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This paper studies the influence of soil stiffness upon the natural angular frequencies of soil 
compacting machines (called also vibrator-rollers). Two different Romanian types of vibrator-rollers, 
CVA 4-5 and CVA 10, were considered in this study. The soil stiffness has been experimentally 
determined for different types of soils. 
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1. INTRODUCTION 

The self-propelled soil compacting machines, called also self-propelled vibrator-rollers, are aimed to 
perform vibratory soil compactions for road systems, canals, barrages, dams, special foundations, etc. These 
self-propelled vibrator-rollers must be designed to simultaneously accomplish two opposite goals: to 
generate and maintain the desired working vibrations of the dynamic roller-compactor, on one hand, and to 
isolate the undesired vibrations transmitted to the compacting machine chassis, on the other hand. 

ICECON Company has designed such self-propelled vibrator-rollers, with two stages of vibration 
isolation elements (based on rubber dampers). Using two vibration isolation stages is obviously much more 
advantageous than using a single vibration isolation stage. 

In order to obtain the appropriate levels of the roller working vibrations and to reduce the vibrations at 
the other subassemblies, a study of the soil stiffness influence upon the machine natural angular frequencies 
is required. In this respect, this paper studies the variation of the natural angular frequencies of two self-
propelled vibrator-rollers (CVA 4-5 and CVA 10), upon the soil class [20,  21]. 

2. DYNAMIC MODEL 

Figure 1 shows the real model of a self-propelled vibrator-roller, composed of the following elements: 
1 – roller-compactor; 2 – front chassis; 3 – first elastic vibration isolation stage; 4 – second elastic vibration 
isolation stage; 5 – rear chassis; 6 – rear roller (used for the rear drive). 

Taking into account the symmetry of the vibrator-roller with respect to the longitudinal median plane, 
the symmetrical construction of the front chassis with respect to the roller-compactor axis and the fact that 
the rubber damping elements are qualitatively identical, the vibrator-roller can be modelled as shown in  
Fig. 2. This system has four degrees of freedom. The two vibration isolation stages, as well as the compacted 
soil, have been modelled by using only elastic elements. This simplification is possible due to the fact that 
the error, in terms of the natural angular frequencies, between the simplified elastic modelling and the more 
realistic Voigt-Kelvin viscoelastic model, is only about 5%, so it can be neglected. 

The mass elements of the vibrator-roller, described by the dynamic real model shown in Fig. 2, are as 
follows: m1 – mass of the roller-compactor; m2 – mass of the front chassis;  m, J – mass and, respectively, 
moment of inertia of the rear chassis with respect to the mass center C ;  ms – mass of the static drive roller. 
In what concerns the elastic vibration isolation elements, k2 and k3 denote the equivalent stiffness coefficients 
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corresponding to the two vibration isolation stages, while k1 and k4 denote the stiffness coefficients of the soil 
to be compacted. More precisely, k1 corresponds to the contact surface of the front rollers, while k4 is the 
stiffness coefficient of the soil at the contact surface with the rear roller. 

 

 
Fig. 1 – Self-propelled vibrator-roller. 

 
Fig. 2 – 2D simulation model of the 3elf-propelled vibrator-roller. 

3. MOTION DIFFERENTIAL EQUATIONS 

The kinetic energy of the mechanical system described by the dynamic model in Fig. 2 is: 
2 2 2 2
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Using the matrix notation and the inner product in Hilbert spaces, the quadratic form (1) can be 

summarized as: 

2 ,T = x Mx� � , (2)
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where: x�  – velocities vector, defined as [ ]T
1 2 3 4, , ,x x x x=x� ; M – inertia matrix. 

The inertia matrix M is positive definite, symmetric and nonsingular: 
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The deformation potential energy of the elastic mechanical system, with respect to the static 
equilibrium position, is: 

( ) ( )222 2
1 1 2 1 2 3 2 3 4 42 k x k x x k x x k xΠ = + − + − + . (4)

The quadratic form (4) can be written in matrix notation as: 

02 ,Π = u K u , (5)

where: 0 1 2 3 4DIAG{ , , , }k k k k=K  – the stiffness matrix; u – the elastic deformation vector, with 

[ ]T
1 2 3 4, , ,u u u u=u . 

