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In the previous studies, the effectiveness of the Arithmetic Mean (AM) iterative method and its 
variants for solving various scientific problems has been investigated. Consequently, in this paper, the 
implementation and performance one of the AM method variants i.e. Quarter-Sweep Arithmetic Mean 
(QSAM) method for solving dense linear system associated with the numerical solution of first kind 
linear Fredholm integral equations are considered. The details of the method are discussed. Some 
numerical analyses were also conducted to verify the efficiency of the method. 
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1. INTRODUCTION 

Many scientific problems lead to the necessity to solve linear systems as part of the computations. It is 
well recognized that iterative methods are applied widely in large scale computations for linear systems 
problems. Among the existing iterative methods, Arithmetic Mean (AM) method and its variants have been 
extensively applied for solving various types of linear systems. In a series of papers, the effectiveness of the 
AM methods were studied and tested on linear and nonlinear systems. For instance, researches by Benzi and 
Dayar [1], Galligani [3], Galligani and Ruggiero [4], Galligani and Ruggiero [6], Hasan et al. [7], Muthuvalu 
and Sulaiman [10-12], Ruggiero and Galligani [16] and, Sulaiman et al. [17, 18]. Moreover, the AM method 
is also have been successfully applied as a preconditioner with Conjugate Gradient (CG) method for solving 
symmetric positive definite linear system [5]. 

Recently, the standard AM method [16] and its variant known as Half-Sweep Arithmetic Mean 
(HSAM) [17] method were employed to solve approximation equations generated from the first and second 
kind linear Fredholm integral equations [12]. Consequently, in this paper, performance of another AM 
variants i.e. Quarter-Sweep Arithmetic Mean (QSAM) [18] method for solving dense linear system 
generated from the discretization of first kind linear Fredholm integral equations with semi-smooth kernel is 
investigated. Actually, the QSAM method is derived by combining the standard AM method with quarter-
sweep iteration concept [14]. The performance of the QSAM method will be compared with the Full-Sweep 
Gauss-Seidel (FSGS), Half-Sweep Gauss-Seidel (HSGS), Quarter-Sweep Gauss-Seidel (QSGS), FSAM and 
HSAM iterative methods.  

The remainder of this paper is organized in following way. In Section 2, the formulation of the full-, 
half- and quarter-sweep closed composite Newton-Cotes quadrature approximation equations will be 
elaborated. The latter section of this paper will discusses the formulations of the FSAM, HSAM and QSAM 
methods, and some numerical results will be shown in fourth section to assert the performance of the tested 
methods. Besides that, analysis on computational complexity for FSAM, HSAM and QSAM methods is 
discussed in Section 5 and the concluding remarks are given in final section. 

2. CLOSED COMPOSITE NEWTON-COTES QUADRATURE APPROXIMATION EQUATIONS 

Consider first kind linear Fredholm integral equations with the semi-smooth kernel defined as follows 
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where the kernel K  and function b  are given, and x  is the unknown function to be determined. If operator 
κ  is denoted by 
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then the following definition is satisfied. 

Definition 1 [8]. A kernel ( ),K y t  is called q - semi-smooth if   
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where ( ) [ ] [ ]1,2 α,β α,β, qK y t C ×∈  for some 1>q .    

Definition 2 [9]. Let : →κ S T  be an operator from normed space S  into a normed space T , the 
equation =κ x b  is called well-posed if κ  is onto, one to one and the inverse operator 1 :− →κ T S  is 
continuous. Otherwise the equation is called ill-posed. 

