
      THE PUBLISHING HOUSE  PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, 
      OF THE ROMANIAN ACADEMY  Volume 13, Number 2/2012, pp. 157–166 

A CLOSER VIEW OF RUNNING-KEY CIPHER ON NATURAL LANGUAGES  
AND ITS EXTENSION FOR NEW APPLICATIONS IN CRYPTOGRAPHY*  

Adriana VLAD1,2, Azeem ILYAS1, Adrian LUCA1 

1“Politehnica” University of Bucharest, Faculty of Electronics, Telecommunications and Information Technology, 
1-3, Iuliu Maniu Bvd. Bucharest 6, Romania 

2The Research Institute for Artificial Intelligence, 
Romanian Academy, 13, Calea 13 Septembrie, Bucharest 5, Romania 

E-mail: avlad@racai.ro, adriana_vlad@yahoo.com 

The paper supports a debate concerning the meaning and the importance of redundancy and 
ergodicity in cryptography. The discussion is mainly organized around a very thought-provoking 
enciphering method, running-key cipher. The paper comes with a new view of running-key method 
which permits to resume and extend it for ergodic sources in order to provide good quality key 
generators for cryptography. We first apply the running-key method on natural language and then we 
extend it on logistic map. Finally some conclusions are drawn even for image enciphering. 
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1. INTRODUCTION 

In 1945, Claude Shannon wrote his results concerning what is so specific in a message source that 
makes possible to break a cipher in a classified paper, [1]. The content of the paper appeared in the open 
literature in 1949, [2] – a fundamental paper in the field; since then, cryptography turned from an art into 
science.    

The notions of entropy, redundancy, ergodicity and uncertainty channel that Shannon worked out for 
his evolving information theory [3] had found a perfect support in cryptography both for their perceiving 
and for their utility in practice. 

In what follows we pay attention to redundancy and ergodicity without trying to provide an overview 
on the main contributions existing in the large field of the information theory; the topic is too complex and it 
remains a challenging area of research. The aim is to provide more insight and to open a discussion on the 
effect of the redundancy and ergodicity in practical secrecy systems. That will be done by means of a new 
view of the running-key cipher approach with a perspective of new applications in cryptography.  

 
First we shall recall some main issues Shannon defined and worked out in his theory on cryptography. 

Redundancy – guilty of breaking ciphers 
The above sentence was demonstrated by Shannon in the context of defining the ideal cipher. Let us 

have the discrete uncertainty channel with X  and Y  the input and output spaces (an input element from X is 
a plain message and an output element from Y is a cryptogram). 

Be a closed secrecy system (a secrecy systems where the total number of possible messages is equal to 
the number of possible cryptograms). In [2], it is shown that if there is no redundancy on the X message 
space, then any cipher, even a very simple one, is an ideal cipher and the cryptanalyst will never find the 
key. In this situation the message equivocation (the secrecy amount of the cipher) will differ from zero, so 
there is no unique solution for the cipher.  
                                                           

*  This paper was presented in part at the 1st Conference Romanian Cryptology Days – RCD2011, October 11–12 2011, Bucharest, 
Romania. 
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What practically means zero redundancy? 
Let us consider the input elements from X corresponding to a sequence of symbols emitted by a 

message source having q symbols in the alphabet, { }1 2, , , qS s s s= … . Zero redundancy on the X message space 

( 0=XR ) means in fact a zero-memory information source S with equally likely symbols in the alphabet 
(corresponding to the throwing of a fair dice model).  

Obviously, in practical messages there is redundancy and Shannon illustrated his theory considering 
two types of ergodic message sources: zero-memory information sources with various redundancy values 
and multiple ergodic Markov chains approximating to Natural Languages (NL). 

sR  redundancy assigned to the S source is computed as )(log SHqRS −= . The relative redundancy 

is qSHS log/)(1 −=ρ . For the S zero-memory source, the entropy is ∑−=
q

i
ii sPsPSH )(log)()( . 

