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Lagrange equations and the principle of virtual work are used to study the motion of a system under
the action of known external and internal forces. If an internal force has to be found, a supplementary
mobility is considered in the system. The corresponding internal force for new mobility is found for
zero mobility. General kinematics problem of systems of rigid bodies with constraints is first
presented in paper. Based on a comparative analysis of the Lagrange formalism and the principle of
virtual work, the models allow solving a large number of problems in multi-bodies systems dynamics.
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LIST OF SYMBOLS

a;. y_ — orthogonal transformation matrix
® 4, — relative rotation angle of 7, rigid body
o, — relative angular velocity of 7,

®; ;_; — skew-symmetric matrix associated to the angular velocity
m, J . — mass and symmetric matrix of tensor of inertia of 7, about the link-frame x,y,z,

My ;1> Jrx1—active torques and joint forces

1. INTRODUCTION

The dynamics of multi-bodies systems is complicated by existence of closed-loop chains. Difficulties
commonly encountered in dynamics modelling include problematic issues such as: complicated kinematical
structure with possess of large number of passive degrees of freedom, dominance of inertial forces over the
frictional and gravitational components and the problem linked to the solution of the inverse dynamics.

In the context of the real-time control, neglecting the frictions forces and considering the gravitational
effects, the relevant objective of the multi-bodies dynamics is to determine the input torques or forces and
the external and internal joint forces. Upon to now, several methods have been applied to formulate the
forward and inverse dynamics, which could provide the same results concerning these torques or forces. The
first one is using the Newton-Euler classical procedure, the second one applies the Lagrange’s equations and
multipliers formalism and the third one is based on the principle of virtual work [1, 2, 3].

Lu [4] uses the virtual method to determine, in spatial parallel structures, the generalized forces of the
actuators and relates them to the real forces that they exert. Geike and Mc Phee [5] proposed a general
approach which could determine the inverse dynamic solutions for a planar 3-RRR parallel manipulator and
a spatial 6-DOF parallel mechanism.
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2. KINEMATICS OF SYSTEMS OF RIGID BODIES

Let two bodies (7;) and (7;) be with constrained motions by a coupling mechanism which is made

precise by two points O, and O; (Fig.1). The motion of the body (7;) with respect the inertial reference frame

0,% Y02 (Ty) is determined by the position vector 7 = O,C; of mass center C, and by the transformation
matrix a,, which gives the attitude of the frame C,x;y,z; jointed with (7.) body with respect the fixed

reference frame. In the same way are defined position vector ?OC" =0,C; and matrix a;, for the body (7}).
A free body (7;) or (7)), has six degrees of freedom. But, the number of degrees of freedom is

reduced by the number of constrains which are imposed by several coupling mechanisms. Coupling
mechanisms between (7;)and (7)) imposes restrictions on relative motion of (7;) body with respect to (7).

If a general motion of bodies (7;) and (7;) with respect the fixed reference frame O,x,y,z, are known,

then the relative motion of the body (7;) with respect (7;) can be determined by the relative position vector

=i =iy @

and by the matrix @, which gives the relative attitude of (7;) body versus (7;) body.

Starting from the frame C,x,y;z;(T;) and ending to the frame C.x;y,z;(T;), we can evaluate nine
parameters o, ZZ,TZ > Oy 2],T2a O3 =/€/TZ’ Oy :ij]'i, Oy ZJ,T]Z’ Olo3 =/€/Tjw O3 :Z/T]%, O3, 2],Tl€la
Oly; =l€jTl€i giving the relative orientation of the mobile axes x;,y,;,z; with respect the frame of x,,y;,z;
axes: These parameters constitute the contents of an orthogonal matrix of transformation a;; .

We note that the projections in the frame C.x;y;z; of a vector 7, known in the space of the C x;y,z,

frame are given by the matrix relation 7, = al.jfj and that the matrix a; could be easily determined using two
absolute matrices: a; = aiOaJT-O . Since all rotations take place successively about the moving coordinate axes

Xo» y',zl. , the general rotation matrix a; is obtained by multiplying three transformation matrices, as follows

af =rot(x,, ;) , aé = rot(y',(pzl.) , ag =rot(z;,Q,; NS agaéaf. (2.2)
The absolute angular velocity ®,, of the body (7;), for example, fixed in the frame C.x;y,z;is a vector

