
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 13, Number 2/2012, pp. 141–148

LOGIC ENGINEERING WITH APPLICATIONS TO SECURITY*

Cristian-Dumitru MASALAGIU, Vasile ALAIB

“Al. I. Cuza” University of Iaşi, Romania
E-mail: mcristy@info.uaic.ro

Computer (or Information) Security is a branch of Information Technology used for distributed and
concurrent systems (multiagent systems, networks, etc.). The main purpose is to prevent unauthorized
access to the information passed through the system. In the same time, the information has to remain
accessible and reliable for the trusted customers. Abstract cryptographic (security, encrypted, etc.)
protocols are generally used. These have to be proved a priori to be correct and this is done using
formal logic techniques. The so called logics of belief are usually preferred. Unfortunately, the
problem we are facing is far more complicated and we have to learn how to engineer such logics.

Key words: security, logics of belief, cryptographic protocols, logic engineering.

1. INTRODUCTION TO LOGIC ENGINEERING CONCEPTS

Logic engineering is an emerging discipline concerning the application of logic to specific fields of
research. The problems logic engineering addresses are to build formal modeling languages for specific
problems or classes of systems, develop and simulate models using logic-based formal languages and, most
importantly, property specification and verification by expressing properties of systems as logic formulas
and check their validity under a specific interpretation.

The subject of using logic based formalisms and tools to solve domain specific problems benefited
from attention from various authors over time. Although there is no unitary curriculum yet or a solid
common vision around the concept of logic engineering, the few definitions of the term agree to the basic
notions of using logics, formalism, in new contexts. The term engineering suggests that this can be a
repeatable and predictable process, up to a point.

The views on the term logic engineering found in literature can be summarized as the choice,
adaptation and usage of formalisms and related techniques, similar to software engineering, in order to solve
specific problems [10, 11, 12, 1, 13].

Our goal in this paper is to outline the first steps towards the application of logic engineering methods
to the security protocol verification problem. We start by introducing general notions of logic and security
and continue with the description of BAN logic. We then create for it a formal syntax description using the
Backus-Naur notation and make the first steps towards semantics. We finalize the paper with conclusions
regarding the application of the syntax to formal verification and steps for future research.

2. GENERAL USEFUL NOTIONS

Some modal logics have particular applications, such as the representation and treatment of knowledge
in multiagent systems. The main modalities (unary modal operators) are □Q (box) and ◊Q (diamond) but the
formal semantics is different (from e.g. temporal logics)

Briefly:
□: agent_Q_knows_certainly_that…
◊: from_what_agent_Q_knows…

* This paper was presented in part at the 1st Conference Romanian Cryptology Days – RCD2011, October 11–12 2011, Bucharest,

Romania.

 Cristian-Dumitru Masalagiu, Vasile Alaib 2 142

Epistemic modal logics are modal logics concerned mainly with reasoning about knowledge. Without
entering into details, we say only that we may go back to Greece, Aristotle, and – generally – to
epistemology, as a branch of philosophy. All of these have to be treated in a formal, and - in the same time –
practical effective way.

Related concepts to the main topic are modal and epistemic logics (MDE) [8], model checking (MC)
[1], natural deduction (ND) [1], logic programming (PROLOG) [14], lambda notation and calculus
(LAMBDA) [7] and decidability and complexity (DECO) [3].

Definition. Let SD = <A, R> be a deductive system in a class of formulae denoted FORM. A proof

(for Fm starting with A) in SD is a list of formulae (D): F1, F2, …, Fm such as for each i ∈ [m], either Fi ∈
A, or Fi is obtained from Fj1, Fj2, … , Fjn using a rule: r = < < {Fj1, Fj2, … , Fjn}, Fi>, c> ∈ R ,
where i1, i2, ... , in < i.

Consequently, each element of the list (D) is either an axiom (element of A), or it is the consequent of
an inference rule (element of R) with the previous elements in the list as hypotheses. Soundness and
completeness theorems may then be introduced.

3. SECURITY

Every security protocol incorporates at least one of the following aspects: the establishment and
relationing of keys, entity identification, symmetric encryption and message authentication, insurance of
secrecy at the lowest possible level and using combined methods. For example, TLS (Transport Layer
Security) is a cryptographic protocol used to secure HTTP connections (web). We will provide only some
elementary notions needed for a better understanding of the logical part and we will point out the true link
between computer security and logic.