As a matter of fact, some valid numerical methods for discretizing (1) have been developed in recent 
years. In this paper, a discretization scheme under category of closed composite Newton-Cotes quadrature 
method was utilized in order to construct approximation equations for problem (1) with semi-smooth kernel. 
Let interval divided uniformly into n  subintervals and the discrete set of points of y  and t  given by 

= +iy α ih  and = +jt α jh  where the constant step size, h  is defined as follows 

β αh
n
−

= .  (4)

Before further explanation, the following notation will be used for simplicity  
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.  (5)

As discussed in [12], application of the closed composite Newton-Cotes quadrature method reduced 
problem (1) to  

,
0=

=∑
n

j i j j i
j

w K x b , 0, 1, 2, , 2, 1, ,i n n n= − −   (6)

where jw  is the quadrature weights. The standard closed composite Newton-Cotes quadrature 

approximation equations as defined in Eq. (6) can also be referred as full-sweep closed composite Newton-
Cotes quadrature approximation equations. To formulate the half- and quarter-sweep closed composite 
Newton-Cotes quadrature approximation equations for problem (1), consider interval that divided uniformly 
as shown in Fig. 1. 

Based on Fig. 1, the half- and quarter-sweep iterative methods will compute approximate values onto 
node points of type  only until the convergence criterion is reached. Then, approximate solutions for the 
remaining points (points of the different types) can be computed directly.  
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(b) 
Fig. 1 – Distribution of uniform node points for the: a) half- and b) quarter-sweep cases respectively. 

By applying the half- and quarter-sweep iteration concepts, the generalized full-, half- and quarter-
sweep closed composite Newton-Cotes quadrature approximation equations is 

,
0, ,2=

=∑
n

j i j j i
j p p

w K x b ,  (7)

for 0, ,2 , , 2 , ,= − −i p p n p n p n . The value of p , which corresponds to 1, 2 and 4 represents the full-, half- 
and quarter-sweep closed composite Newton-Cotes quadrature approximation equations respectively. 
Moreover, Eq. (7) can be represented in matrix form as  

=Ax b , (8)

where 
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0 2 2

T

p p n p n p nx x x x x x x− − =   , (10)

and 

0 2 2

T

p p n p n p nb b b b b b b− − =   . (11)

From Eq. (8), it is obvious that, applications of the half- and quarter-sweep iteration concepts reduced the 

size of the original matrix ( ) ( )1 1+ × +N N  to 1 1
2 2

   + × +   
   

N N  and 1 1
4 4

   + × +   
   

N N  respectively. 

In order to facilitate the formulation of full-, half- and quarter-sweep closed composite Newton-Cotes 
quadrature approximation equations for problem (1), further discussion will be restricted onto first order 
Newton-Cotes quadrature method i.e. composite trapezoidal (CT) scheme. Based on CT scheme, weights jw  

will satisfy the following relation 
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3. ARITHMETIC MEAN ITERATIVE METHODS 

As afore-mentioned, FSAM, HSAM and QSAM methods will be utilized to solve the corresponding 
full-, half- and quarter-sweep closed composite Newton-Cotes quadrature approximation equations based on 
CT scheme. Fundamentally, iteration process for the FSAM, HSAM and QSAM involves of solving two 
independent systems i.e. 1x  and 2x . To develop the formulation for AM methods, let the coefficient matrix 
A  in Eq. (8) be split as 

= − −A D L U , (13)

where 

0 0,0

,

2 2 ,2

2 2 , 2

,

,

0

0 − − −

− − −

 
 
 
 
 

=  
 
 
 
 
 

p p p

p p p

n p n p n p

n p n p n p

n n n

w K
w K

w K
D

w K
w K

w K

 (14)

0 ,0

0 2 ,0 2 ,

0 2 ,0 2 , 3 2 , 3

0 ,0 , 3 , 3 2 , 2

0 ,0 , 3 , 3 2 , 2 ,

0
p

p p p p

n p p n p p n p n p n p

n p p n p p n p n p n p n p n p n p

n p n p n p n n p n p n n p n p n n p

w K
w K w K

L
w K w K w K
w K w K w K w K
w K w K w K w K w K

− − − − −

− − − − − − − −

− − − − − −

 
 
 
 
 

− =  
 
 
 
   

 (15)
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respectively.  
Thus, for nonsingular ( )–D Lω  and ( )–D Uω  matrices, the general formulation for all three AM 

methods is defined as follows 
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Clearly, the iteration matrix for AM methods is defined as  

