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Let ( ),G V E=  be a graph with vertex set V and edge set E. In this paper we compute the some 
topological indices for various graphs.  Here we use different methods for calculating these indices. 
One method using the group of automorphisms of G. This is an efficient method of finding these 
indices especially when the automorphism group of G has a few orbits on V or E. Alternatively, using 
a recursion method that is used to calculate the Wiener index.  
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1. INTRODUCTION 

A topological index is a real number related to a graph. It must be a structural invariant, i.e., it 
preserves by every graph automorphisms. Usage of topological indices in chemistry began in 1947 when 
chemist Harold Wiener developed the most widely known topological descriptor, the Wiener index, and used 
it to determine physical properties of types of alkanes known as paraffins. In a graph theoretical language, 
the Wiener index is equal to the count of all shortest distances in a graph. The hyper-Wiener index of acyclic 
graphs was introduced by Milan Randic in 1993. Then Klein et al.[11], generalized Randic’s definition for 
all connected graphs, as a generalization of the Wiener index. We encourage the reader to consult [11] for the 
mathematical properties of hyper-Wiener index and its application in chemistry. 

The Szeged index [7, 8, 15] is a topological index closely related to the Wiener index  and is a 
summation of vertex–multiplicative type and coincides with the Wiener index in the case that the graph G is 
a tree. Since the Szeged index takes into account how the vertices of the graph G are distributed, it is natural 
to define an index that takes into account the distribution of the edges of G. The Padmakar–Ivan (PI) index, 
[14, 16], is an additive index which takes into account the distribution of edges of the graph and therefore 
complements the Szeged index in a certain sense.  

All the indices mentioned above, when applied to chemical graphs have many chemical applications 
and it was shown that the PI index is related to the Szeged and theWiener index of a graph, and all of them 
have connections with the physicochemical properties of many complex compounds. 

In this paper we will develop different methods to calculate these indices. One method is to use group 
theory and in particular the automorphism group of the graph in question and another use recursion method 
to obtain a difference equation concerning for this indices. Throughout this paper all the graphs are simple 
and connected.  

2. PRELIMINARIES 

Let ( , )G V E= be a graph with vertex set V and edge set E. We will deal with finite graph, i.e. both |V | 
and |E| are finite sets. The distance between the vertices u and v is denoted by ),( vud and it is defined as the 
number of edges in a shortest path from u to v. The degree of v, denoted by ( )Gd v , ( )(vd  for short), is the 
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number of edges incident with v in G. The Wiener index )(GW  is defined as 
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The hyper-Wiener index of acyclic graphs was introduced by Milan Randic in 1993. Then Klein et 
al.[11], generalized Randic’s definition for all connected graphs, as a generalization of the Wiener index. We 
encourage the reader to consult [11] for the mathematical properties of hyper-Wiener index and its 
application in chemistry. The hyper-Wiener index )(GWW is defined by: 

∑
∈

+=
)(},{

2 ),(
2
1)(

2
1)(

GVvu

vudGWGWW , 

where ( )22 ),(),( vudvud = . 
The Szeged index [7, 8] is a topological index closely related to the Wiener index and is a summation 

of vertex multiplicative type and coincides with the Wiener index in the case that the graph G is a tree. To 
define the Szeged and revised Szeged indices of the graph we need some terminology. For )(GEuve ∈=  
we define the following sets:  

)},(),(|{)|( xvdxudVxGeNu <∈= , 

        )},(),(|{)|( xvdxudVxGeNv >∈= . 