The security protocols will be treated only from an abstract point of view (i.e. there is no deduction on
lists of bites, only on text messages). It is supposed that all the participants are able to recognize different
types of messages although in the 0-1 presentation part of the initial format may be missing. A
cryptographic/security/encryption protocol is a protocol additionally having embedded a “function”
assuring security by applying some cryptographic methods. Thus we have the environment, cryptography,
communication protocols. It is not enough, as we need tools for a priori verification of protocol correctness.
These are based upon (various types of) logic. Logics can be integrated in formal meta-models.

Prove the following statement in a fixed cryptographic protocol (and using BAN, e.g.) for a fixed
security system (part of proving that the protocol works properly, i.e. it is correct/sound, i.e. it reach its
specifications, etc.). For example, because this message was signed by the machine/agent/principal B, then
the machine/agent/principal A can be certain that the considered message comes indeed from B.

Consider the Dolev/Yao model [16] for designing specific protocols. Short description: the design is
based on the enumeration of all actions that can take place in a given computer security system. Additional
supposition: the encryption is perfect, but any intruder may have a complete control of the net in the sense
that he/she/it can view, delete or falsify any message transmitted/received in the net. In fact all this is related
to the complexity of the semantic domains.

Advantages. There exist many analysis techniques which may be developed inside this model (some
of them – [semi]automatized), allowing the creation of [semi]formal proofs for some general properties of
the given protocol (such as the certitude of secretization).

Disadvantages. Unnatural from a human point of view. To design a protocol we rather think to use
some high-level concepts (e.g. “the secret key is known only by A and B and it is the only one used for the
communication between the two agents”) such that we can infer statements like “if a message arrives
encrypted with a key known only to me and to the machine M, and it is not me which send it in the first
place, then the considered message has to have been sent by M”.

The Needham-Schroeder (with shared keys) protocol ((NS) for short) [17], is defined as sequences of
messages (plain texts, cryptotexts), as follows (see the semantic part for details):

O1. P → S : P, Q, Np

3 Logic engineering with applications to security 143

O2. S → P : {Np, Q, Kpq, {Kpq,P}Kqs
}Kps

O3. P → Q : {Kpq, P}Kqs
O4. Q → P : {Nq}Kpq
O5. P → Q : {Nq - 1}Kpq
S, P, Q are machines/agents/principals (usually, S is considered to be a server). Np and Nq are

invented words (nonces); they represent in fact random numbers, chosen by P respectively Q, and used to
prevent replay attacks; these types of attacks mean that an intruder will replicate (parts of) a message
sent/kept in one of the previous sessions.

The general idea behind the nonces is that the principals verify the fact that the values used in certain
encrypted messages correspond to the correct values of the nonces for the current session; the discrepancies,
which may occur, e.g., because of the presence/accessibility of the messages memorized during some
previous sessions, can be detected by the principals (they can, in this way, avoid such messages if the
protocol is correctly managed). Kxy (Kxy) is a generic notation for a key K shared between x (e.g. p, P) and
y (e.g. q, Q).

The main goal of the (NS) protocol is to allow P and Q to agree to share (in communication) the key
Kpq. Consequently, in a first step, P and Q will use a trusted server S, which will generate the key during the
execution of the protocol. In a second step, S will communicate with P and Q using the shared keys Kps
respectively Kqs, presumed to be known from the very beginning by the implied parts.

The intuitive semantics of O1 and O2: P sends a message to the server identifying itself and Q (using
the nonce Np), telling the server that it wants to communicate with Q; then, the server generates Kpq and
sends back to P a copy, encrypted under Kqs, for P to forward to Q and also a copy for P. Since P may be
requesting keys for several different agents, the nonce assures P that the message is fresh and that the server
is replaying to that particular message and the inclusion of Q name tells P who it is to share the key with.

4. LOGICS OF BELIEF

Logics of belief were introduced in order to have a corresponding formal framework (clearly, a great
advantage if we think at implementations). BAN logic was the first to be developed and it was followed by
more expressive and evolved extensions. An unpleasant limitation of these logics is the necessity to
(semantically) annotate the protocols with extra (meta) logical formulae (again, semantic domains have to be
found). These are supposed to represent with high fidelity the intentions of the agent which sends a message
and are used to express the secretization or the freshness of (some parts) of a message. Another important
disadvantage is that the secretization cannot yet be formally proved (much more, the fact that the secret keys
are protected is implicitly assumed). Hence, the term “computer system security” implies the idea that there
exist formal methodologies and procedures which help that valuable services and information can be a priori
protected against intruders or unpredictable events. These methods generally use the following paradigm: we
do not allow the behaviors which are not desirable, instead of allowing the acceptable behaviors.

