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In this paper is proposed a linearization method for hysteretic characteristics developed on the basis 
of the experimental loops, by considering the most general case, when there is no mathematical model 
associated with the hysteretic behavior. The method employs a classical differential linear model 
which depends on three parameters. The model is studied for all physically realizable combinations of 
the involved parameters. The linearization criteria are formulated in terms of the variation of 
frequency response function over an interval containing a predicted dominant value. The method 
allows choosing the best model configuration, in terms of force amplification factor and dissipated 
energy errors, for a given experimental hysteretic curve.  
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1. INTRODUCTION 

The behaviour of materials, structural elements or vibration isolators is described by hysteretic loops 
that are treated in a unified manner by a single nonlinear differential equation with no need to distinguish 
different phases of the applied loading pattern. In practice, the Bouc-Wen model [1, 2] is mostly used within 
the following inverse problem approach: given a set of experimental input–output data, how to adjust the 
Bouc-Wen model parameters so that the output of the model matches the experimental data. Various 
methods where developed to identify the model parameters from the experimental data of periodic vibration 
tests: analytical approaches, for example [3] and different methods based on genetic algorithms for extended 
versions of Bouc-Wen model, [4, 5, 7] and [8]. Although, the nonlinear models can predict with good 
approximation the dynamic behaviour of hysteretic structures, in many cases, the linear equivalent models 
are still of practical interest for complex systems having many degrees of freedom and complex types of 
excitations. 

One of the most efficient techniques for approximating non-linear models within the operating domain 
is the equivalent linearization method, both in deterministic and stochastic approach. There are many studies 
about equivalent linearization of hysteretic characteristics [6, 8, 9, 10] that have proved the efficiency of this 
approach. In the linearization techniques literature, the linear model is obtained by taking as reference the 
non-linear equation which portrays the hysteretic loop. 

This paper presents a linearization method that is developed only on the basis of experimental 
hysteretic loop, considering the general case, when there is no mathematical model associated to the 
hysteretic behavior. The linear equivalent model is described by ordinary differential equation of first order 
which can describe better the memory properties of hysteresis than the visco-elastic equivalent model. The 
linear model parameters are determined for a predicted dominant frequency component in the response 
spectrum of the mechanical structure equipped by the considered hysteretic device. 
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2. LINEARIZATION METHODS 

Consider that the experimental hysteretic characteristic is a symmetric loop ( )m mF F x F− ≤ ≤ , obtained 

for a periodic motion ( ) ( ) ( )m mx t x t x t− ≤ ≤ , imposed between the mounting ends of the tested element and 
f
dE  the corresponding dissipated energy. By introducing the dimensionless magnitudes 

( ) ( ) ( ) ( ) ( ) ( )u u u m m, , max , maxt x t x F x F tξ = Φ ξ = ξ ξ = ξ Φ = Φ ξ , (1)

where T is the period of the imposed cyclic motion and ux , uF  are displacement and force reference units, a 
generic plot of the symmetric hysteresis loop ( )Φ = Φ ξ  can be represented as shown in figure 1. Here the 

imposed cyclic displacement is ( )m expsin tξ = ξ ω , with m
m

u

x
x

ξ = , m
m

u

F
F

Φ =  is the maximum force and the 

dissipated energy per cycle by experimental loop is ( )d dE = Φ ξ ξ∫  – the area of surface enclosed by the 

hysteretic loop. 

2.1. First linearization method 

In this case the linear equivalent hysteretic force is given by: ( ) ( )le , ,zΦ ξ ξ = ξ ξ , where 

z az b c= + ξ + ξ , (2)

so, z  can be written d dz a z t b c t= + ξ + ξ∫ ∫ ⇒ 0b ≥  (physically realizable stiffness characteristic); 0a <  

derived from the stability condition, b and c  cannot be simultaneously equal to zero (because one obtains a 
exponential solution for ( )z t ) and [ ] 1a T −= , [ ] 1c T −=  and b  is a dimensionless parameter. 
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Fig. 1 Hysteretic loops: experimental (____) and linear equivalent (- - -). 