( ) ( )( ) ( ) ( )( )1 11 ω 1 ω ω ω 1 ω ω
2AMT D L D U D U D L− − = − − + + − − +   (18)

and it is already noted that the AM methods converges if and only if spectral radius of the iteration matrix is 
less than one, ( )ρ 1AMT <  [2]. The AM methods as explained in (17) are characterized by having within its 
overall mathematical structure certain well-defined substructures that can be executed simultaneously. This 
feature makes the AM methods preferably suitable for implementation on a multiprocessor system. By 
assuming i jx x= , the algorithm for FSAM, HSAM and QSAM methods associated with full-, half and 
quarter-sweep closed composite Newton-Cotes quadrature approximation equations respectively to solve 
problem (1) would be described in Algorithm 1.  
 
Algorithm 1. FSAM, HSAM and QSAM schemes  
i. Initializing all the parameters and set ( )0 1 2= =x x x  and ε  
ii. Iteration cycle 
 a. Stage 1 
  1.  Level 1 
   for 0, , 2 , , 2 , ,= − −i p p n p n p n  
   

Compute ( ) ( ) ( )1 1
, ,

, 0, , 2 , 2 , 3

1
−

= = + + +

 
← − + − −  

 
∑ ∑
i p n

k k
i i i j i j j j i j j

i i i j p p j i p i p i p

ωx ω x b w K x w K x
w K

 

 b. Stage 2 
  1. Level 2 
   for , , 2 , 2 , , 0= − −i n n p n p p p  
   

Compute ( ) ( ) ( )2 2
, ,

, 0, , 2 , 2 , 3

1
−

= = + + +

 
← − + − −  

 
∑ ∑
i p n

k k
i i i j i j j j i j j

i i i j p p j i p i p i p

ωx ω x b w K x w K x
w K

 

  2. for 0, , 2 , , 2 , ,= − −i p p n p n p n  
   Compute ( ) ( )1 1 21

2
+ ← +k

i i ix x x  

iii. Check the convergence. If the converge criterion is satisfied, go to Step (iv), otherwise, repeat the
iteration cycle (i.e., go to Step (ii)) 

iv. Stop 
 

Based on Algorithm 1, the AM algorithms are explicitly performed by using all equations at Levels 1 
and 2 alternately until the solution satisfied a specified convergence criterion i.e. the maximum norm 

( ) ( )1 εk kx x+ − ≤ , where ε  is the convergence criterion. 

After the iteration process, additional calculation is required for HSAM and QSAM methods to 
calculate the remaining points. In this paper, second order Lagrange [13] technique will be applied to 
compute the remaining points. The formulations to calculate remaining points using second order Lagrange 
interpolation for HSAM and QSAM are defined in (19) and (20) respectively as follows 
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4. NUMERICAL TESTS 

In order to compare the performances of the iterative methods described in the previous section, several 
tests were carried out on the following two first kind linear Fredholm integral equations with semi-smooth 
kernel which will generates dense matrix A .  

Test Problem 1 [14]. Consider the linear Fredholm integral equations of the first kind 
1 3

0

1( , ) ( ) d ( )
6

K y t x t t y y= −∫ , 0 1< <y , (21)

with kernel 

( 1),
( , )

( 1),
− <

=  − ≤

t y t y
K y t

y t y t
. (22)

The exact solution of the problem (21) is 

( ) =x y y . (23)

Test Problem 2 [14]. Consider the following first kind linear Fredholm integral equations  
1

0
( , ) ( ) d (1 ) 1,yK y t x t t e e y= + − −∫ , 0 1< <y  (24)

with kernel 

( 1),
( , )

( 1),
− ≤

=  − <

t y t y
K y t

y t y t
 (25)

and the exact solution is given by 

( ) = yx y e . (26)