For Natural Languages, which are well approximated by multiple Markov ergodic chains, the entropy 
is calculated by a series of approximations of the m-gram entropy [4]:  

( ) ( , ) log ( / )i i
i j

H S P b j P j b= −∑∑ . 

ib  is a block of 1−m  adjacent letters ( 1−m gram); theoretically, there are 1mq −  distinct ib  blocks in total. j 
is the letter following ib . )/( ibjP  is the conditional probability that letter j follows block ib . ),( jbP i  is 
the probability of the m-gram ),( jbi . For small m values ( 6≤m ) the entropy can be evaluated from the 
statistical model existing in most of NL [4–6]. For large m values there is an interesting solution to 
approximate )(SH  by using running-key cipher [2, 7]. Note that NL are considered to be well approximated 
by multiple ergodic Markov chain with the multiplicity order larger than 30.  

Coming back to the interest in cryptography, an ideal cipher cannot be put into practice because one 
cannot get rid of the redundancy from the message (that would imply to code the message by using 
Shannon’s source coding theorem). Practical ciphers do not try to eliminate the redundancy, neither to 
diminish it, but to diffuse the redundancy on large linguistic entities. Thus, the discussion is shifted to the 
diffusion and confusion as features of a good practical cipher.   

The statement that the redundancy is guilty for enabling to break a code does not imply the fact that 
one cannot design unbreakable ciphers still preserving the message space in its natural form (with intrinsic 
redundancy). At this moment we bring into discussion Vernam type cipher and running-key cipher; for both 
of these ciphers the cryptogram is obtained by summing up modulo q the message and the key (letter-by-
letter), as in Fig. 1.  

Shannon defined perfect secrecy systems and also demonstrated that the Vernam cipher (or one-time 
pad in which a coin-tossing is added bit-by-bit modulo 2 to the message) is unbreakable [8]. In the Vernam 
cipher the key is a sequence of symbols from the same alphabet as the message source and of the same 
length as the message, with the specification that the key source is a zero-memory source with zero 
redundancy. The Vernam type cipher is a perfect cipher (having the same number of messages, keys and 
cryptograms, and equally likely keys). It is clear from [2] that a perfect cipher does not provide any 
information to the cryptanalyst, no matter the message source will be (how much redundancy it contains), 
even if we extend the X message space such as to correspond to other messages sources, either ergodic or 
not. However, its use is very much restricted in practice concerning the keys management.   

For running-key cipher, the key is also a sequence of the same length as the message, but it is a 
meaningful message (a typical sequence like the plain message). For example, if we encipher English 
language texts, then the keys will be also natural texts in English. In Section 2, we shall see that there are 
variants of running-key cipher that lead to unbreakable ciphers. 

To conclude with, practical ciphers do not eliminate, generally neither diminish the redundancy, but 
diffuse the redundancy on long message units. On the other hand, non-zero redundancy on the message space 
(that is to consider natural sources with their intrinsic redundancy) does not mean that one cannot design 
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unbreakable ciphers. The above results of Shannon’s theory represent a challenge both for the designing of 
ciphers with good diffusion property and for pseudo-random generators inspired from the requirements of 
the perfect cipher.  

 
  Vernam cipher Running-key cipher 

xi  (plain message): T H I S I S M E S S A G E  T H I S I S M E S S A G E 
kS  (key): V S D X Q C H O Y Z E Z Y  A R E Y O U A F R A I D O 
yj (cryptogram): 
yj=(xi+ks) mod 26 

B R Y C L H G F D E R S P  G L Z D J Z Z W W F V W F 

Fig. 1 – Example for Vernam cipher and running-key cipher for English language with q = 26 letters in alphabet. 

Section 2 comes with a closer look at the running-key method on NL, illustrated on Printed Romanian. 
We are searching for a lesson to be learned out of the running-key in order to take advantage for developing 
new key generators useful in cryptography.  

Section 3 addresses to the chaos-based cryptography by resuming and extending the running-key cipher 
with the purpose to point out good quality enciphering keys. In Section 3 we also depict the role of 
redundancy in cryptography by means of image enciphering.  

2. STUDY ON RUNNING-KEY CIPHER UNDERLYING THE INVOLEMENT  
OF REDUNDANCY AND ERGODICITY 

We shall next analyze the running-key method on NL (here illustrated by the Printed Romanian), trying 
to bring into evidence issues related to the practical significance, perception and numerical evaluation of 
existing redundancy in natural languages, implying into discussion the ergodicity of message source. More 
than that, it puts into evidence the role of redundancy in the cryptography, this time regarding not only the 
redundancy existing in the message source but also in the keys-source.  

