rightarrow R$ and a compact convex set J in R^{n} the midpoint acceleration function of f on J is the function

$$
\begin{equation*}
\psi(x, y)=\frac{4}{\|x-y\|^{2}}\left[f(x)+f(y)-2 f\left(\frac{x+y}{2}\right)\right],(\forall) x, y \in J, x \neq y . \tag{4}
\end{equation*}
$$

Remark 2.8. (Justification of function's name). If we take x, y in J then their mid point is $1 / 2(x+y)$ and also is $x+1 / 2(y-x)$. Using the notation $\Delta x=1 / 2(y-x)$, the mid point can be written as $x+\Delta x$, which is the same as $y-\Delta x$. Then the distance from x and $x+\Delta x$, i.e. $\|\Delta x\|$, so the average displacement of f at x in the direction of mid-point $x+\Delta x$, over distance is $\Delta f(x)=[f(x+\Delta x)-f(x)] /\|\Delta x\|$.

This is repeated at the mid-point and y, so we obtain $\Delta f(x+\Delta x)=[f(y)-f(x+\Delta x)] /\|\Delta x\|$. Hence the average "displacement of the displacement", i.e. the "acceleration" is

$$
[\Delta f(x+\Delta x)-\Delta f(x)] /\|\Delta x\|=\psi(x, y) .
$$

Theorem 2.9 [10]. Given a continuous function $f: R^{n} \rightarrow R$ on a compact convex set J in R^{n}, function f is convexifiable on J if and only if its mid-point acceleration function is bounded on J.

Proof. From f convexifiable we have $\varphi(x, \alpha)=f(x)-1 / 2 \alpha x^{T} x$ convex for some α. But for φ we have $\varphi((x+y, \alpha) / 2) \leq 1 / 2 \cdot(\varphi(x, \alpha)+\varphi(y, \alpha)), x, y \in J$.
After substitution, this is

$$
\begin{aligned}
2 \cdot f((x+y) / 2)-[f(x)+f(y)] \leq \alpha \cdot\left\{1 / 4 \cdot\left[\|x\|^{2}+2 \cdot(x, y)+\|y\|^{2}\right]-1 / 2 \cdot\left[\|x\|^{2}+\|y\|^{2}\right]\right\} & =-\alpha / 4 \cdot\|x-y\|^{2} .
\end{aligned}
$$

So, finally

$$
\alpha \leq \psi(x, y) \text {, for every } x, y \in J, x \neq y .
$$

Theorem 2.10 [11]. [Jensen's inequality for convexifiable functions]. Iff is a convexifiable function on a bounded nontrivial convex set $J \subset R^{n}$, and α is its convexifier, then

$$
\begin{equation*}
f\left(\sum_{i=1}^{p} \lambda_{i} x_{i}\right) \leq \sum_{i=1}^{p} \lambda_{i} f\left(x_{i}\right)-\frac{\alpha}{2}\left(\sum_{\substack{i, j=1 \\ \ll j}}^{p} \lambda_{i} \lambda_{j}\left\|x_{i}-x_{j}\right\|^{2}\right) \tag{5}
\end{equation*}
$$

for every set of points $\left\{x_{i}\right\}_{i=1, \ldots, p}$ from J and all real scalar $\lambda_{I} \geq 0$ with $i=1,2, \ldots, p$ and $\sum_{i=1}^{p} \lambda_{i}=1$.
Definition 2.11. Let F be an operator over Hilbert space H. F is convex (concave) operator over $J \subset H$ if

$$
\begin{equation*}
F(\alpha x+\beta y) \leq(\geq) \alpha F(x)+\beta F(y) \tag{6}
\end{equation*}
$$

for any real α, β with $\alpha+\beta=1, \alpha, \beta \geq 0$ and $x, y \in J$.
Definition 2.12. Let F be an operator over $J \subset H$, a Hilbert space. We say that F is an convexifiable operator if exists some real number α so that for $A \in B(H)$ the new operator

$$
\begin{equation*}
\varphi(A, \alpha)=F(A)-\frac{1}{2} \alpha A^{T} A \tag{7}
\end{equation*}
$$

is convex over J.
Remark 2.13. (generalization of Jensen inequality). Let A, B be self-adjoint operators with $\sigma(A) \subseteq J$ and $\sigma(B) \subseteq J$. If f is an convexifiable operator on an interval J then for $s, t \geq 0, s+t=1$ we have

$$
\begin{equation*}
f(s \cdot A+t \cdot B) \leq s \cdot f(A)+t \cdot f(B)-\frac{\alpha}{2}\left[s \cdot t \cdot\|A-B\|^{2}\right] . \tag{8}
\end{equation*}
$$

