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Computer (or Information) Security is a branch of Information Technology used for distributed and 
concurrent systems (multiagent systems, networks, etc.). The main purpose is to prevent unauthorized 
access to the information passed through the system. In the same time, the information has to remain 
accessible and reliable for the trusted customers. Abstract cryptographic (security, encrypted, etc.) 
protocols are generally used. These have to be proved a priori to be correct and this is done using 
formal logic techniques. The so called logics of belief are usually preferred. Unfortunately, the 
problem we are facing is far more complicated and we have to learn how to engineer such logics.  
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1. INTRODUCTION TO LOGIC ENGINEERING CONCEPTS 

Logic engineering is an emerging discipline concerning the application of logic to specific fields of 
research. The problems logic engineering addresses are to build formal modeling languages for specific 
problems or classes of systems, develop and simulate models using logic-based formal languages and, most 
importantly, property specification and verification by expressing properties of systems as logic formulas 
and check their validity under a specific interpretation. 

The subject of using logic based formalisms and tools to solve domain specific problems benefited 
from attention from various authors over time. Although there is no unitary curriculum yet or a solid 
common vision around the concept of logic engineering, the few definitions of the term agree to the basic 
notions of using logics, formalism, in new contexts. The term engineering suggests that this can be a 
repeatable and predictable process, up to a point.  

The views on the term logic engineering found in literature can be summarized as the choice, 
adaptation and usage of formalisms and related techniques, similar to software engineering, in order to solve 
specific problems [10, 11, 12, 1, 13]. 

Our goal in this paper is to outline the first steps towards the application of logic engineering methods 
to the security protocol verification problem. We start by introducing general notions of logic and security 
and continue with the description of BAN logic. We then create for it a formal syntax description using the 
Backus-Naur notation and make the first steps towards semantics. We finalize the paper with conclusions 
regarding the application of the syntax to formal verification and steps for future research. 

2. GENERAL USEFUL NOTIONS 

Some modal logics have particular applications, such as the representation and treatment of knowledge 
in multiagent systems. The main modalities (unary modal operators) are □Q (box) and ◊Q (diamond) but the 
formal semantics is different (from e.g. temporal logics) 

Briefly:  
□: agent_Q_knows_certainly_that… 
◊: from_what_agent_Q_knows… 

                                                      
* This paper was presented in part at the 1st Conference Romanian Cryptology Days – RCD2011, October 11–12 2011, Bucharest, 

Romania. 
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Epistemic modal logics are modal logics concerned mainly with reasoning about knowledge. Without 
entering into details, we say only that we may go back to Greece, Aristotle, and – generally – to 
epistemology, as a branch of philosophy. All of these have to be treated in a formal, and - in the same time – 
practical effective way. 

Related concepts to the main topic are modal and epistemic logics (MDE) [8], model checking (MC) 
[1], natural deduction (ND) [1], logic programming (PROLOG) [14], lambda notation and calculus 
(LAMBDA) [7] and decidability and complexity (DECO) [3]. 

 
Definition. Let SD = <A, R> be a deductive system in a class of formulae denoted FORM. A proof 

(for Fm starting with A) in SD is a list of formulae (D): F1, F2, …, Fm such as for each i ∈ [m], either Fi ∈ 
A, or Fi is obtained from Fj1, Fj2, … , Fjn using a rule: r = < < {Fj1, Fj2, … , Fjn}, Fi>, c> ∈ R ,  
where i1, i2, ... , in < i.  

Consequently, each element of the list (D) is either an axiom (element of A), or it is the consequent of 
an inference rule (element of R) with the previous elements in the list as hypotheses. Soundness and 
completeness theorems may then be introduced.  

3. SECURITY 

Every security protocol incorporates at least one of the following aspects: the establishment and 
relationing of keys, entity identification, symmetric encryption and message authentication, insurance of 
secrecy at the lowest possible level and using combined methods. For example, TLS (Transport Layer 
Security) is a cryptographic protocol used to secure HTTP connections (web). We will provide only some 
elementary notions needed for a better understanding of the logical part and we will point out the true link 
between computer security and logic. 