. . .o~ .T
associated to the skew symmetric matrix ©,, = @,,4;, as follows
- . i i . i— -
;0 = Py;a3a5Uy + Qy;a3U, + P33, (23)

where u,,u,,u; are three orthogonal unit vectors.
Now, considering a kinematical chain7,7,....T},...7;_,T;,....,T;,...,T,, the motions of the

compounding elements are characterized by the following skew symmetric matrices
Wy = ak,k—lgok—Loa;,k—l +(Dk,k—1ﬁ3’ O g = (i)k,k—l ) (24)
which are associated to the absolute angular velocities given by the recursive relations
Do = B 1 DOp1,0 + O gy - (2.5)
Following relation give the absolute velocity v, of the origin O, of the frame (7})

Vio = A g—1Vi-1,0 T Qe k11,07 k-1 T Vi k143 - (2.6)
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. . . . — A . —
Some recursive relations give also the angular acceleration €;,, and the absolute acceleration y,, of the
joint O,
=4 _ =4 4 = A ~4 T =
€k0 = k18510 T S 1tz T Op 1@y 1 Dp1,0% k113

2.7)

-4 —4 ~4  ~A ~4 ~4 4 ~ 4 T - 4 =
Yko = Qg1 [“/k-],o g ((Dk—],omk—l,o + ‘C'k—l,O) Ve Je1 J + 2V k1@ g1 D1 0 aths + Vg gl -

Fig.1 — System of rigid bodies. Fig. 2 — Composed pendulum.

3. DYNAMICS OF SYSTEMS OF RIGID BODIES

3.1. Lagrange equations

When constraints are functions of coordinates, the motion of the systems can be studied with Lagrange
equations for holonomic systems with dependent variables, while if others conditions of constraint are
expressed by velocities, the motion is described with Lagrange equations for non-holonomic systems.

For a non-holonomic rheonomic system, the general equations of Lagrange corresponding to a system
of h generalized coordinates [6]

d| OF OFE $
L0+ na, k=12,-.h 3.1
dt[@qkj aqk Qk ; i“ik ( )

are completed with conditions of constraint

h
D ayg +b,=0 i=12,-p. (3.2)

k=1

Solving the system of equations (3.1) and (3.2), the generalized coordinates ¢, and the Lagrange
multipliers A; are immediately obtained. In the case of a holonomic system when the constraint relations are
expressed in an implicit form, we have

— a(Dl

- s q)i PR at :07 i:1927'“ . .
” ((TRERN) P (3.3)

Ay
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P
Defining the analytical function U, = z L@, , above differential equations become
i=1

i{a—.EJ—a—E=Qk+aU4’, k=12,h. (3.4)
de\ oq, oq, oq,

Starting from these /4 differential equations with p relations of constraint, we determine just the generalized

coordinates ¢, and the Lagrange multipliers A, [7].

3.2. Principle of virtual work

A solution of the dynamics problem of a multi-bodies mechanism provided with constraints can be
developed based on the fundamental principle of virtual work. Knowing the position and kinematics state of
each link as well as the external forces acting on the mechanism, we applies the principle of virtual work for
the inverse dynamic problem in order to establish some matrix relations giving the input forces or torques
required in a given motion, using a recursive procedure [8].

The spatial mechanism can artificially be transformed in a set of some open chains subject to the
constraints. This is possible by cutting each joint and taking its effect into account by introducing the
corresponding constraint conditions.

The force of inertia of an arbitrary rigid body 7, , for example, and the resulting moment of the forces
of inertia

Zin _ = ~ o~ ~ ~C
ko = My |:Yk0 + (mkowko + 8ko) T } ’

(3.5)
—in

~ o .\ .
My == [ Yo +Ji€o + 0o Opg ]

are determined with respect to the centre of joint O, . On the other hand, the wrench of two vectors f; and
m, evaluates the influence of the action of the weight m, g and of other external and internal forces applied

to the same element 7, of the mechanism, for example
fo=9.81mayiiy, m; =9.81miCay i (3.6)

Considering successive independent virtual motions of the mechanical system, virtual displacements
and velocities should be compatible with the virtual motions imposed by all kinematical constraints and
joints at a given instant in time.

The fundamental principle of the virtual work states that a mechanism is under dynamic equilibrium if
and only if the virtual work developed by all external, internal and inertia forces vanish during any general
virtual displacement, which is compatible with the constraints imposed on the mechanism.

