
      THE PUBLISHING HOUSE  PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, 
      OF THE ROMANIAN ACADEMY  Volume 11, Number 3/2010, pp. 253–260 

CALCULUS OF JOINT FORCES USING LAGRANGE EQUATIONS  
AND PRINCIPLE OF VIRTUAL WORK 

Ion STROE, Ştefan STAICU 

“Politehnica” University of Bucharest, Romania 
E-mail: ion.stroe@gmail.com 

Lagrange equations and the principle of virtual work are used to study the motion of a system under 
the action of known external and internal forces. If an internal force has to be found, a supplementary 
mobility is considered in the system. The corresponding internal force for new mobility is found for 
zero mobility. General kinematics problem of systems of rigid bodies with constraints is first 
presented in paper. Based on a comparative analysis of the Lagrange formalism and the principle of 
virtual work, the models allow solving a large number of problems in multi-bodies systems dynamics. 

Key words:  Kinematicsş Multi-bodies system, Constraint, dynamics. 

LIST OF SYMBOLS 

, 1k ka − – orthogonal transformation matrix 

, 1k k−ϕ – relative rotation angle of kT  rigid body 

, 1k k−ω – relative angular velocity of kT  

, 1k k−ω – skew-symmetric matrix associated to the angular velocity , 1k k−ω  

km , ˆ
kJ – mass and symmetric matrix of tensor of inertia of kT  about the link-frame k k kx y z   

, 1 , 1,k k k km f− − – active torques and joint forces 

1. INTRODUCTION 

The dynamics of multi-bodies systems is complicated by existence of closed-loop chains. Difficulties 
commonly encountered in dynamics modelling include problematic issues such as: complicated kinematical 
structure with possess of large number of passive degrees of freedom, dominance of inertial forces over the 
frictional and gravitational components and the problem linked to the solution of the inverse dynamics. 

In the context of the real-time control, neglecting the frictions forces and considering the gravitational 
effects, the relevant objective of the multi-bodies dynamics is to determine the input torques or forces and 
the external and internal joint forces. Upon to now, several methods have been applied to formulate the 
forward and inverse dynamics, which could provide the same results concerning these torques or forces. The 
first one is using the Newton-Euler classical procedure, the second one applies the Lagrange’s equations and 
multipliers formalism and the third one is based on the principle of virtual work [1, 2, 3]. 

Lu [4] uses the virtual method to determine, in spatial parallel structures, the generalized forces of the 
actuators and relates them to the real forces that they exert. Geike and Mc Phee [5] proposed a general 
approach which could determine the inverse dynamic solutions for a planar 3-RRR parallel manipulator and 
a spatial 6-DOF parallel mechanism.  
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2.  KINEMATICS OF SYSTEMS OF RIGID BODIES 

Let two bodies ( )iT  and ( )jT  be with constrained motions by a coupling mechanism which is made 
precise by two points iO  and jO  (Fig.1). The motion of the body ( )iT  with respect the inertial reference frame 

0 0 0 0 0( )O x y z T  is determined by the position vector 0 0
iC

ir O C=  of mass center iC  and by the transformation 
matrix 0ia  which gives the attitude of the frame i i i iC x y z  jointed with ( )iT  body with respect the fixed 

reference frame. In the same way are defined position vector 0 0
jC

jr O C=  and matrix 0ja  for the body ( )jT . 
A free body ( )iT  or ( )jT , has six degrees of freedom. But, the number of degrees of freedom is 

reduced by the number of constrains which are imposed by several coupling mechanisms. Coupling 
mechanisms between  ( )iT and ( )jT  imposes restrictions on relative motion of ( )iT  body with respect to ( )jT . 

If a general motion of bodies ( )iT  and ( )jT  with respect the fixed reference frame 0000 zyxO  are known, 
then the relative motion of the body ( )iT  with respect ( )jT  can be determined by the relative position vector  

0 0
ji CC

ijr r r= −  (2.1)

and by the matrix ija which gives the relative attitude of ( )iT  body versus ( )jT  body. 
Starting from the frame ( )j j ji j jC x y z T  and ending to the frame ( )i i i i iC x y z T , we can evaluate nine 

parameters T
11 j ii iα = , T

12 j ij iα = , T
13 j ik iα = , T

21 j ii jα = , T
22 j ij jα = , T

23 j ik jα = , T
31 j ii kα = , T

32 j ij kα = , 

33
T
j ik kα =  giving the relative orientation of the mobile axes , ,i i ix y z  with respect the frame of , ,j j jx y z  

axes: These parameters constitute the contents of an orthogonal matrix of transformation ija . 
We note that the projections in the frame i i i iC x y z  of a vector jr  known in the space of the j j j jC x y z  

frame are given by the matrix relation jiji rar =  and that the matrix ija  could be easily determined using two 

absolute matrices: T
0 0ij i ja a a= . Since all rotations take place successively about the moving coordinate axes 