Figure 2 presents several versions of the application of running-key cipher, each time X1 representing a 
clear message (plaintext). In first version of Fig. 2, cryptogram Y1 is obtained by summing up clear message 
X1 with the key T1 which is also a natural text. In version 2 of the encryption, the key consists of two natural 
texts, T1 and T2. Cryptogram Y2 is obtained as the sum of three natural texts, X1, T1 and T2. Similarly, for 
variant 3≥n , cryptogram Yn is obtained by summing up 1+n  natural texts X1, T1,T2,T3,...,Tn (where the n 
natural texts, T1, T2,T3,...,Tn, stand for the key).  

The encryption process was applied on Romanian language in five variants (meaning 6 natural texts). 
To have in depth analysis of the running key approach we worked on a literary Romanian corpus consisting 
of 58 books previously used in some studies dedicated to modelling printed Romanian [5]; the size of this 
corpus is of 29 293 212 characters. In the analysed corpus, the alphabet consists of the 31 letters specific to 
the Romanian alphabet without blank, orthography and punctuation marks. The 31 letters are here presented 
in decreasing order of their relative frequencies (presented as percentage in parentheses): 

E(11.47); I(9.96); A(9.95); R(6.82); N(6.47); U(6.20); T(6.04); C(5.28); L(4.48); S(4.40); O(4.07); 
Ă(4.06); D(3.45); P(3.18); M(3.10); Ş(1.55); Î(1.40); V(1.23); F(1.18); B(1.07); Ţ(1.00); G(0.99); 
Â(0.92); Z(0.71); H(0.47); J(0.24); X(0.11); K(0.11); Y(0.07); W(0.03); Q (≈0,00) 
The codes for A-Z were 0-25 (as in English alphabet, the order considered in ASCII). The codes for the 

Romanian diacritics are the numbers assigned to them in parentheses: Ţ (26), Î (27), Ş (28), Ă (29), Â (30).  
Taking advantage of the ergodicity involved in NL, our main concern in the experimental study is to 

evaluate the statistical dependence/independence existing between the cryptogram and the plain message. So 
we apply several statistical tests to investigate the assumption of independence between the original message 
and cryptogram in the variants of Fig. 2.  

The discussion on the statistical dependence between input message and cryptogram is next organized 
in two approaches: (A) For a quick decision concerning statistical independence, we first apply a Chi-square 
test in contingency tables; (B) An approach with cascaded information channels where the input is the plain 
message and the output is the cryptogram, enabling us to reach a final conclusion on the statistical 
independence.   
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Fig. 2 – Running-key cipher variants. 

 
(A) A decision based on the Chi-square test  in contingency tables  
The Chi-square test in contingency tables (a test of independence) [9, 10], has the following test 

hypotheses: the null hypothesis 0H : ( , ) ( ) ( )i j i jp x y p x p y= ; the alternative hypothesis 

1H : ( , ) ( ) ( )i j i jp x y p x p y≠ . 
Note. ix  and jy stand for letters in the source alphabet of the plain message and cryptogram, respectively.   
The test is applied on i.i.d data pairs (data coming out from independently and identically distributed 

random variables) extracted from the message X1 and cryptogram Yn , where ...,3,2,1=n . Figure 3 
illustrates how to obtain the experimental i.i.d. data pairs submitted to test in the first version of running-key 
cipher, (X1, Y1). The method is similarly extended for the rest of five versions of the running-key cipher 
applied to Printed Romanian, namely (X1, Y2), (X1, Y3), (X1, Y4) and (X1, Y5) from Fig. 2. To obtain the i.i.d. 
data we applied a periodical sample with a large enough sampling period (200 symbols) so as to practically 
eliminate the dependency between successive symbols in the NL texts. By shifting the sampling origin with 
one symbol, we could obtain 200 i.i.d. experimental data sets. (As a result of the NL ergodicity assumption, 
these 200 i.i.d. data sets are practically equivalent to each other in terms of the investigation made). Each 
sample obtained in this way consists of N observations (where N = L/200, L is the length of the plain 
message). Note that the independence among the observations is a consequence of the large sampling period 
and identically distribution derives from the stationary hypothesis (involved by the ergodicity assumption). 
The way to extract the 200 i.i.d. data sets follows the procedure for investigating NL stationarity [5, 6].  