Proof. If f is convexifiable with α its convexifier then there is a convex operator φ such that $\varphi(C, \alpha)=f(C)-\alpha / 2 C^{*} C$.
If we apply Jensen's inequality for convex function to φ, for A, B, s, t with $s+t=1$ we have

$$
\begin{equation*}
\varphi(s A+t B) \leq s \varphi(A)+t \varphi(B) . \tag{9}
\end{equation*}
$$

After substitutions, the inequality is

$$
f(s \cdot A+t \cdot B) \leq s \cdot f(A)+t \cdot f(B)-\frac{\alpha}{2}\left[s A^{2}+t B^{2}-(s A+t B)^{2}\right] .
$$

Finally, from $s+t=1$ the conclusion follows.

3. OPERATOR INEQUALITIES FOR CONVEXIFIABLE CASE

Theorem 2.14. The following conditions are equivalent for an operator $F: J \rightarrow R, J \subset R$.
i1. F is a convexifiable operator with α its convexifier.
i2. For an operator C with $\|C\| \leq 1$ and a self-adjoint operator A with $\sigma(A) \subseteq J$ and for fixed real number $t_{0} \in J$, the operator F with its convexifier α satisfy

$$
\begin{equation*}
F\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right) \leq C^{*} F(A) C+F\left(t_{0}\right)\left(I-C^{*} C\right)+\frac{\alpha}{2} D_{1}, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{1}=\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right)^{2}-C^{*} A^{2} C-t_{0}^{2}\left(I-C^{*} C\right) . \tag{11}
\end{equation*}
$$

i3. For operators C_{j} with $\sum_{j=1}^{n} C_{j}^{*} C_{j} \leq I$ and self-adjoint operators A_{j} with $\sigma\left(A_{j}\right) \subset J, j=1,2, \ldots n$, and for fixed real number $t_{0} \in J, F$ verify the inequality

$$
\begin{equation*}
F\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+t_{0}\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right) \leq \sum_{j=1}^{n} C_{j}^{*} F\left(A_{j}\right) C_{j}+F\left(t_{0}\right)\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)+\frac{\alpha}{2} D_{2}, \tag{12}
\end{equation*}
$$

where α is its convexifier and

$$
\begin{equation*}
D_{2}=\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+t_{0}\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right)^{2}-\sum_{j=1}^{n} C_{j}^{*} A_{j}^{2} C_{j}-t_{0}^{2}\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right) . \tag{13}
\end{equation*}
$$

i4. If we have a particular case when operators C_{j} satisfy condition $\sum_{j=1}^{n} C_{j}^{*} C_{j}=I$ then for self-adjoint operators A_{j} with $\sigma\left(A_{j}\right) \subset J$ for $j=1,2, \ldots n$, and for fixed real number $t_{0} \in J, F$ verify the inequality

$$
\begin{equation*}
F\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}\right) \leq \sum_{j=1}^{n} C_{j}^{*} F\left(A_{j}\right) C_{j}+\frac{\alpha}{2}\left[\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}\right)^{2}-\sum_{j=1}^{n} C_{j}^{*} A_{j}^{2} C_{j}\right] \tag{14}
\end{equation*}
$$

i5. If we consider an operator projection P then for a self-adjoint operator A with $\sigma(A) \subseteq J$ and for fixed real number $t_{0} \in J$, the operator F with its convexifier α satisfy the inequality

$$
\begin{align*}
F\left(P A P+t_{0}(I-P)\right) \leq P \cdot & F(A) \cdot P+F\left(t_{0}\right)(I-P)+ \\
& -\frac{\alpha}{2}\left[P A^{2} P-P A P A P+\left(t_{0}^{2}-t_{0}\right)(I-P)\right] . \tag{15}
\end{align*}
$$

Proof. The equivalence will be done following $\mathrm{i} 1 \Rightarrow \mathrm{i} 2 \Rightarrow \mathrm{i} 3 \Rightarrow \mathrm{i} 4 \Rightarrow \mathrm{i} 1$ and $\mathrm{i} 2 \Rightarrow \mathrm{i} 5 \Rightarrow \mathrm{i} 1$.
$\mathrm{i} 1 \Rightarrow \mathrm{i} 2$ From definition, if F is convexifiable then there is some real number α so that new operator

$$
\varphi(A, \alpha)=F(A)-\frac{\alpha}{2} A^{T} A
$$

is convex. For every convex function the inequality holds (Theorem 2.2)

$$
\varphi\left(C^{*} A C+t_{0}\left(I-C^{*} C\right), \alpha\right) \leq C^{*} \varphi(A, \alpha) C+\varphi\left(t_{0}, \alpha\right)\left(I-C^{*} C\right) .
$$