The components of the elastic deformation vector u are determined from the displacements 
, 1, ,4jx j = … , as follows: 
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The relation between displacements and deformations is linear: 

=u Ax , (6)

where: A – influence matrix, characterizing the influence of the displacements on deformations; x – displacements 
vector, with [ ]T

1 2 3 4, , ,x x x x=x . 
The influence matrix A is defined as: 

1 0 0 0
1 1 0 0
0 1 1 0
0 0 0 1

 
 − =
 −
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 

A . (7)

Using relation (6), the quadratic form (5) can be expressed in terms of the displacements vector x as 
follows: 

02 ,Π = Ax K u . (8)

Let us consider a Hilbert space H, then for every continuous linear operator V, there is only one 

continuous linear operator *V , called adjoint operator, which fulfils the identity: 

*, ,Vx y x V y=     for any ,x y∈H , 

and also the following equality: 
*V V= . 
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In our case, the influence matrix ( ) , , 1, ,ija i j n= =A …   can be considered as a continuous linear 

operator on the Hilbert space H, having as adjoint operator its transposed matrix ( )T
jia=A . Based on the 

above definitions, relation (8) can be written as: 
T

02 ,Π = x A K u , (9)

and, by taking into account again relation (6), it comes: 
T

02 ,Π = x A K Ax . (10)

Denoting T
0=K A K A , it finally results: 

2 ,Π = x Kx . (11)

For the pure elastic case and without considering any disturbing forces, the differential equations of 
motion are given by the Lagrange equations of second kind, as follows: 

0+ =Mx Kx�� . (12)

The solutions of the differential equation (12) are of the following form: 
iRe( e )pt=x a , (13)

where: a – vector of the unknown amplitudes, with [ ]T
1 2 3 4, , ,a a a a=a ; p – natural angular frequency. 

By replacing the searched solution (13) into (12), one obtains the following algebraic equations system: 

( )2 0p− =K M a . (14)

The algebraic system (14) represents an eigenvalues and eigenvectors problem, involving the given 
4 4×  square matrices K and M. The unknowns to be determined are vector a and scalar p. 

The determination of the natural angular frequencies (eigenvalues p1, p2, p3, and p4) and of the 
corresponding eigenvectors was performed using a FORTRAN code. All these computations were performed 
for different soil classes, characterized by different soil stiffness coefficients, and for two Romanian types of 
vibrator-rollers (CVA 4-5 and CVA 10) [20,  21]. 

4. SOIL STIFFNESS COEFFICIENT 

Several mechanical models are available in order to describe as accurately as possible the soil influence 
upon the vibration parameters of the compacting machine. These soil models must take into account the main 
soil properties, such as: elasticity, plasticity, viscous damping and dry friction. The most commonly used soil 
models are: Voigt-Kelvin, Bathelt P-E, Ephremides, Dvorak and Peter, Hartman, Maxwell. These more 
complex models are derived from the basic models: Hooke, Newton, Saint-Venant and Bethelt P [2–5]. 

For soil compacting machines, the effective working pressure is generally less than 1,5 daN/cm2 (in 
order to avoid blockage into soil) and the working vibrations amplitudes are small (0.25–1.5 mm). At these 
levels of pressure and amplitudes, one can consider only the elasticity property for the soil models listed 
above, and neglect the others properties [1,  6,  14]. 

Let us also remark that the working regime of the vibrator-rollers is a post-resonance regime, where the 
amplitude of the roller-compactor remains constant, while the amplitudes of the vibrations induced to the 
other machine subassemblies are small. 

So, only the reversible, elastic deformations will be taken into account in this paper. In this case, the 
soil stiffness coefficient is given by [8,  13, 15]: 

zk C S= ⋅ , (15)
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where: k – soil stiffness coefficient; Cz – coefficient of uniform elastic contraction of the contact surface of 
area S; S – area of the contact surface between the roller-compactor and the soil. 

The equivalent contact surface is defined as for the case of a rectangular plate, as follows [8,  12, 15]: 

2

1
1z z

EC
S

= χ ⋅
− µ

, (16)

where: zχ  – coefficient taking into account the dimensions of the equivalent plate; E – soil elastic modulus; 
µ – Poisson’s ratio. 

The experimental soil stiffness coefficient k*, obtained using a test plate with rectangular contact 
surface of area S*, is given by: 

* *
21z

Ek S= χ ⋅
− µ

, (17)

and the soil stiffness coefficient k for the real contact surface of area S has the following expression: 

21z
Ek S= χ ⋅
− µ

. (18)

From the similar equations (17) and (18), the value of the real soil stiffness coefficient k depends on the 
experimental coefficient k*, as follows: 

*
*

Sk k
S

= . (19)

Table 1 

Soil stiffness coefficients k for different types of soil and vibrator-rollers 

Stiffness coefficient 
106 k [N/m] Soil type 

CVA 4-5 CVA 10 

Sandy soil with loose gravel of size (3-7) mm 20.0 44.0 

Loose gravel of size (7-15) mm; 
Loose loamy sand. 