The security protocols will be treated only from an abstract point of view (i.e. there is no deduction on 
lists of bites, only on text messages). It is supposed that all the participants are able to recognize different 
types of messages although in the 0-1 presentation part of the initial format may be missing. A 
cryptographic/security/encryption protocol is a protocol additionally having embedded a “function” 
assuring security by applying some cryptographic methods. Thus we have the environment, cryptography, 
communication protocols. It is not enough, as we need tools for a priori verification of protocol correctness. 
These are based upon (various types of) logic. Logics can be integrated in formal meta-models.  

Prove the following statement in a fixed cryptographic protocol (and using BAN, e.g.) for a fixed 
security system (part of proving that the protocol works properly, i.e. it is correct/sound, i.e. it reach its 
specifications, etc.). For example, because this message was signed by the machine/agent/principal B, then 
the machine/agent/principal A can be certain that the considered message comes indeed from B. 

Consider the Dolev/Yao model [16] for designing specific protocols. Short description: the design is 
based on the enumeration of all actions that can take place in a given computer security system. Additional 
supposition: the encryption is perfect, but any intruder may have a complete control of the net in the sense 
that he/she/it can view, delete or falsify any message transmitted/received in the net. In fact all this is related 
to the complexity of the semantic domains. 

Advantages. There exist many analysis techniques which may be developed inside this model (some 
of them – [semi]automatized), allowing the creation of [semi]formal proofs for some general properties of 
the given protocol (such as the certitude of secretization). 

Disadvantages. Unnatural from a human point of view. To design a protocol we rather think to use 
some high-level concepts (e.g. “the secret key is known only by A and B and it is the only one used for the 
communication between the two agents”) such that we can infer statements like “if a message arrives 
encrypted with a key known only to me and to the machine M, and it is not me which send it in the first 
place, then the considered message has to have been sent by M”. 

The Needham-Schroeder (with shared keys) protocol ((NS) for short) [17], is defined as sequences of 
messages (plain texts, cryptotexts), as follows (see the semantic part for details): 

O1. P → S : P, Q, Np 
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O2. S → P : {Np, Q, Kpq, {Kpq,P}Kqs
}Kps

  
O3. P → Q : {Kpq, P}Kqs 
O4. Q → P : {Nq}Kpq 
O5. P → Q : {Nq - 1}Kpq 
S, P, Q are machines/agents/principals (usually, S is considered to be a server). Np and Nq are 

invented words (nonces); they represent in fact random numbers, chosen by P respectively Q, and used to 
prevent replay attacks; these types of attacks mean that an intruder will replicate (parts of) a message 
sent/kept in one of the previous sessions. 

The general idea behind the nonces is that the principals verify the fact that the values used in certain 
encrypted messages correspond to the correct values of the nonces for the current session; the discrepancies, 
which may occur, e.g., because of the presence/accessibility of the messages memorized during some 
previous sessions, can be detected by the principals (they can, in this way, avoid such messages if the 
protocol is correctly managed). Kxy (Kxy) is a generic notation for a key K shared between x (e.g. p, P) and 
y (e.g. q, Q). 

The main goal of the (NS) protocol is to allow P and Q to agree to share (in communication) the key 
Kpq. Consequently, in a first step, P and Q will use a trusted server S, which will generate the key during the 
execution of the protocol. In a second step, S will communicate with P and Q using the shared keys Kps 
respectively Kqs, presumed to be known from the very beginning by the implied parts. 

The intuitive semantics of O1 and O2: P sends a message to the server identifying itself and Q (using 
the nonce Np), telling the server that it wants to communicate with Q; then, the server generates Kpq and 
sends back to P a copy, encrypted under Kqs, for P to forward to Q and also a copy for P. Since P may be 
requesting keys for several different agents, the nonce assures P that the message is fresh and that the server 
is replaying to that particular message and the inclusion of Q name tells P who it is to share the key with. 