Note.  In this study 6105.4 ×=L characters and 22 500N = .  
 

 1 2 3 4 5 . . . . . . . . . . . . . . 201 . . . . . . . . . . . 401 . . . . . . .

X1 C Â N D G A I T . . . . . . . S A U A R U  N C A . . . . M A R E R E S P E C T . 
T1 O A T E Î N C E . . . . . . . D E G E A B A B Ă . . . . R Ă M E R E U N U I N . 
Y1 Q Â B H C N K X . . . . . . . V E Ă E R V N D Ă . . . . Ă Ă  Ă I D I H Ş Y K B . 

1: C                   R             R        
 Q                   R             D        
2:  Â                   U             E       
  Â                   V             I       
…                                         
                                         
200:                   A             E         
                   E             I         

Fig. 3 – How to obtain the 200 sets of i.i.d. pairs. 

For a quick result of the Chi-square test in contingency tables, the symbols in the alphabet are grouped 
into four classes according to the descending hierarchy of the relative frequencies of letters. Figs. 4(a) and 
(b) illustrate how we organized the four classes for investigating the independence between X1 plain message 
and Y1 cryptogram.  

X1 T1 

X1 T1 T2 

X1 T1 T2 T3 

Y1 

Y2 

Y3 

X1 T1 T2 T3 Tn Yn 
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a                                                                                        b 

Fig. 4 – Organization of the four classes: a) X1  plain message; b) Y1 cryptogram. 

The test is based on the z  test value:  

 
24 4

1 1

/ .i j i j
ij

i j

m m m m
z m

N N= =

   
= −   

   
∑∑  (1) 

In relation (1), N is the i.i.d. data size. im  is the occurrence number of the i class assigned to the plain 
message and jm  is the occurrence number of the j class assigned to the cryptogram. ijm  is the occurrence 
number assigned to the pair (i, j) in the i.i.d. data. For example, 13m  represents the occurrence number of a 
pair consisting of letters from class 1 assigned to X1 plain and letters from class 3 assigned to Y1 cryptogram. 
If z test value satisfies the condition z zα≤  (where zα  is the α  point value corresponding to the Chi-square 
law of 29 (4 1)= −  degrees of freedom), we accept the null hypothesis 0H , thus we accept the statistical 
independence between the input message and cryptogram. We considered 0.05α =  significance level, that 
leads to 16.90zα = .  

All the 200 i.i.d. data sets were submitted to the quick Chi-square test in contingency tables (the i.i.d. 
data size is 22 500N = ). As the 200 i.i.d. data sets are a priori equally good to convey the information 
whether the statistical independence exists or not between plain and cryptogram, Table 1 presents in column 2 
the proportion of accepting H0 hypothesis out of 200 data sets, each row corresponding to the investigated 
cryptogram Yn (where 5...,,2,1=n ). 

Table 1 

Running-key approach on NL: results for the statistical independence between plain message and cryptogram 
 Chi-Square test in 

contingency tables   
pair (X1 ,Yn ) 

Chi-Square test 
goodness of fit 

(One tail) 

εr
*
  relative departure for 
letter structure in the 

cryptogram 

No. of equally likely digrams 
in the cryptogram 

(within the 5% error)   
  (1) (2) (3) (4) (5) 

Y1 0.00 0.00 0.4769 118 (0.122789) 
Y2 0.00 0.00 0.1091 407 (0.423517) 
Y3 0.795 0.78 0.0343 909 (0.945890 
Y4 0.935 0.945 0.0108 958 (0.996878) 
Y5 0.955 0.95 0.0061 961 (1.000000) 

* ˆmax (1/31) /(1/31)r iPε = − ; îP  values stand for the relative letter frequencies in Yn sequence 