'
0 , , ix y z , the general rotation matrix ija  is obtained by multiplying three transformation matrices, as follows 

   1 0 1rot( , )i
ia x= ϕ , '

2 2rot( , )i
ia y= ϕ , 3 3rot( , )i

i ia z= ϕ , 3 2 1
i i i

ija a a a= .                      (2.2)

The absolute angular velocity 0iω of the body ( )iT , for example, fixed in the frame i i i iC x y z is a vector 

associated to the skew symmetric matrix T
0 0 0i i ia aω = as follows 

                                                        0 1 3 2 1 2 3 2 3 3
i i i

i i i ia a u a u uω = ϕ + ϕ + ϕ ,             (2.3)

where 1 2 3, ,u u u are three orthogonal unit vectors. 
Now, considering a kinematical chain 0 1 1, ,..., ,..., , ,..., ,...,j k k i nT T T T T T T− , the motions of the 

compounding elements are characterized by the following skew symmetric matrices 
T

0 , 1 1,0 , 1 , 1 3 , 1 , 1,k k k k k k k k k k k ka a u− − − − − −ω = ω +ω ω =ϕ , (2.4)

which are associated to the absolute angular velocities given by the recursive relations 

0 , 1 1,0 , 1 3k k k k k ka u− − −ω = ω +ω .    (2.5)

Following relation give the absolute velocity 0kv of the origin kO of the frame ( )kT  

0 , 1 1,0 , 1 1,0 , 1 , 1 3k k k k k k k k k k kv a v a r v u− − − − − −= + ω + . (2.6)
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Some recursive relations give also the angular acceleration 0
A
kε  and the absolute acceleration 0kγ  of the 

joint kO  

      T
0 , 1 1,0 , 1 3 , 1 , 1 1,0 , 1 3

A A A A A
k k k k k k k k k k k k ka u a a u− − − − − − −ε = ε + ε +ω ω  

 ( ) T
0 , 1 1,0 , 1 1,0 1,0 1,0 , 1 , 1 , 1 1,0 , 1 3 , 1 32A A A A A A A A A

k k k k k k k k k k k k k k k k k k k ka a r v a a u u− − − − − − − − − − − −
 γ = γ + ω ω + ε + ω + γ  . 

(2.7)
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                 Fig.1 – System of rigid bodies.                                                 Fig. 2 – Composed pendulum. 

3. DYNAMICS OF SYSTEMS OF RIGID BODIES 

3.1. Lagrange equations 

When constraints are functions of coordinates, the motion of the systems can be studied with Lagrange 
equations for holonomic systems with dependent variables, while if others conditions of constraint are 
expressed by velocities, the motion is described with Lagrange equations for non-holonomic systems.  

For a non-holonomic rheonomic system, the general equations of Lagrange corresponding to a system 
of h  generalized coordinates [6]  

         
1

d 1,2, ,
d

p

k i ik
k k i

E E Q a k h
t q q =

 ∂ ∂
− = + λ = ∂ ∂ 

∑  (3.1)

are completed with conditions of constraint 

1

0 1,2,
h

ik k i
k

a q b i p
=

+ = =∑ . (3.2)

Solving the system of equations (3.1) and (3.2), the generalized coordinates kq  and the Lagrange 
multipliers iλ  are immediately obtained. In the case of a holonomic system when the constraint relations are 
expressed in an implicit form, we have 

         
k

i
ik q

a
∂
Φ∂

= , ( ) pitqq hi ,2,1,0,,,1 ==Φ .                               (3.3)
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Defining the analytical function ∑
=

Φ=
p

i
iiU

1
φ λ , above differential equations become 

            hk
q
UQ

q
E

q
E

t k
k

kk
,,2,1,

d
d

=
∂
∂

+=
∂
∂

−







∂
∂ Φ . (3.4)

Starting from these h  differential equations with p relations of constraint, we determine just the generalized 
coordinates kq  and the Lagrange multipliers iλ  [7]. 

