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The quadratic functional minimization with differential restrictions represented by the command 
linear systems is considered. Determination of the optimal solution implies the solving of a linear 
problem with two points boundary values. The proposed method consists in the construction of a 
fundamental solution )(tS  – a nn ×  symmetric matrix. From the extremum necessary conditions it 
is obtained the Ricatti matrix differential equation having the )(tS  as unknown fundamental solution 
is obtained. The paper analyzes the existence of the Ricatti equation solution )(tS  and determine the 
optimal solution of the proposed optimum problem.   

Key words: Quadratic functional minimization, Sufficient conditions, Differential restrictions, Linear 
system, Optimal solution, Two points boundary values. 

1. INTRODUCTION 

In the control theory a special importance is accorded to the quadratic linear problem. The interest is 
justified by the great number of its practical applications. 

A representative model is offered by the linear regulator problem corresponding to the quadratic 
functional minimization, with differential restrictions, defined by linear command systems [2, 3, 4, 5]. 

Utilizing the Bellman equation, the Ricatti differential equation associated to the proposed optimum 
problem is obtained. 

The optimal control feedback and the minimum value of the performance index is expressed as a 
function of the Riccati [2, 4, 5]. Therefore, determining the existence conditions for the solution of Riccati 
equation becomes a necessity. 

Also, taking into account the hypothesis of the nilpotent structure of the bilinear systems the optimal 
control for the quadratic functionals class [7, 8, 9] is obtained. 

The control on the neighbouring extremal utilizes the transition matrices and their symplectic 
properties. The admissible optimal neighbouring trajectory is obtained by the integration of the variational 
Hamiltonian system with boundary conditions obtained by the cancellation of the extremised functional. 

This approach is a linear problem with two point boundary values. The existent results in the quadratic 
linear problem can be extended to differential restrictions having the form of command systems with a free, 
perturbing term. The present study is based on this approach. 

2. THE OPTIMAL CONTROL PROBLEM 

Let’s consider the following controlled linear differential systems, of order n : 

0( ) ( ) ( ), (0) , [0, ]n
fx A t x B t u F t x x R t t= + + = ∈ ∈ . (1)

The elements of the matrices A  and B  and the components of the vector )(tF  are continuous real 
functions defined within [0, ]ft t∈ . 
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nRE =  is the state space and mRU =  represents the parameters space. A  is an nn×  matrix and B , 
x , F  and u  are, of the mn× , n , n , m  dimension, respectively. 

Let’s assume that the quadratic performance index is expressed by the following functionals: 

T T T

0

1 1( ) ( ) d ( ) ( ) ( ),
2 2

f

f

t

t f f fJ x Q t x u R t u t x t t x t = + + Φ ∫  (2)

where Q , Φ  are nn×  symmetrical nonnegative matrices and R  is a mm×  positive defined matrix. 
The proposed optimum problem is equivalent with the determination of the control vector Uu∈  

which minimizes the performance index (2) under the restrictions (1). 
Then, the Hamiltonian H can be written: 

( ) [ ]T T T1 1, , , ( ) ( ) ( ) ( ), ( ) ( )
2 2

H x u t x Q t x u R t u t A t x B t u F tλ = + + λ + + , (3)

where ( )tλ  is adjoint variable. 

 The optimal control ∗u  is obtained from: 

( ) 0,,, =λ tuxHu  (4)

where 
1 T .u R B∗ −= − λ  (5)

Changing ∗u  in (3), the optimal Hamiltonian ∗H  can be written: 

T T 1 T T1 1 .
2 2

TH x Qx Ax BR B F∗ −= + λ − λ λ + λ  (6)

The determination of the optimal solution results from the integration of the Hamiltonian system: 

,

Hx

H
x

∗

∗

∂
=

∂λ
∂

λ = −
∂

 (7)

with the boundary-conditions 

( ) 0a) 0 ,
b) ( ) ( ) ( ).f f f

x x
t t x t

=

λ = Φ
 (8)

Solving of the equation (7) under the above conditions (8) defines the two-point linear boundary value 
problem. 