Assuming that frictional forces at the joints are negligible, the virtual work produced by the forces of

constraint at the joints is zero. So, the virtual powers contributed by active force fq -1 and actuator torque

Tk — % . . . .
m known external forces and moments f, and m_ and by inertia forces and moments of inertia forces

q.9-1°

" and m.", can be written as follows [9]:

n
~T - —
v;,q—lfq,q—l + Co;,q—lrnq,q—l =U z {Vr,rle‘r + m‘r,‘rflM'r} ’ (37)

t=1

where
oo T 7 17 T 77 ~ T
F;: - FEO +ar+l,rF;+l’ Mr _MrO +ar+l,tMr+l +r1:+1,rar+l,rF;:+l

(3.8)

I * Zin _ = F —in
Eoz_ﬂ _fr ’M‘EO_ m,.—m;.
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The dynamics model expressed by the recursive matrix equations (3.7) and (3.8) represents the explicit
dynamics equations of a multi-bodies constrained system.

4. CALCULUS OF INTERNAL JOINT FORCES

4.1. Lagrange equations

For a mechanical system with /2 degrees of freedom represented by the set of independent variables

(¢)=(a> g2, -4, ), the Lagrange equations are expressed in following form

+mk+1, k:1a29 erey h, h+15 (41)

g[a_E}_a_E_a_U
dt\ dq, ) 0q,  0g

where the joint force R,,, =Q,., as new generalized force can be found if a new fictitious mobility in accord

with the joint is considered. So, considering again the mechanism, the reaction is easily obtained from (4.1)

in following definitive form
c d|{ OE OF oUu
R =|—| = - - e 4.2)
dt athrl athrl aqhH Z:*:;O ’

41 =0

4.2. Principle of virtual work

Above compact relations (3.7) and (3.8) can be also applied to calculate any joint force or joint torque
by cutting successively each joint O, and writing the formulae as follows

T T 3 ST T 3 ST T 7
fk)fk—l =y aky , fky,k—l =, agofy , sz,k—l =y ag Fy
4.3)

x =T T 25 y =T T 1 =T T 1
my o =U ar My, mp o =uyao My, my  =usag M .

5. EXAMPLE

The two degrees-of-freedom system of a planar composed pendulum is considered as example (Fig. 2).
We consider that the pendulum is initially located at a vertical position, where the two rods are not rotated
with respect to the fixed base.

The first link consists of a moving crank O,0, of length /,, massm, and tensor of inertia jl with
respect O,x,y,z, frame, which has rotation about z; axis with the angle 0=¢,,, the angular velocity
o, = ¢,, and the angular acceleration €,, = ¢,,. A second element of the leg is a rigid rod jointed in O, and
linked at the O,x,y,z, frame, having a relative rotation with the angle ¢,, =¢@—0, angular velocity

®,, = ¢,, and angular acceleration & ,,=¢,,. It has the length /,, mass m, and tensor of inertia jz .
Starting from the reference origin O, and pursuing the two rods one obtains the following

transformation matrices
Uy TTOMZ, Qp ) > k=125 Ay =y G40 (5.1

Conceming the kinematics of this system we note following position vectors, velocities and accelerations
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Fo=0, A, =[ 00", #=[4/2 0 0", A =[L/2 0 0]", Fy="F,+anh,

10 =Proths s Oy = Pyolly, Vi =0, €10 =Poli3, € =Plhs, Y1p=0
6321 :¢21ﬁ3’ 6321 :(bzlﬁza vy =0, E21 =¢21ﬁ3, ‘5'21 =('[')21L73, 721 =0 (5.2)
— - - ~ ~ T ~ - — ~ = —
Oy =y Dyg + Oyy, Doy = Ay Doy + @y, Voo =aay (Vig + Oyl ) +Vy
— — —_ ~ ~ T ~ — — ~ ~ ~ — —_
€0 =y €19 T €515 €29 = Uy €190y + €y Yag =y Y10 T (DD +E1g) )+ ¥y -
5.1. Lagrange equations
Two generalized coordinates of the open system are represented by the independent variables
G =0=0, ¢, =0—0=0,. (5.3)
The Lagrange’s equations will be expressed by two differential relations
d| oE 8E 6U
—[ : ) +0, (k=12), (54)
dr\ g, a% 5%

which contain two active torques M, and M, as generalized forces O, =M,, O, =M
The general expression of the Lagrange function L=FE+U=L +L, is expressed as analytical
functions of the generalized coordinates and their first derivatives with respect to time

1 ~
I P - LT T-C
L —50)10*]1 Wy +mg8Uy Al ,

(5.5

1 _r. 1 ~C

L, = > TMyVoeVyo t > (DzoJ Wy + mz"zowzo”z + m,gu, alO(r21 + a21r2 ).
The first derivatives of orthogonal matrices a, ,_, are computed as follows:
T