We consider ( ) mei tt ωξ = ξ , ( ) mi ei tt ωξ = ωξ  and denote ( ) ( ) ( )exp iH H  ω = ω θ ω   the frequency response 

function corresponding to the input ( )tξ  and output ( ) ( ) ( )( )le le ,t t tΦ =Φ ξ ξ . Therefore, the relation (2) 

implies: ( )
2 2 2

2 2

b cH
a

ω +
ω =

ω +
, ( ) ( )1

2
tan

ab c
b ac

−  − + ω
θ ω =  ω − 

 and ( ) ( )
( )( )2 2 2 2 2

sin
ab c

a b c

− + ω
θ ω =

ω + ω +
.  
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 The energy dissipated per cycle by linear equivalent hysteretic force is: ( ) ( ) ( )2
le m sinE Hω = π ω ξ θ ω . 

As le 0E > , one can derive that 0ab c+ < . Next are investigated the possible combinations of parameters a , 
b , c  and the corresponding solutions of the linearization problem. In each case are studied the extreme 
points with respect to ω , of functions ( )H ω , ( )sinθ ω  and ( )leE ω . 
 I.1. 0a < , 0b > , 0c ≠  such that 0ab c+ < . With these assumptions, the frequency response function, 

( )sinθ ω  and the dissipated energy become: ( )
2 2 2

2 2

b cH
a

ω +
ω =

ω +
, ( ) ( )

( )( )2 2 2 2 2
sin

ab c

a b c

− + ω
θ ω =

ω + ω +
 and 

( ) ( )2
le m 2 2

ab c
E

a
+ ω

ω = −πξ
ω +

. As 0c ≠ , one must consider two cases: 0c >  and 0c < . 

 I.1.1. 0a < , 0b > , 0c > , 0ab c+ < . In this case one can prove that ( )H ω  is a monotonous 

increasing function on [0, ∞), therefore ( )H ω  has no extreme point. 

• The analytical study of ( )sinθ ω : ( )sin 0θ ω ≥ , ( )sin 0 0θ = , ( )lim sin 0
ω→∞

θ ω = , 

( ) ( )( )

( )( )

2 4 2 2

3
2 2 2 2 2 2

d sin
0

d
ab c b a c

a b c

 θ ω + ω −  = − =
ω

 ω + ω + 

   ⇒   ext1
ac
b

ω = −  and ( )
max

sin ab c
ab c

+ θ ω =  −
,  

( )ext1
bcH
a

ω = − ,   ( ) 2
le ext1 m

ab c bcE
ab c a

+
ω = πξ −

−
. 

• The analytical study of ( )leE ω : ( )le 0 0E = , ( )lelim 0E
ω→∞

ω = , 

( ) ( )( )
( )

2 2
le 2

m 22 2

d
0

d
E ab c a

a

 ω + ω −  = πξ =
ω ω +

  ⇒  ext2 a aω = = −  and ( ) ( ) 2
le le ext2 mmax 2

ab cE E
a
+ ω = ω = πξ  , 

( )
2 2 2

ext2
1

2
a b cH

a
+

ω = − , ( )
( )ext2 2 2 2

sin
2

ab c
a b c

+
θ ω = −

+
. We make the following notations: 

f
d um m

m m m m u
,E xF

F x x F
Φ

µ = η = =
π ξ

. By using the definition of dissipated energy and the relations given in (1), one 

derive 
f
d d

m m m m

E E
F x

µ = =
π πΦ ξ

. It is easy to remark that, in the most cases, the experimental hysteresis loops 

have the property 1µ < , so, in this paper, we assume that this condition holds. The parameters of linear 
equivalent model are determined for two cases: a- when the dominant frequency is chosen ext1ω  and b – for 

ext2ω . 
 I.1.1.a. The parameters are obtained by solving the system 

( ) ( )m 2
ext1 ext1 le ext1 m d

m
, ,ac bc ab c bcH E E

b a ab c a
Φ +

− = ω ω = − = ω = πξ − =
ξ −

. (3)

The solution of (3) is given by: m m
ext1 ext1

m m

1 1, ,
1 1

a b c
Φ Φ+ µ + µ

= −ω = = ω
− µ ξ − µ ξ

. 