3.2. Principle of virtual work  

A solution of the dynamics problem of a multi-bodies mechanism provided with constraints can be 
developed based on the fundamental principle of virtual work. Knowing the position and kinematics state of 
each link as well as the external forces acting on the mechanism, we applies the principle of virtual work for 
the inverse dynamic problem in order to establish some matrix relations giving the input forces or torques 
required in a given motion, using a recursive procedure [8]. 

The spatial mechanism can artificially be transformed in a set of some open chains subject to the 
constraints. This is possible by cutting each joint and taking its effect into account by introducing the 
corresponding constraint conditions.  

The force of inertia of an arbitrary rigid body kT , for example, and the resulting moment of the forces 
of inertia 

                                                         ( )0 0 0 0 0
in C

k k k k k k kf m r = − γ + ω ω + ε 
, 

                                                         0 0 0 0 0
ˆ ˆ[ ]in C

k k k k k k k k km m r J J= − γ + ε + ω ω  
(3.5)

are determined with respect to the centre of joint kO . On the other hand, the wrench of two vectors kf
∗  and 

km∗  evaluates the influence of the action of the weight km g  and of other external and internal forces applied 
to the same element kT  of the mechanism, for example 

            *
0 39.81k k kf m a u= , *

0 39.81 C
k k k km m r a u= .                                             (3.6)

Considering successive independent virtual motions of the mechanical system, virtual displacements 
and velocities should be compatible with the virtual motions imposed by all kinematical constraints and 
joints at a given instant in time.  

The fundamental principle of the virtual work states that a mechanism is under dynamic equilibrium if 
and only if the virtual work developed by all external, internal and inertia forces vanish during any general 
virtual displacement, which is compatible with the constraints imposed on the mechanism. 

Assuming that frictional forces at the joints are negligible, the virtual work produced by the forces of 
constraint at the joints is zero. So, the virtual powers contributed by active force , 1q qf −  and actuator torque 

, 1q qm − , known external forces and moments *fτ  and *mτ  and by inertia forces and moments of inertia forces 
infτ  and inmτ , can be written as follows [9]: 

    , 1 , 1 , 1 , 1
v v
q q q q q q q qv f m− − − −+ ω 3 , 1 , 1

1

{ }
n

Tu v F Mτ τ− τ τ τ− τ
τ=

= + ω∑ , (3.7)

where 
                        0 1, 1 0 1, 1 1, 1, 1,T T TF F a F M M a M r a Fτ τ τ+ τ τ+ τ τ τ+ τ τ+ τ+ τ τ+ τ τ+= + = + +              

                                                    *
0

inF f fτ τ τ= − − , *
0

inM m mτ τ τ= − − . 
(3.8)
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The dynamics model expressed by the recursive matrix equations (3.7) and (3.8) represents the explicit 
dynamics equations of a multi-bodies constrained system. 

4. CALCULUS OF INTERNAL JOINT FORCES 

4.1. Lagrange equations 

For a mechanical system with h degrees of freedom represented by the set of independent variables 
( ) ( )1 2, , ....., hq q q q= , the Lagrange equations are expressed in following form 

1
d , 1,2, ..., , 1
d k

k k k

E E U k h h
t q q q +
 ∂ ∂ ∂

− = +ℜ = + ∂ ∂ ∂ 
, (4.1)

where the joint force *
1 1k hQ+ +ℜ =  as new generalized force can be found if a new fictitious mobility in accord 

with the joint is considered. So, considering again the mechanism, the reaction is easily obtained from (4.1) 
in following definitive form 

1
1
1

1 01 1 1 0
0

d
d h

h
h

h qh h h q
q

E E U
t q q q +

+
+

+ =
+ + + =

=

  ∂ ∂ ∂
ℜ = − −  ∂ ∂ ∂   

. (4.2)

4.2. Principle of virtual work 

Above compact relations (3.7) and (3.8) can be also applied to calculate any joint force or joint torque 
by cutting successively each joint kO  and writing the formulae as follows 

                            T T
, 1 1 0
x

k k k kf u a F− = , T T
, 1 2 0
y

k k k kf u a F− = , T T
, 1 3 0
z

k k k kf u a F− =  

T T
, 1 1 0

x
k k k km u a M− = , T T

, 1 2 0
y
k k k km u a M− = , T T

, 1 3 0
z
k k k km u a M− = .                       