30.0 67.5 

Loose and slightly loamy medium granulation sand 40.0 90.0 

Medium to large granulation sand and pre-compacted gravel of 
size (7-15) mm; 
Compacted clay and gravel. 

52.0 120.0 

 
ICECON Company has performed soil stiffness experiments using a test plate with contact surface of 

area * 2900cmS = , attached to an electrodynamic shaker, which is controlled by a variable frequency 
generator [20]. The experimental results obtained by ICECON have been compared with results available in 
the literature [9,  15]. Table 1 presents the values of stiffness coefficients determined in dynamic regime for 
four different soil types and for two types of vibrator-rollers, i.e., CVA 4-5 and CVA 10. 

5. NATURAL ANGULAR FREQUENCIES OF SOIL-COMPACTING MACHINE SYSTEM 

Table 2 presents the natural angular frequencies of the self-propelled vibrator-roller CVA 4-5, 
computed for the different soil types (with the corresponding stiffness coefficients) described in Table 1. The 
following equivalent stiffness coefficients corresponding to the two isolation stages were considered: 

6
2 2.132 10 N/mk = ⋅  and 6

3 2.00 10 N/mk = ⋅ . 
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Table 2 

Natural angular frequencies of CVA 4-5 for different soil types 

Natural angular frequencies [s-1] Soil stiffness coefficient 106 

k [N/m] p1 p2 p3 p4 
20 24.13 62.22 132.76 161.89 
30 24.45 62.66 162.29 194.71 
40 24.61 62.87 187.23 222.82 
50 24.72 63.01 213.36 352.48 

Equivalent stiffness coefficient of the first isolation stage 6
2 2.132 10 N/mk = ⋅ ; 

Equivalent stiffness coefficient of the second isolation stage 6
3 2.00 10 N/mk = ⋅ . 

 
The natural angular frequencies were also computed for the self-propelled vibrator-roller CVA 10. 

Table 3 shows the results obtained for 6
3 3.04 10 N/mk = ⋅ , while the natural angular frequencies presented in 

Table 4 are obtained considering 6
3 8.70 10 N/mk = ⋅ . In both tables concerning CVA 10, the equivalent 

stiffness coefficient of the first isolation stage was considered 6
2 2.42 10 N/mk = ⋅ . 

Table 3 

Natural angular frequencies of CVA 10 for different soil types and for 6
3 3.04 10 N/mk = ⋅  

Natural angular frequencies [s-1] Soil stiffness coefficient 106 

k [N/m] p1 p2 p3 p4 
44.0 13.21 85.32 109.67 165.95 
67.5 13.30 86.36 134.91 203.14 
90.0 13.34 86.72 155.40 233.37 
120.0 13.37 86.95 179.30 268.48 

Equivalent stiffness coefficient of the first isolation stage 6
2 2.42 10 N/mk = ⋅ ; 

Equivalent stiffness coefficient of the second isolation stage 6
3 3.04 10 N/mk = ⋅ . 

Table 4 

Natural angular frequencies of CVA 10 for different soil types and for 6
3 8.70 10 N/mk = ⋅  

Natural angular frequencies [s-1] Soil stiffness coefficient 106 

k [N/m] p1 p2 p3 p4 
44.0 15.32 121.70 129.95 166.45 
67.5 15.46 121.98 141.01 203.25 
90.0 15.52 122.75 158.31 233.42 
120.0 15.57 122.07 181.07 268.50 

Equivalent stiffness coefficient of the first isolation stage 6
2 2.42 10 N/mk = ⋅ ; 

Equivalent stiffness coefficient of the second isolation stage 6
3 8.70 10 N/mk = ⋅ . 

6. CONCLUSIONS 

This study concerns the vibratory soil compacting machines with two rollers, the front one being the 
vibratory roller-compactor, while the rear roller is used just for the rear drive. The real dynamic model is 
described in Fig. 2. This type of soil compacting machines are working in post-resonance regime, i.e., 

4pω> . This paper analyses the working regimes of these compacting machines as a function of the soil 
stiffness. The conclusions are: 

a) the soil stiffness coefficients have to be determined experimentally, by taking into account the 
contact surface between the roller-compactor and the soil; 
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b) the consideration of different soil types (listed in Table 1) has almost no influence on the first two 
natural angular frequencies 1p  and 2p , but induces important changes in what concerns the 3rd and 
the 4th natural angular frequencies, i.e., 3p  and 4p . 

Knowing that the angular frequency ω of the disturbing force takes values in the interval (180-314) s-1, 
then the forced vibrations regime must be chosen so that, for every type of soil to be compacted, the system 
works in post-resonance regime, i.e., 4pω> . 
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