The sizes of )|( GeNu  and )|( GeNv  and are denoted by )|( Genu  and )|( Genv  respectively. 
Hence )|( Genu  and is the number of vertices of G lying closer to vertex u than to vertex v and )|( Genv  is 
the number of vertices of G lying closer to vertex v than to vertex u. The Szeged index of G is defined by the 
following formula: 

∑
∈=
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Considering contributions from vertices not considered in the definition of Sz, Randi [14] conceived a 
modified version of the Szeged index, which is named the revised Szeged index in [13,12], by dividing 
equally the count vertices at the same distance from both end vertices of an edge. The revised Szeged index 
of the graph G is defined as [14] 

1 1*
0 02 2

( )

( ) [ ( | ) ( | )][ ( | ) ( | )],u v
e u v E G

S z G n e G n e G n e G n e G
= ∈

= + +∑  

where for the edge )(GEuve ∈= , )|(0 Gen is the number of vertices with equal distances from both end 
vertices of the edge e. 

Finally we define the PI-index of the graph ),( EVG = as follows:  
Given an edge )(GEuve ∈= , we defined the distance of e to a vertex )(GVw ∈ as minimum of 

distance of its ends to w, i.e., )},(),,(min{),( vwduwdewd = . For )(GEuve ∈= , )|( Gemu is the number 
of edges lying closer to u than v, and also )|( Gemv is defined analogously. The Padmakar-Ivan index of G 
is defined by 

( ) [ ( | ) ( | )].
( )

PI G m e G m e Gu ve uv E G
= +∑

= ∈
 

A permutationσ of V is called an automorphism of G if it preserve the edges of G, i.e., e = uv is an 
edge of G if and only if σσσ vue =  is an edge of G. The set of all automorphisms of G forms a group under 
the composition of mapping and it is denoted by A = Aut(G). We say that A acts transitively on V (or E) if 
for any vertices u and v (or edges e and f) there is an element A∈σ such that vu =σ  (or fe =σ ). If A acts 
transitively on V (or E), then G is called a vertex-transitive  (or an edge-transitive) graph.  
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Result 2.1 [1]. Let ),( EVG = be a simple connected graph. If )(GAut  on E has orbits )( iii eE=∆ , 

si ≤≤1  where iii vue =  is an edge of G, then ∑
=
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Result 2.2 [1]. Let ),( EVG = be a simple connected graph. If )(GAut on E has orbits rEEE ,,, 21 … , 
with representatives reee ,,, 21 … , respectively, where iii vue =  then 
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We can have the following similar result for the revised index Sz(G). 

Result 2.3. Let G = (V,E) be a simple connected graph. If )(GAut  on E has orbits rEEE ,,, 21 … , 
with representatives reee ,,, 21 … , respectively, where iii vue =  then 
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3. INTERSECTION GRAPHS 

This type of graph is defined in [6] as follows. Let S be a set and },,,{ 21 pSSSF …=  be a non-empty 

family of distinct non-empty subsets of S such that ∪
p

i
iSS

1=

= . The intersection graph of S which is denoted 

by )(FΩ  has F as its set of vertices and two distinct vertices iS  and jS , ji ≠  are joint by an edge if and 
only if  φ≠ji SS ∩ .  

Here we will consider a set S of cardinality n and let F be the set of all subsets of S of cardinality k, 
nk <<1 , which is denoted by }{kS . Upon convenience we may set },,2,1{ nS …= . Let the intersection 

graph )( }{kSΩ   be denoted by ),(}{ EVk =Γ . The number of vertices of this graph is 
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In this section we will compute the indicated indices of this graph. The Wiener index of  }{kΓ  in [1] 

computed and we here obtain a formula for Wiener index of this graph. 
 
THEOREM 3.1. The hyper-Wiener index of }{kΓ  is 
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Proof. By definition,   
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If kn 2< , then any vertex is adjacent with other vertices. Therefore |)(|)( }{}{ kk EWW Γ=Γ and in this case 
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Now if kn 2≥ , then the distance any two vertices of  }{kΓ  is 1 or 2, according to [1, proposition 1], so 
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The following lemma is basic. 
 