The Dolev-Yao model is used as a medium to formally a priori prove some specific properties of the
interactive protocols. Using this abstract model, the net may be viewed as a set of abstract machines which
have the role to “discuss with partners” (by changing messages). In this environment, the intruder may hear,
intercept and memorize any message, but it is limited only by the used cryptographic methods.

Note. Cryptographic primitives are modeled by (abstract) operators. Thus, if we refer to the
(asymmetric) encryption for a user X, it will be represented by the couple <EX, DX> (represented by the
encryption function, respectively decryption); this way we satisfy the property that their composition is
identity (EXDX = DXEX = 1). Given a message M, its encrypted variant (EX(M)) can not reveal anything
about M. Although not in accordance with the real world, it is supposed that the adversary can not
manipulate the encrypted message (not even at the 0-1 representation) and can not “guess” keys: Ex may be
written as Dx

-1.

 Cristian-Dumitru Masalagiu, Vasile Alaib 4 144

Logics of belief are designed to show the conclusions a participant can draw upon in a communication
dialog based upon received messages and the initial beliefs. We expect that an analysis based on logics of
belief to guarantee that only the desired properties (regarding, for example, the security of data,
non-replicating transitions, admitting “trusted” persons, etc.) are accepted during a communication
session. Obviously, proofs related to abstract protocols are not proofs that the concrete protocols (“accurate”
implementations of the abstract ones) are correct. There are numerous assumptions taken “for granted” for a
certain implementation which, if not valid in reality, will lead to the conclusion that a protocol
implementation is incorrect although the protocol is (classic example: the crypto-algorithm is safe).

When we design or explain a cryptographic (abstract) protocol, the formulation “because this message
was signed by the machine B, then machine A can be certain that the message originates from B” is often
used within the informal proof justifying that the protocol works correctly. From such a “proof” the idea of a
trust relationship is missing. Much more, the fact that the certainty of such a message is not a copy of
another from a previous session, is not formaly derived. Although special formal logics of belief, which we
call upon, do not substitute automated proof or verification techniques (for example, model checking), they
can be of good use, at least in uncovering of sensible points of the protocol that can weaken it. We must
outline from the start that the lack of a formal semantics represents a handicap in using such logics in
practice. BAN logic, as well as its successors are in fact types of (belief) multisorted (agents; encryption
keys; nonces; formulae, etc.) modal epistemic logics [7]. Suitable formal semantics, as far as we know, they
are not yet quite profitable from an implementation point of view (if they exist anyway).

4.1. Classical Approach for BAN Logic

The BAN logic refers to some deductive systems for defining/analyzing/authentifying cryptographic
protocols. This logic (and its further extensions) helps the users to determine if the messaged information is
to be trust and/or certain, versus eavesdropping. Anyway, the idea is that any information passed from one
“person” to another, uses a vulnerable medium, where falsification and public monitorizing are normal.
Suitable particular notations will be used, starting with the protocols themselves.

A simple derivation sequence in BAN logic usually includes three supplementary steps: the verification
of the message origin, the verification of the freshness of the message and the verification of trust of the
transmitter.

BAN logic is decidable and the classic algorithm uses a variant of the magic sets [3]. More
specifically, there exists an algorithm which, having as input some assumption formulae and a goal formula
(written in a BAN specific language), always stops with the answer YES (the goal may be inferred from the
assumptions) or NO. BAN logic has practically a pure formal syntactic definition. The work on developing a
formal convenient semantics is not yet finalized. BAN logic, as well as the succeeding ones (mentioned
before), are modal logics (of trust, epistemic, etc. – from a semantic point of view). They deal primarily with
agents trusting their ability to control their environment; for example, they could control the distribution of
common or shared keys. Other necessary rules will be explicitly presented as part of the respective logic
definition. As we have already pointed out, a complete formal semantics was not yet discovered and maybe it
won’t even be (or it is not worth the computational necessary effort). One cannot prove secrecy within this
framework, but it is presumed implicitly that secrets are protected.

Let us go into details. The axioms and the inference rules of BAN logic follow (P, Q are agents, X is a
message - or part of, and K is an encryption key: public, secret, and shared).