4. LOGICS OF BELIEF 

Logics of belief were introduced in order to have a corresponding formal framework (clearly, a great 
advantage if we think at implementations). BAN logic was the first to be developed and it was followed by 
more expressive and evolved extensions. An unpleasant limitation of these logics is the necessity to 
(semantically) annotate the protocols with extra (meta) logical formulae (again, semantic domains have to be 
found). These are supposed to represent with high fidelity the intentions of the agent which sends a message 
and are used to express the secretization or the freshness of (some parts) of a message. Another important 
disadvantage is that the secretization cannot yet be formally proved (much more, the fact that the secret keys 
are protected is implicitly assumed). Hence, the term “computer system security” implies the idea that there 
exist formal methodologies and procedures which help that valuable services and information can be a priori 
protected against intruders or unpredictable events. These methods generally use the following paradigm: we 
do not allow the behaviors which are not desirable, instead of allowing the acceptable behaviors. 

The Dolev-Yao model is used as a medium to formally a priori prove some specific properties of the 
interactive protocols. Using this abstract model, the net may be viewed as a set of abstract machines which 
have the role to “discuss with partners” (by changing messages). In this environment, the intruder may hear, 
intercept and memorize any message, but it is limited only by the used cryptographic methods. 

Note. Cryptographic primitives are modeled by (abstract) operators. Thus, if we refer to the 
(asymmetric) encryption for a user X, it will be represented by the couple <EX, DX> (represented by the 
encryption function, respectively decryption); this way we satisfy the property that their composition is 
identity (EXDX = DXEX = 1). Given a message M, its encrypted variant (EX(M)) can not reveal anything 
about M. Although not in accordance with the real world, it is supposed that the adversary can not 
manipulate the encrypted message (not even at the 0-1 representation) and can not “guess” keys: Ex may be 
written as Dx

-1. 
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Logics of belief are designed to show the conclusions a participant can draw upon in a communication 
dialog based upon received messages and the initial beliefs. We expect that an analysis based on logics of 
belief to guarantee that only the desired properties (regarding, for example, the security of data,  
non-replicating transitions, admitting “trusted” persons, etc.) are accepted during a communication 
session. Obviously, proofs related to abstract protocols are not proofs that the concrete protocols (“accurate” 
implementations of the abstract ones) are correct. There are numerous assumptions taken “for granted” for a 
certain implementation which, if not valid in reality, will lead to the conclusion that a protocol 
implementation is incorrect although the protocol is (classic example: the crypto-algorithm is safe).  

When we design or explain a cryptographic (abstract) protocol, the formulation “because this message 
was signed by the machine B, then machine A can be certain that the message originates from B” is often 
used within the informal proof justifying that the protocol works correctly. From such a “proof” the idea of a 
trust relationship is missing. Much more, the fact that the certainty of such a message is not a copy of 
another from a previous session, is not formaly derived. Although special formal logics of belief, which we 
call upon, do not substitute automated proof or verification techniques (for example, model checking), they 
can be of good use, at least in uncovering of sensible points of the protocol that can weaken it. We must 
outline from the start that the lack of a formal semantics represents a handicap in using such logics in 
practice. BAN logic, as well as its successors are in fact types of (belief) multisorted (agents; encryption 
keys; nonces; formulae, etc.) modal epistemic logics [7]. Suitable formal semantics, as far as we know, they  
are not yet quite profitable from an implementation point of view (if they exist anyway). 

4.1. Classical Approach for BAN Logic 

The BAN logic refers to some deductive systems for defining/analyzing/authentifying cryptographic 
protocols. This logic (and its further extensions) helps the users to determine if the messaged information is 
to be trust and/or certain, versus eavesdropping. Anyway, the idea is that any information passed from one 
“person” to another, uses a vulnerable medium, where falsification and public monitorizing are normal. 
Suitable particular notations will be used, starting with the protocols themselves. 

A simple derivation sequence in BAN logic usually includes three supplementary steps: the verification 
of the message origin, the verification of the freshness of the message and the verification of trust of the 
transmitter. 