. . ~T T T o~ Odppy g Oay I _

A1 = Prop1U3 A 1> A1 = P 1% k143 =Us gy = Ay k143 (k=1,2). (5.6)
Oy i 0Py k1

After a calculus about the partial derivatives of the functions (5.5) and the derivatives with respect to
time, finally we obtain the expressions for the input torques

1 . 1 . . 1 . .
M, = (gml +m, )llz(PlO +§m2122 (@19 + 9y + Emzlllz (20,9 +®y)cos Py —
1 . ) ) . 1 . 1 .
_Emzlllz(Pu(z(Plo + ¢y )sin @y +5(m1 +2my) gl sing,, + Englz sin(@yy +Py1), (5.7)
1 . .. 1 . L. 1 )
M, = Emzlzz (@19 +0yy) + Emzlllz (B9 COS Py + (P120 sing,;) +5’”2glz sin(@yp +@yy) -

We suppose a fictitious vertical displacement x of the joint O,. Now, the position of the system is
evaluated by three generalised coordinates: ¢,,, ¢,; and the added variable x. Considering 7, = xu,,
Vip = Xty, Yo = XU, , we determine a new expression for the Lagrange function L =FE+U and we replace it
in the formula (4.2); it results the expression of the vertical joint force

) 1 L .
Jio =—(m; +my)g _E(ml +2my)] (90 SIn @y + (Plzo Cos Q) —
1 (5.8)
_Emzlz (@10 + @p1) SIN(Py + @yp) + (P + ¢21)2 cos(@;y + Py)]-
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5.2. Principle of virtual work

Starting from the matrix relations (3.5) and (3.6), we determine the wrench for the inertia forces and
the weights of two rods with respect two joints O, and O, . Replacing successively in the formulae (3.8), we
obtain the vectors

= ~ ~ \=C s - O ~ \=C -

Flo=m{¥,y + (009 +&0)R } —mgayidy , Frg = my{Y5 + (0y0s + €995 } —mygangldy

- o A oA S o o aCe . . -

Mo =mi Y0 +J 1€ + 00 ,®1g —m8H aygldy , Moy =myly Voo +J,850 + @y ,0y — My 8Fy " angld (5.9

= = oz TE ¥ -~ Yy Ty o~ T@
Fy=Fy, Fi=Fy+ayFy, My=M,,, M, =M, +a, M, +7,a,,F,.

Using the explicit dynamics equations of the multi-bodies constrained systems (3.7), the active torques
and the joint forces in external and internal joints O, and O, are quickly calculated

z _ =T T x _ =T T r& y _ =T T
myy =iy ayoM,, fio =ty a 'l fio =u, a0 F,
(5.10)
z _ =T T g x _ =T T r~ y _ =T T =
my =uy M, , f3 =i ayF,, f3) =i, ayF, .

We remark a good agreement between the expressions for the torques my,, m5, and the vertical joint

force f|;, for example, and the expressions (5.7), (5.8) above given using the Lagrange formalism.

In the inverse dynamics, we suppose that the history of the rotations motions of two rods are known by
following functions

* * T
P10 (1) = @yl - cos(%t)] s> P (1) =0y |:1 - Cos[gtﬂ : (5.11)
For simulation purposes let us consider a composed pendulum which has the following characteristics:
* Y * T
[,=050m, [, =0.75m, m, =0.25kg, m, =1kg, ¢, BTE 0y =%

Using the MATLAB software, a computer program was developed to solve the inverse dynamics of the
composed pendulum. To illustrate the algorithm, it is assumed that for a period of six second the rods start at
rest from initial position and rotate about its revolute joints. The active torques (Fig. 3, Fig. 4), the horizontal

joint force of first rod (Fig. 5) and the vertical joint force of second rod (Fig. 6) are calculated by the program
and plotted versus time.

7 ' ' ' 4 : : :

r Second joint [------oommiee el e

Active torgue (Mm)

Active torgue

4
Composed pendulum  Rotation angles 30 deg; 60 deg t(s)

Fig. 3 — Active torque of first rod. Fig. 4 — Active torque of second rod.
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015 T T

First joint |

40

(1 N ML TS S ——

Huorizantal joint force
Wertical joint force (M)

005 e Foneeenas
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Fig. 5 — Horizontal joint force of first rod. Fig. 6 — Vertical joint force of second rod.

6. CONCLUSIONS

In the kinematics analysis some exact relations that give in real-time the position, velocity and

acceleration of each element of a multi-bodies system with constraints have been established in the present
paper. The dynamics model takes into consideration the masses and forces of inertia introduced by all links
of the mechanism. Based on the Lagrange equations or the principle of virtual work, the approach establishes
a direct determination of the time-history evolution for all forces in external and internal joints.
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