So, we have

$$
\begin{gathered}
F\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right)-\frac{\alpha}{2}\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right)^{T}\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right) \\
\leq C^{*}\left(F(A)-\frac{\alpha}{2} A^{T} A\right) C+\left(F\left(t_{0}\right)-\frac{\alpha}{2} t_{0}^{2}\right)\left(I-C^{*} C\right) .
\end{gathered}
$$

Since

$$
\begin{gathered}
\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right)^{T}\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right)= \\
=\left(\left(C^{*} A C\right)^{T}+t_{0}\left(I-C^{*} C\right)^{T}\right)\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right)=\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right)^{2}
\end{gathered}
$$

we obtain

$$
\begin{aligned}
& F\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right)-\frac{\alpha}{2}\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right)^{2} \leq \\
& \leq C^{*} F(A) C-\frac{\alpha}{2}\left(C^{*} A^{2} C\right)+\left(F\left(t_{0}\right)-\frac{\alpha}{2} t_{0}^{2}\right)\left(I-C^{*} C\right) .
\end{aligned}
$$

So,

$$
\begin{aligned}
F\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right) & \leq C^{*} F(A) C+F\left(t_{0}\right)\left(I-C^{*} C\right)+ \\
& +\frac{\alpha}{2}\left[\left(C^{*} A C+t_{0}\left(I-C^{*} C\right)\right)^{2}-C^{*} A^{2} C-t_{0}^{2}\left(I-C^{*} C\right)\right] .
\end{aligned}
$$

$\mathrm{i} 2 \Rightarrow \mathrm{i} 3$. For a convex function φ we can prove the inequality (Theorem 2.2)

$$
\begin{aligned}
& \varphi\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+t_{0}\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right), \alpha\right) \leq \sum_{j=1}^{n} C^{*} \varphi(A, \alpha) C+\varphi\left(t_{0}, \alpha\right)\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right) \text {, i.e. } \\
& F\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+t_{0}\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right)-\frac{\alpha}{2}\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+t_{0}\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right)^{T} \\
& \cdot\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+t_{0}\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right) \leq \\
& \quad \leq \sum_{j=1}^{n} C_{j}^{*}\left(F\left(A_{j}\right)-\frac{\alpha}{2} A_{j}^{T} A_{j}\right) C_{j}+\left(F\left(t_{0}\right)-\frac{\alpha}{2} t_{0}^{2}\right)\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right) .
\end{aligned}
$$

But,

$$
\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right)^{T}\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right)=\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right)^{2}
$$

So

$$
\begin{aligned}
& F\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+t_{0}\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right) \leq \\
& \leq \sum_{j=1}^{n} C^{*} F\left(A_{j}\right) C+\frac{\alpha}{2}\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right)^{2}-\frac{\alpha}{2} \sum_{j=1}^{n} C_{j}^{*} A_{j}^{2} C_{j}+\left(F\left(t_{0}\right)-\frac{\alpha}{2} t_{0}^{2}\right)\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right) .
\end{aligned}
$$

If we distribute the term, we obtain

$$
F\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}+t_{0}\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)\right) \leq \sum_{j=1}^{n} C_{j}^{*} F\left(A_{j}\right) C_{j}+f\left(t_{0}\right)\left(I-\sum_{j=1}^{n} C_{j}^{*} C_{j}\right)+\frac{\alpha}{2} D_{2},
$$

where D_{2} is defined by (13).
$\mathrm{i} 3 \Rightarrow$ i4. If we have $\sum_{j=1}^{n} C_{j}^{*} C_{j}=I$ then for a convexifiable operator, from (12) and (13) we have

$$
F\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}\right) \leq \sum_{j=1}^{n} C_{j}^{*} F\left(A_{j}\right) C_{j}+\frac{\alpha}{2}\left[\left(\sum_{j=1}^{n} C_{j}^{*} A_{j} C_{j}\right)^{2}-\sum_{j=1}^{n} C_{j}^{*} A_{j}^{2} C_{j}\right]
$$