(4.3)

5. EXAMPLE 

The two degrees-of-freedom system of a planar composed pendulum is considered as example (Fig. 2). 
We consider that the pendulum is initially located at a vertical position, where the two rods are not rotated 
with respect to the fixed base. 

The first link consists of a moving crank 1 2O O  of length 1l , mass 1m and tensor of inertia 1̂J  with 

respect 1 1 1 1O x y z  frame, which has rotation about 1z  axis with the angle 10θ = ϕ , the angular velocity 

10 10ω = ϕ  and the angular acceleration 10 10ε = ϕ . A second element of the leg is a rigid rod jointed in 2O  and 

linked at the 2 2 2 2O x y z  frame, having a relative rotation with the angle 21ϕ = ϕ− θ , angular velocity 

21 21ω = ϕ  and angular acceleration 21 21ε = ϕ . It has the length 2l , mass 2m  and tensor of inertia 2Ĵ . 
Starting from the reference origin 1O  and pursuing the two rods one obtains the following 

transformation matrices 

    , 1 , 1rot( , )k k k k ka z− −= ϕ ,  1, 2;k =    20 21 10a a a= .                        (5.1)

Concerning the kinematics of this system we note following position vectors, velocities and accelerations 
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   010 =r ,   T
21 1[ 0 0]r l= ,   T

1 1[ / 2 0 0]Cr l= ,   T
2 2[ / 2 0 0]Cr l= ,   T

20 10 10 21r r a r= +  

   10 10 3uω = ϕ ,   10 10 3uω = ϕ ,   10 0v = ,   10 10 3uε = ϕ ,   10 10 3uε = ϕ ,   10 0γ =                                  

   21 21 3uω = ϕ ,   21 21 3uω = ϕ ,   21 0v = ,   21 21 3uε = ϕ ,   21 21 3uε = ϕ ,   21 0γ =  

   20 21 10 21aω = ω +ω ,   T
20 21 10 21 21a aω = ω +ω ,   20 21 10 10 21 21( )v a v r v= + ω +  

    20 21 10 21aε = ε + ε ,   T
20 21 10 21 21a aε = ε + ε ,   20 21 10 10 10 10 21 21{ ( ) }a rγ = γ + ω ω + ε + γ . 

(5.2)

5.1. Lagrange equations 

Two generalized coordinates of the open system are represented by the independent variables 

1 10q = θ = ϕ , 2 21q = ϕ−θ = ϕ .                                            (5.3)

The Lagrange’s equations will be expressed by two differential relations 

d
d k

k k k

E E U Q
t q q q
 ∂ ∂ ∂

− = + ∂ ∂ ∂ 
  )2,1( =k ,                                    (5.4)

which contain two active torques 1M  and 2M  as generalized forces 1 1Q M= , 2 2Q M= .  
The general expression of the Lagrange function 1 2L E U L L= + = +  is expressed as analytical 

functions of the generalized coordinates and their first derivatives with respect to time 

                                                           T T T
1 10 1 10 1 1 10 1

1 ˆ ,
2

CL J m gu a r= ω ω +  

                  T T T T T T
2 2 20 20 20 2 20 2 20 20 2 2 1 10 21 21 2

1 1 ˆ ( )
2 2

C CL m v v J m v r m gu a r a r= + ω ω + ω + + .        
(5.5)

The first derivatives of orthogonal matrices , 1k ka −  are computed as follows: 

T
, 1 , 1 3 , 1k k k k k ka u a− − −= ϕ , T T

, 1 , 1 , 1 3k k k k k ka a u− − −= ϕ , , 1 T
3 , 1

, 1

k k
k k

k k

a
u a−

−
−

∂
=

∂ϕ
, 

T
, 1 T

, 1 3
, 1

k k
k k

k k

a
a u−

−
−

∂
=

∂ϕ
 )2,1( =k .             (5.6)

After a calculus about the partial derivatives of the functions (5.5) and the derivatives with respect to 
time, finally we obtain the expressions for the input torques 

    

2 2
1 1 2 1 10 2 2 10 21 2 1 2 10 21 21

2 1 2 21 10 21 21 1 2 1 10 2 2 10 21

1 1 1( ) ( ) (2 )cos
3 3 2

1 1 1(2 )sin ( 2 ) sin sin( ),
2 2 2

M m m l m l m l l

m l l m m gl m gl

= + ϕ + ϕ + ϕ + ϕ + ϕ ϕ −

− ϕ ϕ + ϕ ϕ + + ϕ + ϕ + ϕ
    

    2 2
2 2 2 10 21 2 1 2 10 21 10 21 2 2 10 21

1 1 1( ) ( cos sin ) sin( )
3 2 2

M m l m l l m gl= ϕ + ϕ + ϕ ϕ + ϕ ϕ + ϕ + ϕ . 