BAN logic is decidable and the classic algorithm uses a variant of the magic sets [3]. More 
specifically, there exists an algorithm which, having as input some assumption formulae and a goal formula 
(written in a BAN specific language), always stops with the answer YES (the goal may be inferred from the 
assumptions) or NO. BAN logic has practically a pure formal syntactic definition. The work on developing a 
formal convenient semantics is not yet finalized. BAN logic, as well as the succeeding ones (mentioned 
before), are modal logics (of trust, epistemic, etc. – from a semantic point of view). They deal primarily with 
agents trusting their ability to control their environment; for example, they could control the distribution of 
common or shared keys. Other necessary rules will be explicitly presented as part of the respective logic 
definition. As we have already pointed out, a complete formal semantics was not yet discovered and maybe it 
won’t even be (or it is not worth the computational necessary effort). One cannot prove secrecy within this 
framework, but it is presumed implicitly that secrets are protected. 

Let us go into details. The axioms and the inference rules of BAN logic follow (P, Q are agents, X is a 
message - or part of, and K is an encryption key: public, secret, and shared). 

 
In what immediately follows we present the classical approach. Clearly, it is semi-formal. 
AXIOMS 
1A. P believes X (P|≡ X): P acts as it knows that X has to be trusted (X is true) and can guarantee that 

(including the situation when X is part of another message).  
2A. P has jurisdiction over X (P |⇒ X): the opinion of P about (the truth of X) should be trusted. For 

example, the keys distribution made by the servers has to be trusted if we speak about keys. 
3A. P said X (P |∼X): At one time, P transmitted (and believed) X, although (in the present) it is 

possible that P does not yet believe X (that is, we don’t know if the message was sent a long time ago or 
during the current communication session).  
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4A. P sees X (P < X): P receives the message X, it can read it and it can retransmit it 
5A. {X}K (or {X}K): The message X is encrypted with the key K. 
Note. A message Kpq which in fact transports a key created to be used in the communication between 

P and Q, will be represented in BAN by P ↔Kpq
 Q; because any key is, at its turn, encrypted (in a way which 

cannot be discovered by an intruder, the transmitted message will be in fact encrypted; for example, 
{Kpq}Kqs

; the corresponding formula will be then {P↔ Kpq
 Q}Kqs

. 
6A. fresh(X) (#X): X has not ever been transmitted in the current session; this fact is valid especially 

for the nonces; #X will be used as a complement for P |∼X to establish that a message coming from P truly 
refers to the current session (i.e. it is not an older, memorized, message used already by an intruder).  

7A. key(K, P↔Q) (or P ↔K Q; this operator is commutative): P and Q may communicate using the 
shared key K; the key K is supposed to be good, in the sense that it will never be discovered by any other 
agent  (except for P, Q or any other trusted by P or Q); this is the first time we have applied the supposition 
that secrecy is implicitly protected. 

8A. P has/possesses a public key K (׀→+K P): the corresponding (matching) secret key, i.e. the 
converse of K will be denoted by „-K”; we suppose, again implicitly, that this key will never be discovered 
by any agent, except for P or any other in which P trusts. 

Notation. <X, Y> will denote the concatenation of the messages X and Y. 
 
Inference rules 
1I (also denoted (MM1)). If P believes key(K, P↔Q) and P sees {X}K, then P believes(Q said X). 
The idea behind: if a key K is shared by P and Q and K is maintained secret, if P sees a message 

encrypted with K, then P may be sure that it comes from Q; an additional implicit supposition is that the 
message is not necessarily sent by P; Burrows, Abadi and Needham explain this by saying: “{X}K” is in fact 
an abbreviation for “{X}K from P”, that is the encryption was made by P; much more, it is supposed that any 
agent may recognize the encrypted messages it has sent from the very beginning. 

1I′. If P believes key (K, P↔Q) and P sees{X}K where the message was not necessarily sent by P, 
then P believes (Q said X). 