Important remarks: (1) The 200 i.i.d. samples as shown in Fig. 3 are not independent data sets, so we 
cannot assign a confidence level to the respective proportion in column 2. However, the proportion conveys 
information about the possibility to break a cipher and also about the homogeneity involved by the results. 
(2) The statistical independence illustrated in Table 1 is carried out only on the first order statistics of the 
assigned NL random process. (3) We performed the independence test in contingency tables up to five 
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additions meaning 6 natural texts to be summed up, i.e. more than the practical use for the cryptanalysis. We 
did that in order to get more insight regarding the dependence/independence relationship between plain 
message and cryptogram. The results are put together in Table 1, column 2 and show that after four additions 
(meaning Y4 or Y5), the dependence decreases much, so that we can practically consider that Y5 (even Y4) 
cryptogram is statistically independent of the plain message. Note that we performed the Chi-square test in 
contingency tables organizing the alphabet in four classes in various ways (not only like in Fig. 4) to make 
sure that this does not affect the independence decision and the experimental results remain similar to those 
presented in Table 1, column 2. 

(B) Statistical independence decision based upon cascaded information channels 

The paper comes with a new view of the schema in Fig. 2, which in fact puts into evidence Shannon’s 
basic ideas representing the cipher by information channel, see Fig. 5. In fact, based on this schema of 
cascaded information channels, we can draw a conclusion concerning the statistical independence in the 
running-key approach. More exactly, we want an answer concerning how many additions we have to make in 
the running-key method so that the final Yn cryptogram is practically independent of the plain message. 
  

 

Fig. 5 – Information channel associated with the YS  sequences. 
 

X Y {0,1,2,3,...29,30}= =  

Fig. 6 – An information channel depiction. 

 
As it is known, an information channel is formally described by the input/output alphabet (X/Y) and 

the noisy matrix. All the channels in Fig. 5 are identical and uniform zero-memory noisy channels. Fig. 6 
describes one of these channels; the input and output alphabet are the same and consist of numbers {0, 1, 2 
,..., 30}. Each channel corresponds to the encryption of one letter in the simplest variant of the running-key 
approach, which means adding two texts to obtain a cryptogram. So, for the channel matrix, the notations i, j 
and k stand for the input, output and key symbols and they are connected by the relationship from Fig. 6. 
Each row in the noisy matrix corresponds to a fixed i input and the terms in the respective row of the noisy 
matrix are just the probabilities assigned to NL letter coded by k ; p(j/i) is a probability of obtaining j symbol 
at the output of the channel if the i input symbol is sent, )()/( kpijp = . Note that every row in the noisy 
matrix assigned to the channel in Fig. 6 is a permutation of the terms in the first row, so we have a uniform 
information channel. 

Let us first discuss the case when the input from Fig. 5 corresponds to the zero-memory information 
source approximating NL. Thus a typical sequence emitted by the input source of Fig. 5 will be any one of 
the 200 data sets sampled from NL texts as in Fig. 3 and consequently the respective output of the first 
channel will be the i.i.d. data extracted from the cryptogram Y1 like in Fig. 3. 

According to the known theory (information theory and cryptography), from Fig. 5 it results the 
following relation between the source entropies involved in the cascaded channels  

1 1 2 3 2(X ) (Y ) (Y ) (Y ) ... (Y ) log 31.nH H H H H< < < < < <  

If we want Yn to be statistically independent from X1, such a result can be reached if and only if Yn is a 
zero-memory information source having zero-redundancy, i.e. 2(Y ) log 31nH = . Such a result can be 
achieved only asymptotically. It is clear from the channel matrix from Fig. 6 that Y1 is strongly dependent on 
X1. We arrive at an important result from the point of view of statistical independence testing between plain 
and cryptogram: for more than two text additions (that is Y2, Y3,...Yn), one can investigate the statistical 

Channel 
X Y ( / ) ( )p j i p k=

 So that  i+ k = j mod 31 

Ch Ch Ch ChCh
X1 Y1 Y2 Y3 Yn 
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independence between cryptogram and plain message only based on Yn information source, namely checking 
if the respective Yn complies with the uniform discrete probability law (here fair dice model with number of 
faces equal to 31). A fast way of testing is by using Chi-square goodness of fit test over a typical i.i.d. 
sequence emitted by the Yn information source. The Chi-square goodness of fit test has the following test 
hypotheses: the null hypothesis 0H : ( ) 1/ 31p j =  and the alternative hypothesis 1H : ( ) 1/ 31p j ≠ . j stands for 
the letter in the alphabet. The test is based on the z test value (2):  