(5.7)

We suppose a fictitious vertical displacement x  of the joint 1O . Now, the position of the system is 
evaluated by three generalised coordinates: 10 21,ϕ ϕ  and the added variable x . Considering 10 1r xu= , 

10 1 10 1,v xu xu= γ = , we determine a new expression for the Lagrange function L E U= +  and we replace it  
in the formula (4.2); it results the expression of the vertical joint force 

2
10 1 2 1 2 1 10 10 10 10

2
2 2 10 21 10 21 10 21 10 21

1( ) ( 2 ) ( sin cos )
2

1 [( )sin( ) ( ) cos( )].
2

xf m m g m m l

m l

= − + − + ϕ ϕ + ϕ ϕ −

− ϕ + ϕ ϕ + ϕ + ϕ + ϕ ϕ + ϕ
 (5.8)
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5.2. Principle of virtual work 

Starting from the matrix relations (3.5) and (3.6), we determine the wrench for the inertia forces and 
the weights of two rods with respect two joints 1O  and 2O . Replacing successively in the formulae (3.8), we 
obtain the vectors 

10 1 10 10 10 10 1 1 10 1{ ( ) }CF m r m ga u= γ + ω ω + ε − , 20 2 20 20 20 20 2 2 20 1{ ( ) }CF m r m ga u= γ + ω ω + ε − , 

10 1 1 10 1 10 10 1 10 1 1 10 1
ˆ ˆC CM m r J J m gr a u= γ + ε + ω ω − , 20 2 2 20 2 20 20 2 20 2 2 20 1

ˆ ˆC CM m r J J m gr a u= γ + ε + ω ω −                 

                    2 20F F= , T
1 10 21 2F F a F= + , 2 20M M= , T T

1 10 21 2 21 21 2M M a M r a F= + + . 

(5.9)

Using the explicit dynamics equations of the multi-bodies constrained systems (3.7), the active torques 
and the joint forces in external and internal joints 1O  and 2O  are quickly calculated 

T T
10 3 10 1
zm u a M= , T T

10 1 10 1
xf u a F= , T T

10 2 10 1
yf u a F= , 

   T T
21 3 20 2
zm u a M= , T T

21 1 20 2
xf u a F= , T T

21 2 20 2
yf u a F= .                                  

(5.10)

We remark a good agreement between the expressions for the torques 10
zm , 21

zm  and the vertical joint 

force 10
xf , for example, and the expressions (5.7), (5.8) above given using the Lagrange formalism. 

 In the inverse dynamics, we suppose that the history of the rotations motions of two rods are known by 
following functions 

      *
10 10( ) [1 cos( )]

6
t tπϕ = ϕ − , *

21 21( ) 1 cos
6

t t
 π ϕ = ϕ −   

  
.                                 (5.11)

For simulation purposes let us consider a composed pendulum which has the following characteristics: 

                    0.50 ml =1 , 2 0.75l = m, 1 0.25m = kg, 2 1m = kg, *
10 12

π
ϕ = , *

21 6
π

ϕ = . 

Using the MATLAB software, a computer program was developed to solve the inverse dynamics of the 
composed pendulum. To illustrate the algorithm, it is assumed that for a period of six second the rods start at 
rest from initial position and rotate about its revolute joints. The active torques (Fig. 3, Fig. 4), the horizontal 
joint force of first rod (Fig. 5) and the vertical joint force of second rod (Fig. 6) are calculated by the program 
and plotted versus time. 

 

             
Fig. 3 – Active torque of first rod. Fig. 4 – Active torque of second rod. 
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Fig. 5 – Horizontal joint force of first rod. Fig. 6 – Vertical joint force of second rod. 

6. CONCLUSIONS 

In the kinematics analysis some exact relations that give in real-time the position, velocity and 
acceleration of each element of a multi-bodies system with constraints have been established in the present 
paper. The dynamics model takes into consideration the masses and forces of inertia introduced by all links 
of the mechanism. Based on the Lagrange equations or the principle of virtual work, the approach establishes 
a direct determination of the time-history evolution for all forces in external and internal joints.  
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