For the numerical tests, three parameters i.e. number of iterations, CPU time (in seconds) and 
maximum absolute error will be measured. All the simulations were implemented by a computer with 
processor Intel(R) Core(TM) 2 CPU 1.66GHz and algorithm codes were written in C programming 
language. Throughout the simulations, the convergence test considered the tolerance error, 1010−=ε  and 
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carried out on several different values of n . Meanwhile, the experimental values of ω  were obtained within 
0.01±  by running the program for different values of ω  and choosing the one(s) that gives the minimum 

number of iterations.The numerical results of the tested iterative methods for test problems 1 and 2 are 
tabulated in Tables 1 and 2 respectively. Meanwhile, reduction percentages in terms of number of iterations 
and CPU time for the HSGS, QSGS, FSAM, HSAM and QSAM methods compared with FSGS method have 
been summarized in Table 3. 

Table 1 

Numerical results of the tested iterative methods with CT scheme for test problem 1 

Number of iterations 
n Methods  

240 480 960 1920 3840 7680 
FSGS 303 375 451 540 637 743 
HSGS 237 303 375 451 540 637 
QSGS 179 237 303 375 451 540 
FSAM 135 136 139 140 158 215 
HSAM 132 135 136 139 140 158 
QSAM 125 132 135 136 139 140 

CPU time (in seconds) 
n Methods 

240 480 960 1920 3840 7680 
FSGS 4.29 13.39 52.31 183.39 595.79 1974.28 
HSGS 2.97 5.14 17.18 68.83 225.64 694.11 
QSGS 2.08 3.21 6.24 21.19 87.94 274.33 
FSAM 3.25 10.75 37.19 127.33 364.12 1120.38 
HSAM 2.44 3.92 13.51 52.27 173.17 557.73 
QSAM 1.28 2.73 4.93 17.36 66.39 212.75 

 Maximum absolute error 
Methods n 

 240 480 960 1920 3840 7680 
FSGS 6.847871E-10 7.368467E-10 9.065918E-10 8.796745E-10 9.369449E-10 9.687818E-10 
HSGS 6.493864E-10 6.847871E-10 7.368467E-10 9.065918E-10 9.148253E-10 9.369449E-10 
QSGS 5.976255E-10 6.493864E-10 6.847871E-10 7.368467E-10 9.065918E-10 9.252085E-10 
FSAM 8.699241E-10 1.346541E-09 8.040829E-10 7.487605E-10 1.106130E-09 1.649299E-09 
HSAM 9.066320E-10 8.707608E-10 1.374749E-09 8.040829E-10 7.487605E-10 1.106130E-09 
QSAM 1.014292E-09 9.066320E-10 8.707608E-10 1.414400E-09 8.040829E-10 7.487605E-10 

5. COMPUTATIONAL COMPLEXITY ANALYSIS 

In order to measure the computational complexity of the FSAM, HSAM and QSAM methods, an 
estimation amount of the computational work required for iterative methods have been conducted. The 
computational work is estimated by considering the arithmetic operations performed per iteration. To 
estimate the computational work for AM methods, the value for kernel K , function b  and quadrature 
weights jw  are store beforehand.  

Based on Algorithm 1, it can be observed that the number of arithmetic operations required (excluding 
the convergence test) in computing a value for each node point in the solution domain for FSAM, HSAM 

and QSAM methods are 2 5+n
p

 addition/subtraction (ADD/SUB) and 4 9+n
p

 multiplication/division 

(MUL/DIV) operations. For HSAM and QSAM methods, the iteration processes is carried out only on 1
2
+

n  

and 1
4
+

n  mesh points respectively. Thus, additional two ADD/SUB and six MUL/DIV operations are 

involve to calculate a mesh point for the remaining points after convergence by using second order Lagrange 
interpolation. Hence, the total arithmetic operations involved for FSAM, HSAM and QSAM methods are 
summarized in Table 4. 
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Table 2 

Numerical results of the tested iterative methods with CT scheme for test problem 2 
Number of iterations 

n Methods  
240 480 960 1920 3840 7680 

FSGS 315 388 470 559 657 769 
HSGS 247 315 388 470 559 657 
QSGS 188 247 315 388 470 559 
FSAM 141 144 145 145 164 224 
HSAM 137 141 144 145 145 164 
QSAM 130 137 141 144 145 145 