 
31

2

1

( / 31) /( / 31).j
j

z m N N
=

= −∑  (2) 

If z test value satisfies the condition αzz ≤  (where αz  is the α  point value corresponding to the Chi-
square goodness of fit having  13130 −=  degrees of freedom), we accept the null hypothesis 0H , thus we 
accept the statistical independence between the input message and cryptogram. We considered 0.05α =  
significance level that leads to 43.773zα = . 

We performed the Chi-square goodness of fit test for the five additions meaning 6 natural texts to be 
summed up, i.e. investigating five outputs (cryptograms) of the cascaded information channels in Fig. 5. The 
results are put together in Table 1, column 3 based on the 200 i.i.d. data sets. We recall that all the 200 i.i.d. 
data sets submitted to Chi-square test were sampled from the cryptogram with a 200 period of symbols (like 
in Fig. 3), so that the i.i.d. data size is 22 500N = . As the 200 i.i.d. data sets are a priori equally good to 
convey the information about the first order probability law of the cryptogram, Table 1 presents in column 3 
the proportion of accepting H0 hypothesis of the test out of 200 data sets for each investigated cryptogram. 
The results from column 3 led to the conclusion that Y4 and Y5 may comply with a fair dice (discrete 
uniform probability law). We add some more information in column 4 of Table 1, namely on the maximum 
relative departure from 1/31 of the relative letter frequencies in cryptogram. Column 5 gives the information 
about how many digrams (group of two successive letters) in the cryptogram are practically equally likely 

within a relative error of 5% (i.e. relative frequency 1 (1 5%)
961

± ). In column 5 we assigned in parentheses 

the proportion of the equally likely digrams out of the total number of distinct possible digrams. 
 
To conclude with Section 2 
Let us recall the known results from the literature that relative redundancy for English is about 75% [2, 

7]; this derives from the fact that running-key cipher applied to natural text in variants 1 and 2 can be broken, 
but not in version 3. (Such experiments have been done on printed Romanian and results indicated 
approximately the same interval for redundancy). These results are supported by our experiments here in this 
study on printed Romanian and we underline that the condition to obtain a statistical independence between 
the plain message and cryptogram implicitly means that the running-key cipher is unsolvable by the 
cryptanalyst. However, this condition is more severe than the one that Y3 cannot be decomposed into the NL 
summed up texts (for example, Y3 cannot be decomposed into the four natural summed up texts; however Y3 
is still dependent upon plain message). On the other hand, by looking at the cascaded information channels in 
Fig. 5 and Table 1, we arrive at an interesting, very important conclusion: Y4 stands for a good key generator 
with practically zero redundancy. This idea can be further fructified in developing new encryption methods 
as we tried to illustrate in the next section of the paper.  

3. EXTENDING THE RUNNING-KEY APPROACH FOR OTHER ERGODIC SOURCES 

The running-key approach as described in Fig. 2 could be shifted from NL to chaos due to the 
ergodicity feature of chaotic systems and also because one can extract i.i.d. data sets from chaotic maps. 
While the ergodicity of the chaotic signals is generally assumed [12], the statistical independence seems to 
be in contradiction with the deterministic feature of chaotic signals and it was a challenging research in this 
respect [13–16]. Our intention is to extend the running-key approach on the chaotic maps and to see whether 
it is possible or not to use them as a good quality key generator in cryptography. Further on an investigation 
is made for image encryption based upon running-key approach using chaotic map.  
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The entire procedure to investigate the statistical independence between cryptogram and plain message 
based on running-key  is resumed for logistic map, (3), as it is done for NL in Section 2.   