In what immediately follows we present the classical approach. Clearly, it is semi-formal.
AXIOMS
1A. P believes X (P|≡ X): P acts as it knows that X has to be trusted (X is true) and can guarantee that

(including the situation when X is part of another message).
2A. P has jurisdiction over X (P |⇒ X): the opinion of P about (the truth of X) should be trusted. For

example, the keys distribution made by the servers has to be trusted if we speak about keys.
3A. P said X (P |∼X): At one time, P transmitted (and believed) X, although (in the present) it is

possible that P does not yet believe X (that is, we don’t know if the message was sent a long time ago or
during the current communication session).

5 Logic engineering with applications to security 145

4A. P sees X (P < X): P receives the message X, it can read it and it can retransmit it
5A. {X}K (or {X}K): The message X is encrypted with the key K.
Note. A message Kpq which in fact transports a key created to be used in the communication between

P and Q, will be represented in BAN by P ↔Kpq
 Q; because any key is, at its turn, encrypted (in a way which

cannot be discovered by an intruder, the transmitted message will be in fact encrypted; for example,
{Kpq}Kqs

; the corresponding formula will be then {P↔ Kpq
 Q}Kqs

.
6A. fresh(X) (#X): X has not ever been transmitted in the current session; this fact is valid especially

for the nonces; #X will be used as a complement for P |∼X to establish that a message coming from P truly
refers to the current session (i.e. it is not an older, memorized, message used already by an intruder).

7A. key(K, P↔Q) (or P ↔K Q; this operator is commutative): P and Q may communicate using the
shared key K; the key K is supposed to be good, in the sense that it will never be discovered by any other
agent (except for P, Q or any other trusted by P or Q); this is the first time we have applied the supposition
that secrecy is implicitly protected.

8A. P has/possesses a public key K (׀→+K P): the corresponding (matching) secret key, i.e. the
converse of K will be denoted by „-K”; we suppose, again implicitly, that this key will never be discovered
by any agent, except for P or any other in which P trusts.

Notation. <X, Y> will denote the concatenation of the messages X and Y.

Inference rules
1I (also denoted (MM1)). If P believes key(K, P↔Q) and P sees {X}K, then P believes(Q said X).
The idea behind: if a key K is shared by P and Q and K is maintained secret, if P sees a message

encrypted with K, then P may be sure that it comes from Q; an additional implicit supposition is that the
message is not necessarily sent by P; Burrows, Abadi and Needham explain this by saying: “{X}K” is in fact
an abbreviation for “{X}K from P”, that is the encryption was made by P; much more, it is supposed that any
agent may recognize the encrypted messages it has sent from the very beginning.

1I′. If P believes key (K, P↔Q) and P sees{X}K where the message was not necessarily sent by P,
then P believes (Q said X).

2I. If P believes (Q said X) and P believes fresh(X), then P believes (Q believes X)
This rule denoted also by (NV) (the nonce verification or the freshness rule), expresses the fact that we

have verified that a message is recent (i.e. it was transmitted during the current session and the sender still
believes in it); this prevents the replay attacks.

Note. For the above last two inference rules, the following local condition for applicability has to be

considered.
1C. P believes fresh(X); so, if X is not recognized as being fresh, it is possible that it is an older

message (maybe replaced by a potential hacker).
3I. If P believes (Q has jurisdiction over X) and P believes (Q believes X), then P believes X; this rule,

denoted also by (J), “says” that: if P believes that Q has jurisdiction over X, then P believes Q, on the
assumption that X is “trusted”.

4I. If P believes (Q said <X, Y>), said P believes (Q said X) (and P believes (Q said Y)); this rule will
also be denoted by (SG); the idea behind is that if an agent said something about a group of messages,
he/she/it already told something about any individual.

Thinking at “easy to use” (but not at the efficiency) we may also introduce the following rules

(without damaging the present proof system):
5I. Not surprisingly, an agent will believe a set of messages (statements) if and only if he (she) will

believe any element of the given set (we remind that the catenation is associative and commutative); so, we
may stipulate that:

5Ia. (BE1) If P believes X and P believes Y, then P believes <X, Y>.
5Ib. (BE2) If P believes <X, Y>, then P believes X (and P believes Y).

 Cristian-Dumitru Masalagiu, Vasile Alaib 6 146

5Ic. (BE3) If P believes that (Q believes <X, Y>), then P believes that (Q believes X) (and P believes
that (Q believes Y)).