 I.1.1.b. In this case the parameters are obtained using the relations 

( ) ( )
2 2 2

m 2
ext2 ext2 le ext2 m d

m

1, ,
2 2

a b c ab ca H E E
a a

+ Φ +
= −ω ω = − = ω = πξ =

ξ
.  

This solution is feasible if 2
2

µ < , which is not in general true. 
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 I.1.2. 0a < , 0b > , 0c <  (the inequality 0ab c+ <  is automatically satisfied). For this case it is easy 

to check that ( )H ω  is a monotonous increasing on [0, ∞) if ca
b

>  and monotonous decreasing on [0, ∞) if 

ca
b

< , therefore ( )H ω  has no extreme point. 

• The analytical study of ( )sinθ ω : ( )sin 0θ ω ≥ , ( )sin 0 0θ = , ( )lim sin 0
ω→∞

θ ω = , 

( ) ( )( )

( )( )

2 4 2 2

3
2 2 2 2 2 2

d sin
0

d
ab c b a c

a b c

 θ ω + ω −  = − =
ω

 ω + ω + 

  ⇒  ext1
ac
b

ω =   and ( ) ( )ext1max
sin sin 1 θ ω = θ ω =   

( )ext1 2
π

⇒ θ ω =  ⇒ ( ),z ξ ξ is a pure viscous-elastic characteristic for any imposed cyclic motion 

( ) ( )m ext1sint tξ = ξ ω , ( )ext1
cH
a

ω = , ( ) 2
le ext1 m

cE
a

ω = πξ . 

• The analytical study of ( )leE ω  is analogous to the I.1.1 case ( ext2 a aω = = − ). 
 I.1.2.a. The parameters must fulfil a set of conditions that imply 1µ =  which is contradictory to the 
assumption 1µ < . So, this case is not possible. 
 I.1.2.b. The system for finding the parameters of linear system is identical with I.1.1.b. There are two 
possible solutions: 

 – the firs one is identical with the solution of I.1.1.b and is feasible if 2 ,1
2

 
µ∈ 

 
, which is rather 

restrictive; 

 – the second is given by ( ) ( )2 2
ext2 ext2, 1 , 1a b c= −ω = η µ − −µ = ω η −µ − −µ - feasible if 

2 ,1
2

 
µ∈ 

 
. 

 I.2. 0a < , 0b > , 0c = . For these hypotheses about the linear model parameters, the frequency 

response function, ( )sinθ ω  and the dissipated energy become: ( )
2 2

bH
a

ω
ω =

ω +
, ( )

( )2 2
sin a

a
−

θ ω =
ω +

 

and ( ) 2
le m 2 2

abE
a
ω

ω = −πξ
ω +

. In this case one can prove that ( )H ω  is a monotonous increasing on [0, ∞) 

and ( )sin θ ω  is a monotonous decreasing function on [0, ∞). 

• The analytical study of ( )leE ω : ( )le 0 0E = , ( )lelim 0E
ω→∞

ω = , 

( )
( )

2 2le 2
m 22 2

d
0

d

E aab
a

 ω ω −  = πξ =
ω ω +

  ⇒  ext2 a aω = = −  and ( )ext2 2
bH ω = , ( )ext2

1sin
2

θ ω =  

( )ext2 4
π

⇒ θ ω = , ( ) ( )
2
m

le le ext2max 2
bE E πξ ω = ω =  . Therefore, m

ext2
m

, 2a b Φ
= −ω =

ξ
 with the condition 

2
2

µ =  that cannot be satisfied in the general case. 

 I.3. 0a < , 0b = , 0c < . In this case one can write: 

( )
2 2

cH
a

ω = −
ω +

,   ( )
( )2 2

sin
a

ω
θ ω =

ω +
   and   ( ) 2

le m 2 2
cE

a
ω

ω = −πξ
ω +

.  
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It is easy to prove that ( )H ω  is a monotonous decreasing on [0, ∞) and ( )sinθ ω  is a monotonous 
increasing function on [0, ∞). 