 ...,2,1,0),1(1 =−=+ tzzRz ttt  (3) 

The R  parameter of the logistic map belongs to the ]4;0(  interval and the tz  values belong to the 
)1;0( interval [11, 12]. The illustrations in Table 2 are for 4=R . A typical sequence emitted by the logistic 

map like X1, T1, T2, T3 or T4 is specified by an initial condition randomly chosen in the )1;0(  interval. For 
the logistic map we consider an alphabet consisting of 32 letters to further simplify the image encryption 
illustration and also for a comparison with the NL. The continuous values tz  are transformed into 32 discrete 
values (the 32 discrete values are obtained by a partition of )1;0(  interval in 32 adjacent non-overlapping 
equal lengths subintervals). To apply the Chi-square test in contingency tables, we organized the 32 symbols 
of the alphabet in four classes (following again the descending hierarchy of relative frequencies of the 32 
symbols as we described for printed Romanian).  

Note. In [13, 14] it was shown that for the logistic map and various R parameters, a sampling distance 
of about 30 iterations ensures the statistical independence between the extracted values. In fact for 4=R  the 
sampling distance which ensures statistical independence is about 15 iterations, but for a first evaluation by 
using running-key method we considered a sampling period of 30 symbols. We iterated the logistic map up 
to 4.5×106 times and that provided a size for the i.i.d. data sets equal to N=150 000. Here we are not limited 
to work on the experimental data as in printed Romanian. We could extend our study up to six additions 
(adding seven typical sequence emitted from the logistic map) meaning Y6. 

Table 2  

Running-key approach on logistic map: results for the statistical independence between X1 input and Yn output 

 Chi-square test in 
contingency Table   

pair(X1 , Yn) 

Chi-square  
goodness of fit 

Test   

εr
*
 for letter structure in 

cryptogram 
No. of equally likely digrams 

in cryptogram 
(within the 5% error)   

(1) (2) (3) (4) (5) 
Y1 0.00 0.000 0.5132 28 (0.0273) 
Y2 0.00 0.000 0.1025 118 (0.115) 
Y3 0.00 0.2000 0.0245 304 (0.297) 
Y4 0.73 0.8667 0.0097 560 (0.547) 
Y5 0.966 0.8667 0.0058 881 (0.860) 
Y6 0.933 0.9667 0.0043 1015 (0.991) 

* ˆ 1max (1/32)32r iPε = − ; îP  values stand for the relative letter frequencies in Yn sequence. 

The results (Table 2) for the logistic map with 4=R  are similar with those obtained for NL, leading to 
some viewpoints of practical interest. Note that in case of chaotic maps X1 will not act as a plain message; 
we only used the running-key approach to benefit from the results for the design of a good quality key 
generator for cryptographic applications. Here the independence between the X1 input message and output 
message practically occurred at Y5. 

The running-key approach cannot be extended to images, because they do not feature ergodicity, we 
can neither speak about i.i.d. data sets (so, we cannot apply the statistical tests described above). However, 
some benefits can be obtained for image enciphering from the investigations presented in Table 2. 

Figure 7 shows results for image encryption. The image encryption is illustrated using the variants of 
Fig. 2. The image stands for X1 and the key enciphering sequences T1, T2, T3, T4 and T5 are generated by the 
logistic map with 4=R . We considered images with 32 gray levels. Fig. 7(a) is the original image X1. Fig. 
7(b) represents cryptogram C1 obtained as summation between X1 and T1. Fig. 7(c) is obtained as a 
summation between X1, T1 and T2. Fig. 7(d) is obtained by summing up X1 original image and T1, T2 and T3 
chaotic sequences. Similarly, Fig. 7(e) is obtained by summing up X1 with 4 chaotic sequences and Fig. 7(f) 
is obtained by summing up X1 with 5 chaotic sequences. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 7 – Image encryption using the extension of running-key on logistic map:  
a) original image; b) cryptogram C1; c) cryptogram C2;  
d) cryptogram C3; e) cryptogram C4; f) cryptogram C5. 

 
Image encryption in Fig. 7 has not the encryption procedure by itself as a main purpose, but to 

underline that in order to decide on cipher quality, the simple inspecting of the image cryptogram is not 
sufficient. For example, the image cryptogram given in Fig. 7(d) looks like a pure noise, but the key 
sequence (obtained by summing up 3 chaotic sequences, equivalent to Y2 in Table 2) is still redundant and 
can be sensitive to a statistical attack. 