3. SOLVING METHOD FOR TWO-POINT LINEAR BOUNDARY VALUE PROBLEMS 

The system (7) become 
1 T

T .

x Ax BR B F

Qx A

−= − λ +

λ = − − λ
 (9)

Using the symplectic properties of the transition matrices, the case 0=F  has been discussed in [6] and 
[11]. 

We aim obtained a fundamental solution for the linear two-point boundary value problem represented 
by the inhomogeneous differential system (9) with the boundary conditions (8). 
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Let’s consider an )(tS  square matrix of order n and an )(th  vector of dimension n , which will be 
determinated so that the solution )(tx  and adjoint  variable )(tλ  of the system (9) with the final solution 8(b) 
satisfies the relation 

)()()()( thtxtSt +=λ . (10)

The differential equations for )(tS  and )(th  are chosen so that to have 

[ ]d ( ) ( ) ( ) ( ) 0,
d

S t x t h t t
t

+ − λ =  (11)

for any solution of the equation (9). 
From (11) it follows 

0=λ−++ hxSxS . (12)

Replacing the adjoint variable (10) in (9) and optimal control (5) it result 

( )
( )

1 T 1 T

T T

a)

b) .

x A BR B S x BR B h F

Q A S x A h

− −= − − +

λ = − + −
 

a) 

b) (13)

Considering (13) the differential system (12) becomes 

( ) ( )T 1 T 1 T T 0.S Q SA A S SBR B S x h SBR B S A h SF− −+ + + − + + − + + =  (14)

Relation (14) is satisfied for any x  if )(tS  and )(th  are determined such that we get 

T 1 T 0,S Q SA A S SBR B S−+ + + − =  (15)

fff ttS Φ=Φ= )()( , (16)

respectively 

( )1 T T 0,h SBR B S A h SF−+ − + + =  (17)

( ) 0fh t = . (18)

The boundary conditions (16) and (18) result from (10) and (8b). 

4. ANALYZE TO DETERMINE THE EXISTENCE OF A SOLUTION DIFFERENTIAL 
EQUATION 

Utilizing the H.G.Moyer’s results [1], the sufficient conditions for the existence of a solution of the 
Riccati matrix differential equation (15) are established. 

Theorem 1. The sufficient conditions for the existence of symmetric matrix )(tS  where ],0[ ftt∈  
satisfying equation 

( ) ( )TT T 1 TS Q SA A S C B S R C B S−− = + + − + +  (19)

for which 

fftS Φ=)(  (20)

are 
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1 0 [0, ]T
fQ C R C t t−− ≥ ∀ ∈ , (21)

1 0 [0, ]fR t t− > ∀ ∈  (22)

0≥Φ f . (23)

By refining the equation (19) using the notations 
T 1 ,Q Q C R C−= −  (24)

CRBAA 1−−=  (25)

it is obtained the equation (15); therefore the problem of the existence of a solution for equation (19) is 
reduced to finding of a solution for the equation (15). 

Theorem 2. The sufficient condition for the existence of )(tS  where ],0[ ftt∈  satisfying the equations 

1T TS Q SA A S SBR B S−− = + + −  (26)

fftS Φ=)(  (27)

is the existence of an nn×  symmetric matrix )(tP , having time continuous differentiable functions defined 
for [0, ]ft t∈  as elements, such that 

T 0, [0, ],fB P t t= ∀ ∈  (28)

( )T 1( ) 0 , 0, [0, ],fP Q PA A P M t R t t t−+ + + = ≥ > ∀ ∈  (29)

0)( ≥=−Φ fff GtP . (30)

Proof. Let’s consider. 