• The analytical study of ( )leE ω : ( )le 0 0E = , ( )lelim 0E
ω→∞

ω = , 
( )

( )
2 2le 2

m 22 2

d
0

d

E ac
a

 ω ω −  = πξ =
ω ω +

  

⇒  ext2 a aω = = −  and ( )ext2 2
cH

a
ω = , ( )ext2

1sin
2

θ ω =  ( )ext2 4
π

⇒ θ ω =  as in the, previous case, 

( ) ( )
2
m

le le ext2max 2
cE E

a
πξ ω = ω =  . The solution is m

ext2 ext2
m

, 2a c Φ
= −ω = −ω

ξ
 with the assumption 

2
2

µ = , which is possible only in particular cases.  

2.2. Second linearization method 

 In this case the linear equivalent hysteretic force is given by:  

( ) ( ) [ )le , 1 , 0,1zΦ ξ ξ = αξ + −α α∈  (4)

and z  is obtained using the relation (2), where 0a < . As b  is a redundant parameter of this model, one can 
take 0b =  so the equation (2) becomes: z az c= + ξ . Consequently, the frequency response function, 

( )sinθ ω  and the dissipated energy have the forms: 

( ) ( ) 22 2

2 2

1a c
H

a
 α ω + α − −α ω =
ω +

,   ( ) ( )
( ) ( )2 2

1
sin

c
a H

− −α ω
θ ω =

ω + ω
   and   ( ) ( )2

le m 2 2

1c
E

a
−α ω

ω = −πξ
ω +

. 

As the dissipated energy is positive, le 0E > , then the condition 0c <  must be fulfilled. In this case 

( )H ω has the sign of term ( )( )2 1a cα − −α , which implies that ( )H ω  has no extreme point. 

 II.a. The analytical study of ( )sinθ ω : ( )sin 0 0θ = , ( )lim sin 0
ω→∞

θ ω =  and 
( )d sin

0
d

 θ ω  =
ω

 implies 

( )
ext1

1a a c− α − −α
ω =

α
. The parameters a , c  and α  have to be determined from the system: 

( ) ( ) m
ext1

m

1a c
H

a
−α α − −α Φ

ω = =
ξ

, ( )
( ) ( )

( )( )
2
m

le ext1 d

1 1

1

c a a c
E E

a a a c

−πξ −α − α α − −α
ω = =

α − α − −α
. One can 

observe that if ( )1 0a cα − −α ≥  then d m mE = πΦ ξ  which is not feasible for an arbitrary experimental loop. 
Therefore, we assume ( )1 0a cα − −α < . Under this hypothesis, the previous relations become: 

( )( ) ( )( ) ( )
( )

2 2
ext1

1 1 1
, ,

2 1
a c a a c c

a a c
− −α − α −α α − −α −α

= ω = η = µ
α α − −α

, with the solution 

( ) ( )

( ) ( )

2 2
ext1 ext1 ext1

ext1
ext1

1 1 2, ,
1 1 1

1 1
1

a c
+µ ω η +µ ω η − µω η

α = η = −ω =
−µ −µ  + µ ω η

 −µ −η
 −µ 

, which is applicable if 

( ) ext11
1

1
+µ ω η

η <
−µ

⇔
( )

u m 3
u m ext1

1
1

x x
F F

−µ
<

+µ ω
 (which can be obtained by an appropriate choosing of the 

gains ux  and uF ). 
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 II.b. The analytical study of ( )leE ω : ( )le 0 0E = , ( )lelim 0E
ω→∞

ω = , 
( )led

d

E ω  =
ω

 

= ( )
( )

2 2
2
m 22 2

1 0ac
a

ω −
πξ − α =

ω +
  ⇒  ext2 a aω = = −  and ( ) ( ) ( )2

le le ext2 mmax

1
2

c
E E

−α
 ω = ω = πξ  , 

( ) ( ) 22 2

ext2

11
2

a a c
H

a
 α + α − −α ω = − . In this case, the following relations are derived: 

( ) ( )
22 2 2

m
ext2 d

1 11, ,
2 2

a a c c
a E

a a
 α + α − −α πξ −α = −ω − = η = . Then, α  is a root of the equation: 