LEMMA 3.2 [1]. The automorphism group of }{kΓ  on the set E of edge of }{kΓ  has 1−k  orbits if 
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THEOREM 3.2. The revised Szeged index of }{kΓ  is as follows: 
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Proof. It is clear that see ))|()|((|)(|)|(0 GenGenGVGen vu +−= . Since  in Graph }{kΓ , 
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Result 2.3 and Lemma 3.2, the theorem is proved.                                                           □ 

Now we calculate the PI index of }{kΓ  which is one of the main result in this paper. 
 
THEOREM 3.3. Let kn 2≥ . Then the PI index of }{kΓ  is as follows: 
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Consider the edge e = uv in the orbit iE . It is clear that the edge f = uw lying closer to u than to v 
whenever the vertex w be adjacent with both u and v. On the other hand, if )|(, GeNyx u∈ , then the edge   
f = uw lying closer to u than to v. Therefore )|( Gemu is sum the number of edges of set )|( GeNu and the 
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In a similar manner we obtain )|()|( GemGem vu = .  
Now by Lemma 3.2, the proof is completed.                                                                                        
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4. CONCENTRIC WHEELS GRAPH 

Let n concentric cycles divided m parts. This graph is showed by nmW , . We show the center this graph 
with  0v  and also thi  vertex in thj  cycle with },{ jiv , for mi ≤≤1 , nj ≤≤1 . Thus nmW ,  has mn + 1 
vertices and 2mn edges.  

In this section we compute the mentioned indices of this graph with different method. We first obtain a 
formula for the Wiener index of this graph using recursion relation. 

     For a graph which repeats a certain shape several times the best method of calculating the Wiener 
index is by recursion process. In this case we assume the graph G consists of a certain shape n times and let 

nu denote the Wiener index of G. If we can obtain a Fibbonaci-like relation between nu  and the ku , k < n, 
then we are concerned with solving a difference equation. Solving this difference equation will result in 
finding the Wiener index of G. 
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Proof. Let nu  denotes the Wiener index of nmW , . Then we have )(1 nfuu nn += − where )(nf  is 
equal to the sum of distances of each of the vertices },{ njv , mj ≤≤1  from each other and from each of the 

vertices of 1, −nmW , so ∑ ∑
= ∈ −

+=
m

j WVx
njm

nm

vxdCWnf
1 )(

},{
1,

),()()( , where mC  is a cycle with m vertices. 

Consider the vertex },1{ nv  on n-th cycle of nmW , . Let Χ  be the sum of distance nv ,1 with vertices njv , , 

mj ≤≤2  of nth cycle. Then the sum of distance vertex },1{ nv  with vertices },{ knjv − , mj ≤≤1 , 
11 −≤≤ nk , is Χ+km . Also we have nvvd n =),( },1{0 . Hence 









+Χ−+=Χ++= ∑∑

−

=∈ −
2

)1()(),(
1

1)(
,1

1,

n
mnnkmnvxd

n

kWVx
n

nm

. 

Therefore 







+Χ−++=

2
)1()()( 2 n

mmnnmCWnf m . But  )(2 mCWm =Χ , so  









++−=

2
)()12()( 2 n

mnmCWnnf m . 

Now using the above recursion relation we are able to find nu  as follows: 

∑∑∑∑
====









++−==−

n

k

n

k

n

k
m

n

k
n

n
mkmkCWkfuu

1

2

111
0 2

)12()()( . 

We have 00 =u  and  
1 3
8

1 2
8

2 |
( )

( 1) 2 |m
m n

W C
m m n

=  − /
 , the proof is completed.             

Next, we will calculate the rest of the index. To do this we the set of edges of nmW ,  are divided into the 
set of edges on circles, the set of edges between circles and the set of edges between center and first circle,  
and are  defined as follows:  
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kCC

1=

= . Obviously, the sets A, B 

and C are partitions of the edges of nmW ,   |A|= mn,  |B|= (n − 1)m  and |C|= m. 
 
THEOREM 4.2. The Szeged index of nmW ,  is equal to 





/−
+−−−++=

mmmn
m

nmnmmnnmmnmnWSz nm |2)21(3
|20

3)(
3

2
2
13

6
1222

2
333

12
5

, . 

