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HIGH-ACCURACY ALGORITHMS TO THE SOLUTION OF THE OPTIMAL 
OUTPUT FEEDBACK PROBLEM FOR THE LINEAR SYSTEMS* 
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On the basis of Levine-Athans algorithm the high accuracy algorithm for the construction of the 
output optimal linear regulator is proposed. Initial approximation is chosen by applying the penalty 
function method that allows developing algorithms which produce high accuracy solution using 
symbolic calculations. Results are extended for the discrete case and illustrated on the examples.  
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1. INTRODUCTION 

One of the important branches of the optimal control theory is a construction of the optimal regulator 
over all phase coordinates. For the solution of this problem there exist various calculation algorithms basing 
on the finding of the non-negatively defined solution of the matrix algebraic Riccati equations (MARE) [1, 
2]. Another important branch of these investigations is a construction of the optimal output regulator [3-9]. 
To solve this problem in [8] the convex analysis method, in [5] Newton method, in [3, 4] penalty function 
method had been applied. In [3, 4, 8] the algorithms are proposed which don’t require choice of the initial 
conditions. But they don’t allow obtaining a solution with enough accuracy. 

However there exists a class of problems requiring the construction of the regulator over a part of the 
phase coordinates. Solution of these problems is reduced to the solution of two essentially nonlinear 
equations [5]. Recently, in connection with developing of the Symbolic Toolbox of the package Matlab 
allowing to carry out calculation with high accuracy, the algorithms are developed for the solution of MARE 
both in stationary [2] and periodic [1] cases. The similar situation appears in the solution of the optimal 
output regulator problem, where Newton method is applicable. 

In the present paper on the base of given in [5] method a calculation algorithm is proposed. This 
algorithm allows one to solve the considered problem with high accuracy using Symbolic Toolbox of 
package Matlab. The initial condition is chosen using the penalty function method [3]. An essential 
difference of accuracy of the solution of the problem obtained by the previous algorithms which use 
calculations by usual procedures of Matlab is illustrated on the examples. 

2. STATEMENT OF THE PROBLEM 

Let the movement of object be described by the following system of the linear differential equations 
with constant coefficients  

0)0(),()()( xxtGutFxtx =+=  (1)

( )tCxy = . (2)
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It needs to minimize the functional 

0

( )dJ x Qx u Ru t
∞

′ ′=< + >∫ , (3)

with the regulation law   

( ) ( )tKytu = , (4)

under the condition that the closed-loop system (1–4) be asymptotically stable, i.e. the condition 
Re( ( )) 0F GKCλ + <  has to be satisfied. Here K  is sought ( )m l× dimensional, C-given 
( )l n× dimensional constant matrices, x  is a state vector of the system, u -vector of controlling influences, 
y -output vector (measurement), 0x  is a random vector of the initial conditions with 0 0x< >= , 

0 0 0X x x′=< >  – covariance matrix, >⋅<  is  a sign of mathematical expectation, ,,GF 0;Q Q′= ≥  
0R R′= >  – constant matrices of the corresponding dimensions, a prime hereinafter means operation of 

transpose.  
 It is known [5], that the solution of the problem (1–4) may be reduced to finding        

11 )( −− ′′′−= CCUCSUGRK , (5)

where 0>′= SS and 0>′=UU  are the  solutions of the following nonlinear matrix algebraic equations 

0)()( =′′++++′+ RKCKCQGKCFSSGKCF , (6)

0)()( 0 =+′+++ XGKCFUUGKCF . (7)

The sought matrix K  may be determined by solving the equations (5–7). 
 Note that, using the results of [1] one can carry out the sensitivity analysis of the equations (6–7). It 
will allow one the use the problem (1–4) for the solution of some applied problems.    

3. MAIN RESULTS 

The solution of the stated above problem may be found by the following iterative scheme [5]. 
Algorithm 1. 1. The matrices CRRQQGF ,0,0,, >′=>′=  are given.  
2. Choose initial approximation 0K  that provides asymptotical stability of the matrix )( 1CGKF n−+ . 