2 2 2
ext2 d ext2 d2 2 2

ext2 ext22 2 4
m m

2 2 0E Eω ω
ω α − α + −ω η =

πξ π ξ
. As, ( )

f
d d

m m m m
0,1E E

F x
µ = = ∈

π πΦ ξ
, then the previous equation 

has the solutions: ( ) ( )2 2
1 21 , 1α = η µ + −µ α = η µ − −µ . One can prove that 1α  is a feasible solution if 

2 1η <  ⇔ u m

u m

2
2

x x
F F

< , that is always possible by an appropriate scaling. In the same way, 2α  is a 

possible solution if: u m

u m

x x
F F

<  (feasible by an appropriate scaling) and 2
2

µ ≥ , which is more restrictive 

than the condition assumed in this paper ( ( )0,1µ∈ ). After α  is determined then c  is given by 2
1

ac = µη
−α

. 

3. APPLICATION OF THE LINEARIZATION METHODS 

In this paper, the proposed linearization methods are illustrated for a hysteretic loop corresponding to a 
seismic protection device – Elastomeric Bearings (BIS), manufactured by the Italian Company FIPP 
INDUSTRIALE. The force-displacement curve of BIS device [12] was obtained by shear/ compression tests 
conducted on a column of two identical rubber bearings under a constant static vertical load (equal to the 
maximum vertical load for this isolator) and a cyclic horizontal load applied at the middle, such that to 
produce the maximum admissible shear deformation. For this device only the experimental data obtained for 
maximum working range were available. The hysteretic loop has the following parameters: f

d 190kJE = , 

m 760kNF = , m 0.175mx = , 0.454µ ≅ . The described linearization methods were applied assuming the 
dominant frequency ext1 ext2 2ω = ω = π . The scaling parameters chosen for each case and the obtained values 
of linear model parameters are given in Table 1. 

Table 1 

Case 
ux  [m] uF  [kN] a  [s-1] b  c  [s-1] α  

I.1.1.a 0.2 800 -10.262 1.773 6.821 - 
I.1.1.b. 0.2 800 -6.283 1.46 2.973 - 

II.a. 0.05 800 -13.402 0 -11.522 0.579 
II.b. 0.1 800 -6.283 0 -11.503 0.73 

The efficiency of linearization methods is assessed in terms of the relative errors of dissipated energy 
and amplification factor computed on a frequency range that includes the chosen dominant frequency: 

( ) ( )le d

d
er

E E
E

E
ω −

ω = , ( )
( )

er
H

H
ω −η

ω =
η

. Figures 2–5 are show the variation of relative errors versus 

the frequency for the cases specified in Table 1. 
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Fig. 2 – Relative errors in case I.1.1.a, Fig. 3 – Relative errors in case I.1.1.b. 
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Fig. 4 – Relative errors in case II.a. Fig. 5 – Relative errors in case II.b. 
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Fig. 6 – Relative errors of dissipated energy. 
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From these plots one can conclude that the most efficient linear equivalent model, for the considered 
hysteretic loop, is that corresponding to the case I.1.1.a. In order to outline the efficiency of the proposed 
linearization algorithm, the relative error of dissipated energy is compared with that obtained for a linear 
viscous equivalent model. Usually, the linear viscous damping λξ , equivalent to the energy dissipated by a 

hysteretic device, is determined from:
 

d
2

ext m

E
λ =

πω ξ
. In this case ( )le

ext
dE Eω

ω =
ω

. Figure 6 shows 

comparatively the relative errors of dissipated energy given by the proposed method and by the equivalent 
viscous damping. 
As one can see, the dissipated energy per cycle, which is constant for the experimental loop, is much better 
approximated by the obtained linear equivalent differential model over relatively large frequency range. 

4. CONCLUSIONS 

In this paper were developed analytical methods to assess equivalent differential linear models for 
experimental hysteretic loops. By studying the efficiency of all presented cases in terms of relative errors of 
the amplification factor and dissipated energy, one can find the most suitable linear model for a given 
hysteretic curve.  

The essential property of hysteretic characteristics is that their dissipative properties are practically 
independent of the loading cycle frequency.  The major drawback of linear representation of hysteretic loops 
is the dependence of dissipated energy on the input frequency. In this respect, the proposed linear equivalent 
differential model is superior to the visco-elastic equivalent model.   
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