4. FINAL CONCLUSIONS 

The paper attempts to come with a lesson out of the running-key approach, so that one can resume and 
extend its application to ergodic sources other than NL. The paper provides a new view of running-key 
method by using the cascaded information channels to enable an easier but pertinent way to decide upon the 
statistical independence between the input message and the cryptogram. The study was carried out in various 
variants of the running-key method, adding numerical support to the existing results in the literature which 
were mainly based on cryptanalysis success. One may extend this study on various chaotic systems to benefit 
from the results, both for evaluating the intrinsic redundancy of the chaotic signals and also in cryptography. 
The extension is mainly based on the ergodicity property and on the proved possibility of generating i.i.d. 
data starting from chaotic maps. Image encryption can also benefit from these results in the sense suggested 
in this paper. 

REFERENCES 

1. GALLAGER R.G., Claude E. Shannon: A Retrospective on His Live, Work and Impact, IEEE Trans. on Inform. Theory, 47, 7,  
pp. 2681–2695, Nov. 2001. 

2. SHANNON C.E., Communication Theory of Secrecy Systems, Bell Syst. Tech. J., 28, pp. 656–715, October 1949.  
3. SHANNON C.E., A Mathematical Theory of Communication, Bell Syst. Tech. J., 27, pp. 379–423, 623-656 1948. 
4. SHANNON C.E., Prediction and Entropy of Printed English, Bell Syst. Tech. J., 30, pp. 50–64, Jan. 1951. 
5. VLAD A., MITREA A., MITREA M., Limba română scrisă ca sursă de informaţie (Printed Romanian Language as an 

Information Source), Editura Paideia, Bucureşti, 2003.  
6. VLAD A., MITREA A., MITREA M., A Corpus – based Analysis of how Accurately Printed Romanian Obeys Some Universal 

Laws, Chap. 15 in A Rainbow of Corpora: Corpus Linguistics and the Languages of the World, Wilson, Andrew/Rayson, 
Paul/McEnery Tony Editors, Lincom-Europa Publishing House, Munich, 2003, pp. 153–165. 

7. DIFFIE W., HELLMAN M., Privacy and Authentication: An Introduction in Cryptography, Proc. IEEE, 67, 3, pp. 397–426,  
1979. 

8. MASSEY J. L., Shannon and Cryptography, IEEE Information Theory Society Newsletter, Special Golden Jubilee Issue, Summer 
1998. 

9. CRAIU V., Verificarea Ipotezelor Statistice, Editura Didactică şi Pedagogică, Bucureşti, 1972. 



 Adriana Vlad, Azeem Ilyas, Adrian Luca 10 166 

10. DEVORE J., Probability and Statistics for Engineering and the Sciences, 2nd ed., Brooks/Cole Publishing Company, Monterey, 
California, 1987.  

11. ŞERBĂNESCU Al. (coord.), Aplicaţii ale sistemelor dinamice în comunicaţii, Editura Academiei Tehnice Militare, Bucureşti, 
2004. 

12. LASOTA A., MACKEY M.C., Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, 2nd edition, Springer, Heidelberg, 
New York, 1994. 

13. VLAD A., LUCA A., FRUNZETE M., Computational Measurements of the Transient Time and of the Sampling Distance That 
Enables Statistical Independence in the Logistic Map, Lectures Notes in Computer Science (ICCSA 2009), 5593, Springer-
Verlag, Berlin, Heidelberg, pp. 703–718, 2009.  

14. BADEA B., VLAD A., Revealing Statistical Independence of Two Experimental Data Sets. An Improvement on Spearman’s 
Algorithm, Lecture Notes in Computer Science (ICCSA 2006), Springer-Heidelberg, 3980, pp. 1166–1176, 2006. 

15. LUCA A., VLAD A., Generating Identically and Independently Distributed Samples Starting from Chaotic Signals, Proc. Intl. 
Symp. on Signal, Circuits & Systems – ISSCS 2005, Iasi, pp. 227–230, July 2005. 

16. GONZALEZ J.A., TRUJILLO L., Statistical Independence of Generalized Chaotic Sequences, Journal of the Physical Society of 
Japan, 75, 2, p. 023003, February 1–4, 2006. 

 
 