Similarly:
5Id. (BE4) If P believes that (Q believes X) and P believes that (Q believes Y), then P believes that (Q

believes <X, Y>).
6I. If an agent sees a formula, then he may see also its components (supposing he/she/it knows the

necessary keys):
6Ia. (SP1) If P sees <X, Y>, then P sees X (and P sees Y).
6Ib. (SP2) If P sees {X}K and P believes that key(K, P↔Q), then P sees X.

Note. Let’s point out that, indeed, the hypothesis in the last rule is “P believes that key(K, P↔Q)” and

not “P sees K” (even this is not quite dangerous or strange).
In fact the last rule may be replaced (without damages) by the following pair of rules:
6Ib′. (SP2’) If P sees {X}K and P sees K, then P sees X.
6Ib′′. (SP2’’) If P believes that key(K, P↔Q), then P sees K.
7I. If part of a formula (or subformula) is known to be fresh, then the entire formula has to be fresh:
7Ia. (FR1) If P believes that X is fresh, then P will believe also that <X, Y> is fresh, no matter who is
Y.
7Ib. (FR2) If P believes that X is fresh, then P will believe that {X}K is fresh.

Note. There exists a postulate unanimously accepted by all the people working in public-key

cryptosystems, namely the fact the encrypted messages by using public keys may be decrypted only by using
private keys.

8I. (SP3) If P sees {X}+K and P believes (׀→+K P), then P sees X.
Note. In the preceding rule we have supposed that if K represents the public key for an agent, then

he/she/it will indeed possesses the corresponding private key as well.
The next (and last for the moment!) rule is optional and expresses the fact that for some public-key

cryptosystems (e.g. RSA [18]), it is possible that anyone who has access to the public key may decrypt every
message encrypted with a private key:

9I. (SP4) If P sees {X}K and P believes (׀→-K Q), then P sees X.
Our main contribution is contained in the next sections.

5. FOMAL SYNTAX FOR THE BAN LOGIC

We have to point out (again) that the BAN logic has been created with the purpose to fit some
particular demands. Anyone who tries to apply logic engineering techniques for proving the formal
correctness of security abstract protocols has to use additional constructs and application restrictions to the
inference rules and has to gain first some specific skills.

By using automated deduction decision procedures [8] we may discover e.g. missing or overloaded
axioms and inference rules. We may also prove, by using consistent deduction systems (although the
corresponding logical theory is usually missing if we think at a complete formal way and at a corresponding
completeness theorem), that the agents may be confident that they are able to safely communicate by using
certain protocols. If the proof fails, we have to conclude that there was an attack from an intruder which has
compromised the communication protocol.

Anyway, the construction of the alphabet, formulae, correct and consistent deduction systems and
logical theories, is a matter of knowledge, skills, proper methodologies, automatic tools, etc. In order:

• Alphabet
• Formulae
• Axioms and Inference Rules (Proof system)
• Semantics

7 Logic engineering with applications to security 147

These steps are necessary in order to define a formal syntax, according to the generic construction
mode of a deduction system and to be able to start defining a formal semantics.

We have to define first the alphabet and the formulae for the just described BAN logic. Let’s start by
pointing out some already known notations:

• P, Q, …(or P1, P2, …) – agents/principals

• S (or S1, S2, …) – servers/machines

• X, Y (or X1, X2, …, Y1, Y2, …) – messages

• Np, Nq, …(or NP, NQ, …) – nonces (Np or NP is attached to the agent P, or p)

• Kxy (or Kxy) – a shared key between the agents x and y

• K – a public or a secret key

binary operators:
1. believes: |≡
2. has jurisdiction over: |⇒
3. said: |∼
4. sees: <
5. communicate (by a public key +K or a corresponding secret key -K): ↔K (↔+K; ↔-K)

6. from (taking into account K): ←K
7. concatenation: <•,•>

unary operators:
1. encryption (taking into account K): {•}K

2. fresh: #(•)
3. has/possesses (taking into account K): ׀→K (again, we may speak about +K and –K)