Proof. By definition,  

.)|()|()|()|()|()|(

)|()|()(
)(

∑∑∑

∑

∈=∈=∈=

∈=

++

==

Cuve
vu

Buve
vu

Auve
vu

GEuve
vu

GenGenGenGenGenGen

GenGenGSz

Let e = uv be an edge of nmW ,  in the set of A. Then )|()|( GenGen vu =  is equal to nm2
1  if m is 

even and is equal to )1(2
1 −mn if m is odd. Hence  
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





/−
=

mmmn

mmn
ASz

|2)1(

|2
)( 23

4
1

33
4
1

. (1)

Now Suppose e = uv be an edge of nmW ,  in the set of B. Let us choose },{ jivu = and }1,{ += jivv  as 
vertices of the edge e = uv. We have 1)|( += jmGenu and mjnGenv )()|( −= , so  

∑∑
=

−

=

−−+=−−+=
m

i

n

j

nmnmmnmnjmmjnmnmBSz
1

1

1

232233
6
122 )3()1([)( . (2)

Finally if  e = uv is an edge of nmW ,  in the set of C. Suppose us choose 0vu = and }1,1{vu = . Thus 
1)3()|( +−= nmGenu and nGenv =)|( . Hence  

mnnmmnCSz 222 3)( −+= . (3)

Now, by sum of the equations  (1), (2) and (3) the proof is completed.                                          
 
THEOREM  4.3. The revised Szeged index of nmW ,  is equal to 

)624827365()( 2322233
12
1

,
* nmnmmnnmmnmnWSz nm −−−++= . 

Proof. By definition, )()()()( ***
,

* CSzBSzASzWSz nm ++= .  But  
  ))|()|((|)(|)|(0 GenGenGVGen vu +−= , so according to pervious theorem we have: 
(a) If the edge Auve ∈= , then )|(0 Gen  is equal to 1 or n+1 in respective case m is even or odd. 
(b) If the edge Buve ∈= , then 0)|(0 =Gen . 
(c) If the edge Cuve ∈= , then nGen 2)|(0 = . 
Thus by Theorem 4.2, we have  

∑∑∑
∈∈∈

+−++−+
+

=
CeBeAe

nm nnmnjmjnmnmWSz )12(2)]1)(([)
2

1()( 2
,

* . 

Now by some calculations the proof is completed.                                                           
Suppose G is a graph, )(GEuve ∈= and )(GVw ∈ . Define )},(),,(min{),( wvdwudewd = . We 

say that e is parallel to f  if ),(),( fvdfud = . We define M(e) be the number of all edges parallel to e, so 
))|()|((|)(|)( GemGemGEeM vu +−= . Therefore  

∑
∈

−=
)(

2 )(|)(|)(
GEe

eMGEGPI . (4)

Now, using this method we will calculate PI index of nmW , . 
 
THEOREM  4.4. The PI index of nmW ,  is equal to 





/
+−++=

mmn
mmn

mmnmmnWPI nm |2
|22

)2(4)(
2

2
222

, . 

Proof. If Ae ∈ , then M(e) is equal to 2n or n in the respective cases m is even or odd. If Be ∈ , then 
M(e) = m and if Ce ∈ , then M(e) = 2. Therefore 





/+−+
+−+

=++= ∑∑∑∑
∈∈∈∈ mmnmmn

mmnmmn
eMeMeMeM

CeBeAeGEe |22)1(
|22)1(2

)()()()(
22

22

)(

. 
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Since mnWE nm 2|)(| , = , so by equation (4), the proof is completed.                                         

4. CONCLUSION 

In this paper some topological indices for various graphs using the group of automorphisms of G and 
using recursion method are determined. These formulas to be used in theoretical chemistry molecular 
structure descriptor. Computing topological indices for molecular graphs (such as dendrimers, nanotubes and 
nanotori) is left to future investigations. 
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