CPU time (in seconds) 
n Methods 

240 480 960 1920 3840 7680 
FSGS 4.44 14.83 58.32 195.66 633.92 2159.60 
HSGS 3.13 5.68 19.24 76.42 238.07 757.13 
QSGS 2.28 3.81 7.21 26.39 98.41 293.16 
FSAM 3.65 12.19 39.74 132.61 370.42 1163.35 
HSAM 2.70 3.97 14.61 56.50 182.69 578.60 
QSAM 1.42 2.85 5.13 19.25 72.23 223.41 

 Maximum absolute error 
Methods n 

 240 480 960 1920 3840 7680 
FSGS 3.916332E-06 9.810628E-07 2.453851E-07 6.290920E-08 2.602358E-08 4.977974E-08 
HSGS 1.740438E-05 4.387550E-06 1.101409E-06 2.758089E-07 6.904009E-08 2.602358E-08 
QSGS 6.846369E-05 1.740438E-05 4.387550E-06 1.101409E-06 2.758089E-07 6.904009E-08 
FSAM 3.915194E-06 9.806430E-07 2.449272E-07 6.115767E-08 1.747092E-08 7.573154E-09 
HSAM 1.740456E-05 4.386528E-06 1.101024E-06 2.753261E-07 6.842856E-08 1.866109E-08 
QSAM 6.846439E-05 1.740456E-05 4.386528E-06 1.101024E-06 2.753261E-07 6.842856E-08 

6. CONCLUDING REMARKS 

In this paper, an application of the AM iterative methods for solving dense nonsymmetric matrices 
arising from the first kind linear Fredholm integral equations with semi-smooth kernel is examined. Through 
the numerical results obtained, it clearly shows that applications of the AM methods reduce number of 
iterations and execution time compared to the GS methods. Meanwhile, among the AM methods, QSAM 
method has the least number of iterations and compute with the fastest time for all mesh sizes. In terms of 
accuracy, approximate solutions for all the three AM methods are in good agreement compared to the GS 
method. Finally, it can be concluded that the QSAM method is better than other two AM (FSAM and 
HSAM) and GS methods in the sense of number of iterations and execution time. This mainly because of the 
reduction in terms of computational complexity; since the QSAM method will only consider approximately 
quarter of all interior node points in a solution domain during iteration process. 

Table 3 

Reduction percentages of the HSGS, QSGS, FSAM, HSAM and QSAM methods compared with FSGS method 
Number of iterations 

Methods Test Problem 1 
(%) 

Test Problem 2 
(%) 

HSGS 14.26 - 21.79 14.56 - 21.59 
QSGS 27.32 - 40.93 27.30 - 40.32 
FSAM 55.44 - 75.20 55.23 - 75.04 
HSAM 56.43 - 78.74 56.50 - 78.68 
QSAM 58.74 - 81.16 58.73 - 81.15 

CPU time 
Methods Test Problem 1 

(%) 
Test Problem 2 

(%) 
HSGS 30.76 - 67.16 29.50 - 67.01 
QSGS 51.51 - 88.45 48.64 - 87.64 
FSAM 19.71 - 43.26 17.79 - 46.14 
HSAM 43.12 - 74.18 39.18 - 74.95 
QSAM 70.16 - 90.58 68.01 - 91.21 
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Table 4 

Total computing operations involved for the FSAM, HSAM and QSAM methods 

 Arithmetic Operations 
Per iteration  After Convergence Methods ADD/SUB MUL/DIV  ADD/SUB MUL/DIV 

FSAM 22 7 5n n+ +  24 13 9n n+ +   - - 

HSAM 
2 7 5

2 2
n n

+ +  2 13 9
2
nn + +   n  3n  

QSAM 
2 7 5

8 4
n n

+ +  
2 13 9

4 4
n n

+ +   
3
2
n  9

2
n  
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