$\mathrm{i} 4 \Rightarrow \mathrm{i} 1$. If we take real numbers C_{1}, C_{2} and $C_{i}=0$ for $\mathrm{I} \geq 3$, we obtain $C_{1}^{2}+C_{2}^{2}=1$ and (14) became:

$$
F\left(C_{1}^{2} A_{1}+C_{2}^{2} A_{2}\right) \leq C_{1}^{2} F\left(A_{1}\right)+C_{2}^{2} F\left(A_{2}\right)+\alpha / 2\left[\left(C_{1}^{2} A_{1}+C_{2}^{2} A_{2}\right)^{2}-C_{1}^{2} A_{1}^{2}-C_{2}^{2} A_{2}^{2}\right]
$$

the convexifiable definition of F.
$\mathrm{i} 2 \Rightarrow \mathrm{i} 5$. If we consider $C=P$, a projection operator in (10) and (11), then F satisfy the relation

$$
F\left(P^{*} A P+t_{0}\left(I-P^{*} P\right)\right) \leq P^{*} F(A) P+F\left(t_{0}\right)\left(I-P^{*} P\right)+\frac{\alpha}{2} D
$$

with

$$
D=\left(P^{*} A P+t_{0}\left(I-P^{*} P\right)\right)^{2}-P^{*} A^{2} P-t_{0}^{2}\left(I-P^{*} P\right)
$$

If P is a projection then $P^{2}=P$ and $P^{*}=P$ so we obtain

$$
\begin{aligned}
D & =\left(P A P+t_{0}(I-P)\right)^{2}-P A^{2} P-t_{0}^{2}(I-P)=P A P A P+t_{0}(I-P)^{2}-P A^{2} P-t_{0}^{2}(I-P)= \\
& =P A P A P-P A^{2} P-\left(t_{0}^{2}-t_{0}\right)(I-P) .
\end{aligned}
$$

Finally we have (15).
$\mathrm{i} 5 \Rightarrow \mathrm{i} 1$. For the self-adjoint operators C, D with $\sigma(C), \sigma(D) \subseteq J$ and $\lambda \in[0,1]$ we construct some new operators over $H \oplus H$

$$
X=\left(\begin{array}{cc}
C & 0 \\
0 & D
\end{array}\right), U=\left(\begin{array}{cc}
\lambda^{1 / 2} I & -(1-\lambda)^{1 / 2} I \\
-(1-\lambda)^{1 / 2} I & \lambda^{1 / 2} I
\end{array}\right), P=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
$$

We have that $\sigma(\mathrm{X})=\sigma(\mathrm{C}) \cup \sigma(\mathrm{D}) \subseteq J, \mathrm{X}$ is an self-adjoint operator, U is unitary and P is projection. Now, relative to F, we proceed as in [1]. Since $\sigma(\lambda C+(1-\lambda) D) \subseteq J$ we get

$$
F(\lambda C+(1-\lambda) D) \leq \lambda F(C)+(1-\lambda) F(D)-\alpha / 2\left\{\lambda C^{2}+(1-\lambda) D^{2}-[\lambda C+(1-\lambda) D]^{2}\right\} .
$$

Remark.2.15. On the line of papers $[3,4,5,6]$ we can formulate a problem of such type.

REFERENCES

1. FURUTA, T., Parametric extension of Shannon inequality and its reverse one in Hilbert space operators, Linear Algebra Appl.. 381, pp. 219-235, 2004.
2. HANSEN, F., PEDERSEN, G.K., Jensen's inequality for operators and Lowner theorem, Math. Ann.. 258, pp. 229-241, 1982.
3. PREDA, V., On sufficiency and duality for generalized quasi-convex programs, Journal of Mathematical Analysis and Applications, 181, 1, pp. 77-88, 1994.
4. PREDA, V., CHITESCU, I., On constraint qualification in multiobjective optimization problems: Semidifferentiable case, Journal of Optimization Theory and Applications, 100, 2, pp. 417-433, 1999.
5. PREDA, V., BATATORESCU, A., On duality for minmax generalized B-vex programming involving n-set functions, Journal of Convex Analysis, 9, 2, pp. 609-623, 2002.
6. PREDA, V., STANCU-MINASIAN, I.M., KOLLER, E., On optimality and duality for multiobjective programming problems involving generalized d-type-I and related n-set functions, Journal of Mathematical Analysis and Applications, 283, 1, pp. 114-128, 2003.
7. VIAL, J.P., Strong and weak convexity of sets and functions, Mathematics of Operations Research, 8, 2, pp. 231-259.
8. ZLOBEC, S., Jensen's inequality for nonconvex function, Mathematical Communications, 9, pp. 119-124, 2004.
9. ZLOBEC, S., On the Liu-Flodas convexification of smooth programs, Journal of Global Optimization, 32, pp. 401-407, 2005.
10. ZLOBEC, S., Characterization of convexifiable function, Optimization, 55, 3, pp. 251-261, 2006.
11. ZLOBEC, S., Jensen's inequality for non-convex function, Mathematical Communications, 9, pp. 119-124, 2004.