2I. If P believes (Q said X) and P believes fresh(X), then P believes (Q believes X) 
This rule denoted also by (NV) (the nonce verification or the freshness rule), expresses the fact that we 

have verified that a message is recent (i.e. it was transmitted during the current session and the sender still 
believes in it); this prevents the replay attacks. 

 
Note. For the above last two inference rules, the following local condition for applicability has to be 

considered. 
1C. P believes fresh(X); so, if X is not recognized as being fresh, it is possible that it is an older 

message (maybe replaced by a potential hacker). 
3I. If P believes (Q has jurisdiction over X) and P believes (Q believes X), then P believes X; this rule, 

denoted also by (J), “says” that: if P believes that Q has jurisdiction over X, then P believes Q, on the 
assumption that X is “trusted”. 

4I. If P believes (Q said <X, Y>), said P believes (Q said X) (and P believes (Q said Y)); this rule will 
also be denoted by (SG); the idea behind is that if an agent said something about a group of messages, 
he/she/it already told something about any individual. 

 
Thinking at “easy to use” (but not at the efficiency) we may also introduce the following rules 

(without damaging the present proof system): 
5I. Not surprisingly, an agent will believe a set of messages (statements) if and only if he (she) will 

believe any element of the given set (we remind that the catenation is associative and commutative); so, we 
may stipulate that: 

5Ia. (BE1) If P believes X and P believes Y, then P believes <X, Y>. 
5Ib. (BE2) If P believes <X, Y>, then P believes X (and P believes Y). 
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5Ic. (BE3) If P believes that (Q believes <X, Y>), then P believes that (Q believes X) (and P believes 
that (Q believes Y)). 

Similarly: 
5Id. (BE4) If P believes that (Q believes X) and P believes that (Q believes Y), then P believes that (Q 

believes <X, Y>). 
6I. If an agent sees a formula, then he may see also its components (supposing he/she/it knows the 

necessary keys): 
6Ia. (SP1) If P sees <X, Y>, then P sees X (and P sees Y). 
6Ib. (SP2) If P sees {X}K and P believes that key(K, P↔Q), then P sees X. 
 
Note. Let’s point out that, indeed, the hypothesis in the last rule is “P believes that key(K, P↔Q)” and 

not “P sees K” (even this is not quite dangerous or strange). 
In fact the last rule may be replaced (without damages) by the following pair of rules: 
6Ib′. (SP2’) If P sees {X}K and P sees K, then P sees X. 
6Ib′′. (SP2’’) If P believes that key(K, P↔Q), then P sees K. 
7I. If part of a formula (or subformula) is known to be fresh, then the entire formula has to be fresh: 
7Ia. (FR1) If P believes that X is fresh, then P will believe also that <X, Y> is fresh, no matter who is 
Y. 
7Ib. (FR2) If P believes that X is fresh, then P will believe that {X}K is fresh. 
 
Note. There exists a postulate unanimously accepted by all the people working in public-key 

cryptosystems, namely the fact the encrypted messages by using public keys may be decrypted only by using 
private keys. 

 
8I. (SP3) If P sees {X}+K and P believes (׀→+K P), then P sees X. 
Note. In the preceding rule we have supposed that if K represents the public key for an agent, then 

he/she/it will indeed possesses the corresponding private key as well.  
The next (and last for the moment!) rule is optional and expresses the fact that for some public-key 

cryptosystems (e.g. RSA [18]), it is possible that anyone who has access to the public key may decrypt every 
message encrypted with a private key: 

9I. (SP4) If P sees {X}K and P believes (׀→-K Q), then P sees X. 
Our main contribution is contained in the next sections. 

5. FOMAL SYNTAX FOR THE BAN LOGIC 

We have to point out (again) that the BAN logic has been created with the purpose to fit some 
particular demands. Anyone who tries to apply logic engineering techniques for proving the formal 
correctness of security abstract protocols has to use additional constructs and application restrictions to the 
inference rules and has to gain first some specific skills.  