We are able now to give a precise Backus-Naur description of the class of formulae:
<server> ::= S1 | S2 | …
<agent> ::= <server> | P1 | P2 | …
<machine> ::= <agent>
<principal> ::= <agent>
<message> ::= X1 | X2 | …
<binary-operator> ::= |≡ | |⇒ | |∼ | < | ↔K | | ↔+K | ↔-K | ←K | ←+K | ←-K | <•,•>
<unary-operator> ::= {•}K | #(•) | ׀→K | ׀→+K | ׀→-K
<nonce> ::= N<agent>
<public-key> ::= K1 | K2 | …
<secret-key> ::= K’1 | K’2 | … (or -K)
<shared-key> ::= K<agent><agent>
<key> ::= <public-key> | <shared-key> | <secret-key>
<formula> ::= <agent> <binary-operator> <message> |
| < <message>, <message>> |
| <agent> <binary-operator> <agent> |
| <unary-operator> <message> |
| <unary-operator> <agent>

Note. Not every formula must have a significant formal meaning. That is, all the names above are

variables (which will be interpreted in the corresponding semantics).

 Cristian-Dumitru Masalagiu, Vasile Alaib 8 148

5.1. A Few Words on Formal Semantics for BAN and Logics of Belief

Semantics is indeed a complex problem. As we have already pointed out (several times up to now), a
complete and reliable formal operational (or other types…) semantics has not yet been invented (maybe it
will never be, or it will be not valuable from a computational point of view).

We will anyway suggest some ideas for the definition of the concrete domains for: servers, agents,
principals, machines, messages, operators, nonces, keys (public, secret, shared), and formulae in order to
understand the complexity of the work which has to be (and we intend to) accomplished in the future. The
association between a variable and the corresponding domain element is quite straightforward. The domains,
however, are much harder to determine.

6. CONCLUSIONS

BAN logic refers to some deductive systems for defining, analyzing and authentifying the abstract
cryptographic computer security protocols in interactive media before their implementation. This type of
modal epistemic logic helps the users to determine if the passed information has to be trusted and safe versus
eavesdropping.

This particular logic and its successors start with the idea that all the implied information circulates in
vulnerable media which faces public monitoring and falsification. So we have not to trust a priori the safety
of INTERNET.

REFERENCES

1. M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press, England,
2000.

2. R. Stalnaker, On Logic of Knowledge and Belief, Springer Verlag, 2006.
3. P.C. van Oorschot, Handbook of Applied Cryptography, Carleton University, 2002.
4. T. Kwon, S. Lim, Automation-Considered Logic of Authentication and Key Distibution, Spinger Verlag, 2003.
5. D. Yiqiang, An Improvement of GNY Logic for the Reflection Attacks, Springer Verlag, 1999.
6. D. Monniaux, Analysis of Cryprographic Protocols Using Logics of Belief: An Overview, J. T. I.T., 2002.
7. R. Fagin et al., Reasoning about Knoledge, M. I. T. Press, 2003.
8. J.J. Ch. Meyer, W. van der Hoek, Epistemic Logic for AI and Computer Science, Cambridge Univ. Press, 2004.
9. M. Benerecetti et al., A Logic of Belief and a Model Checking Algoritm for Security Protocols, 2000.
10. P. Lucas, Logic Engineering in Medicine, The Knowledge Engineering Review, 10, pp. 153–179, 1995.
11. S. Berghofer, M. Wenzel, Inductive datatypes in HOL – Lessons Learned in Formal Logic Engineering, Proc. of TPHOLs'99,

19–36, 1999.
12. C. Areces, Logic Engineering. The Case of Description and Hybrid Logics, PhD Thesis, Institute for Logic, Language and

Computation, University of Amsterdam, 2000.
13. S. Veloso, P. Veloso, R. de Freitas, An Application of Logic Engineering, Logic Journal of the IGPL, 13, 1, pp. 29–46, 2005.
14. J.J. Alferes, L.M. Pereira, Reasoning with Logic Programming, Springer-Verlag, 1996.
15. A. Pnueli, Y. Sa’ar, L.D. Zuck, JTLV: A Framework for Developing Verification Algorithms, Computer Aided Verification,

LNCS, 6174, pp. 171–174, 2010.
16. D. Dolev, A.C. Yaho, On the security of public key protocols, IEEE Transactions on Information Theory, IT-29, 12, pp. 198–208,

1983.
17. R.N. Needham, M.D. Schroeder, Using encryption for authentication in large networks of computers, Communications of the

ACM, 21, 12, 1978.
18. R. Rivest, A. Shamir, L. Adleman, A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications

of the ACM, 21, 2, pp. 120–126, 1978.
19. M. Wenzel, The Isabelle/Isar Reference Manual; url: http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/Isabelle2011/doc/isar-

ref.pdf, 2011.

Received February 29, 2012