)()()( tPtStP =+ , (31)

where )(tP  and )(tS  are symmetrical matrices. 
According to the hypothesis, a symmetrical )(tP  exists satisfying (28), (29), and (30). We have 

T .P Q PA A P M− = + + −  (32)

Utilizing the hypothesis (28) we rewrite (32) as 
T 1 T .P Q PA A P M PBR B P−− = + + − −  (33)

Substituting the value of P  from (31) in (33) we get 

( ) ( ) ( ) ( ) ( )
( )

T 1 T T

1 T 1 T 1 T 1 T .

P S Q A P S P S A M P S BR B P S Q A P S

P S A M SB R B S SBR B P PBR B S PBR B P

−

− − − −

− − = + + + + − − + + = + + +

+ + − − − − −
 (34)

Further substituting 

PPS −=  (35)

and considering (28) the equation (34) becomes 
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( ) ( )T 1 T 1 T .P S Q A P S P S A M SBR B S PBR B P− −− − = + + + + − − +  (36)

We chose 

T 1 TP M A P PA PBR B P−− = − + + +  (37)

ft GP
f

−= , (38)

that can be written 

( ) ( ) ( ) ( ) ( )T 1 T ,P M A P P A P BR B P−− − = + − + − − − −  (39)

ft GP
f
=− . (40)

From (39) and (40), it appears that the function )( P−  satisfies the Ricatti equation for which the 
conditions of Theorem 1 represented by 

( ) 0 [0, ],fM t t t≥ ∀ ∈  (41)

1( ) 0 [0, ],fR t t t− > ∀ ∈  (42)

0≥fG  (43)

are met. 
Therefore )( P−  exists for any [0, ]ft t∈ . 
Replacing the expression (37) in (36) and the boundary constraint (38) in (30) we get 

T 1 T ,S Q SA A S SBR B S−− = + + −  (44)

respectively 

)()()( fffff tPGtStP −==−−Φ  (45)

or 

fftS Φ=)( . (46)

Because (44), (46) are identical to (26), (27) and )(tP  and )(tP  exist for any [0, ]ft t∈ , using (31) it 

follows that )()( tStS =  exists for any [0, ]ft t∈ . 
Thus Theorem 2 is proved. 
The relation between the sufficient conditions for the existence of the solution to the Ricatti equation 

formulated in the previous theorems is established by Theorem 2. 

Theorem 3. The conditions in Theorem 2 are weaker than those in Theorem 1. 
Proof. If replacing Q  and A  with ( )T 1Q C R C−−  and ( )CRBA 1−− , respectively, the conditions for 

the existence of the solution for the equations (26), (27) expressed by Theorem 2 come to the construction of 
a symmetrical matrix )(tP , [0, ]ft t∈  so that 

T 0 [0, ],fB P t t= ∀ ∈  (47)
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( ) ( )TT 1 1 1 ( ) 0 [0, ],fP Q C R C P A BR C A BR C P M t t t− − −+ − + − + − = ≥ ∀ ∈  (48)

0)( ≥=−Φ fff GtP . (49)

If the conditions from Theorem 1 are verified, then the conditions (47), (48), (49) are satisfied by 
0=P , and thus Theorem 3 is proved. 

5. THE OPTIMAL SOLUTION 

Integrating the linear differential equation (17) with the boundary conditions (18) we obtain 

0 0 0

( ) exp ( )d exp ( )d ( ) ( ) d ,
ftt

h t K K s s S F
τ    

 = − − τ τ ⋅ τ τ τ           
∫ ∫ ∫  (50)

where 
1 T T.K SBR B S A−= − +  (51)

Cauchy’s problem solution for the differential equation (13) with the initial condition 0x  is 

0
0 0 0

( ) exp ( )d exp ( )d ( )d ,
t t

x t X x X s s Y
τ    

 = τ τ ⋅ + − τ τ           
∫ ∫ ∫  (52)

where we have noted 
1 TX A BR B S−= −  (53)

1 T .Y BR B h F−= − +  (54)

For the values of )(th  and )(tx  resulted from (50) and (52) the optimal control becomes 

[ ]1 T( ) ( ) ( ) ( ) .u t R B P t x t h t∗ −= − +  (54)

6. CONCLUSIONS 

The present study proposes a method for the solving of the linear two-point boundary value problem. 
This is equivalent to the finding of the optimal solution for the static quadratic functionals with differential 
restrictions represented by the inhomogeneous linear control system. If the adjoint variables are expressed as 
functions of the state variables, from the necessary extremum conditions, the Ricatti matrix differential 
equation associated to the optimum problem is obtained. The sufficient conditions for the existence of the 
solution to the Ricatti equation that ensure a local weak minimum in the analyzed optimal non-singular 
control are obtained. 
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