By using automated deduction decision procedures [8] we may discover e.g. missing or overloaded 
axioms and inference rules. We may also prove, by using consistent deduction systems (although the 
corresponding logical theory is usually missing if we think at a complete formal way and at a corresponding 
completeness theorem), that the agents may be confident that they are able to safely communicate by using 
certain protocols. If the proof fails, we have to conclude that there was an attack from an intruder which has 
compromised the communication protocol. 

Anyway, the construction of the alphabet, formulae, correct and consistent deduction systems and 
logical theories, is a matter of knowledge, skills, proper methodologies, automatic tools, etc. In order: 

• Alphabet 
• Formulae 
• Axioms and Inference Rules (Proof system) 
• Semantics 
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These steps are necessary in order to define a formal syntax, according to the generic construction 
mode of a deduction system and to be able to start defining a formal semantics. 

We have to define first the alphabet and the formulae for the just described BAN logic. Let’s start by 
pointing out some already known notations: 

• P, Q, …(or P1, P2, …) – agents/principals 

• S (or S1, S2, …) – servers/machines 

• X, Y (or X1, X2, …, Y1, Y2, …) – messages 

• Np, Nq, …(or NP, NQ, …) – nonces (Np or NP is attached to the agent P, or p) 

• Kxy (or Kxy) – a shared key between the agents x and y 

• K – a public or a secret key 
 

binary operators: 
1. believes: |≡  
2. has jurisdiction over: |⇒  
3. said: |∼  
4. sees: <  
5. communicate (by a public key +K or a corresponding secret key -K): ↔K (↔+K; ↔-K) 

6. from (taking into account K): ←K  
7. concatenation: <•,•>  
 
unary operators: 
1. encryption (taking into account K): {•}K  

2. fresh: #(•)  
3. has/possesses (taking into account K): ׀→K (again, we may speak about +K and –K) 

We are able now to give a precise Backus-Naur description of the class of formulae: 
<server> ::= S1 | S2 | … 
<agent> ::= <server> | P1 | P2 | … 
<machine> ::= <agent> 
<principal> ::= <agent> 
<message> ::= X1 | X2 | … 
<binary-operator> ::= |≡ | |⇒ | |∼ | < | ↔K | | ↔+K | ↔-K | ←K | ←+K | ←-K | <•,•> 
<unary-operator> ::= {•}K | #(•) | ׀→K | ׀→+K | ׀→-K 
<nonce> ::= N<agent> 
<public-key> ::= K1 | K2 | …  
<secret-key> ::= K’1 | K’2 | … (or -K) 
<shared-key> ::= K<agent><agent> 
<key> ::= <public-key> | <shared-key> | <secret-key> 
<formula> ::=  <agent> <binary-operator> <message> | 
| < <message>, <message>> |  
| <agent> <binary-operator> <agent> | 
| <unary-operator> <message> | 
| <unary-operator> <agent> 

 
Note. Not every formula must have a significant formal meaning. That is, all the names above are 

variables (which will be interpreted in the corresponding semantics). 
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5.1. A Few Words on Formal Semantics for BAN and Logics of Belief 

Semantics is indeed a complex problem. As we have already pointed out (several times up to now), a 
complete and reliable formal operational (or other types…) semantics has not yet been invented (maybe it 
will never be, or it will be not valuable from a computational point of view). 

We will anyway suggest some ideas for the definition of the concrete domains for: servers, agents, 
principals, machines, messages, operators, nonces, keys (public, secret, shared), and formulae in order to 
understand the complexity of the work which has to be (and we intend to) accomplished in the future. The 
association between a variable and the corresponding domain element is quite straightforward. The domains, 
however, are much harder to determine. 

6. CONCLUSIONS 

BAN logic refers to some deductive systems for defining, analyzing and authentifying the abstract 
cryptographic computer security protocols in interactive media before their implementation. This type of 
modal epistemic logic helps the users to determine if the passed information has to be trusted and safe versus 
eavesdropping. 

This particular logic and its successors start with the idea that all the implied information circulates in 
vulnerable media which faces public monitoring and falsification. So we have not to trust a priori the safety 
of INTERNET. 
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