Suppose )1( −n  iterations have been done.  
3. Solving algebraic Lyapunov equations  

0)()( 1111 =′′++′+++ −−−− CRKKCQSCKFCGKFS nnnnnn , 
0)()( 011 =+++′+ −− XUCGKFCGKFU nnnn , 

find 0,0 >> nn US . This step may be solved by the help of the procedure alyap.m. The algorithm and 
realization of this procedure is given below (see algorithm 3).  
 4. Check up the criteria )()( 1−≤ nn SSpSSp , where )(⋅Sp  is a trace of the matrix. If it is satisfied, the 
iteration is stopped, otherwise:   

5. Calculate 
11 )( −− ′′′−= CCUCUSGRK nnnn , 

take nn KK =−1  and go to step 3. 
The most difficult procedure here is the finding the initial approximation. For the solution of this 

problem, we offer below the method that uses penalty function [3]. It stimulated by the fact that the other 
methods [4, 8] do not admit the use of Symbolic calculations technique. 
 Let the controlling influence be searched as 
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Lxu = , (8)

i.e. let’s consider an optimal stabilization problem over all phase coordinates. It means that, the optimal 
regulator is sought as a function of all phase coordinates. 

It is known [11, 12] that the solution of the problem (1), (3), (8) indeed is    

SGRL ′−= −1 , (9)

where 0>′= SS  is a solution of the matrix algebraic Riccati equation (ARE) 

01 =+′−+′ − QSGSGRSFSF . (10)

It is not difficult to prove, that the problem (1), (3), (8) may be reduced to the problem (1–4) with the 
help of Singular Value Decomposition (SVD) of the matrix C. 

The procedure MATLAB [ ] ( )CsvdUDV =,,  produces a diagonal matrix D  of the same dimension as 
C that has a form [ ]σ 0eD = , with nonnegative diagonal elements eσ  in decreasing order, and unitary 
matrices V and U such that [13] 

,UVDC ′=   EUUEVV =′=′ , , (11)

where E -unit matrix of the corresponding dimension.  
After some simple transformations the problem (1), (3), (8) is reduced to the solution of the following 

output optimal control problem  
,uGzFz +=  

0

( ( ) ( ) ( ) ( ))d min,J z t Qz t u t Ru t t
∞

′ ′= + →∫  

where  

, , , ,U x z F U FU G U G Q U QU′ ′ ′ ′= = = = 11

2
,e

z
h V y z

z
−  

′= σ =  
 

, ,1 hz =  1
eu K V y− ′= σ . 

The specific character of this problem is that here only part of the coordinates is measured, i.e. )( 1zzz = .  
Let us represent the matrix L  in the form 1 2[ , ],L L L=  where 1L  is m l×  dimensional, 2L – ( )m n l× −  

dimensional matrices. If to the problem (1), (3), (8) to add the additional condition  

02 =L , (12)

then 

.]0[ 11
2

1
1 xL

x
x

LLxu =







==  

Thus, in this case 1LK = . 
For fulfillment the condition (12) to the functional (3) we add the term ]0[]0[ 22 LL ′  with scalar 

weight 0>α . Then replacing the functional (3) by  

2 2
0

( )( [0 ] [0 ]) ( )d ,I x t Q L RL L L x t t
∞

′ ′ ′= + + α∫  (13)

one may easily prove that  ∞→→ αasL ,02  and the functional (13) reaches its  minimum on   
11xLu = , i.e.  ).()( uIuJ →  

It is known [11, 12] that the value of the functional (13) on the trajectory  
)()( txGLFx += , 

is calculated as 
0( ( , ), )J Sp S L X= α , 
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where )(⋅Sp  means a trace of the matrix, ( , )S Lα  is a solution of the matrix algebraic Lyapunov equation  
(MALE) 

2 2( ) ( , ) ( , )( ) ( [0 ] [0 ]).F GL S L S L F GL Q L RL L L′ ′ ′+ α + α + = − + + α  (14)

It is difficult to express the solutions of the equation (14) through the elements of the matrix .L  For 
this purpose the adjoint gradient method is used. Initial approximation of the matrix L  is calculated with the 
use of the stabilizing solution of the equation (10) that provides stability of the closed-loop system (1–4). 
The solution of (14) by α→∞  we find in the form 

.],0[ 11 LKLL ==  

Thus the following algorithm is proposed to the solution of the problem (1–4).  

Algorithm 2. 1. Given matrices RCQGF ,,,,  find the stabilizing solution S  from MARE (10). 

2. Calculate initial 1L  from (9). Suppose that the )1( −i  iterations have been done. 
3. Take enough large number α  and solve the equation  

( )2 2( ) ( ) ( ) [0 ] [0 ]i i i i i iF GL S S F GL Q L RL L L′ ′ ′+ + + = − + + α , 

0( ) ( )i iU F GL F GL U X′+ + + = − . 
4. Calculate  

'
2 2

( ( , )) ( )2 ( [0 ] [0 ])
ikj kj kj L L

Sp S L F GLSp SU U Q L RL L L
L L L

=

 ∂ α ∂ + ∂ ′= + + + α 
∂ ∂ ∂  

. 

5. Construct the vector   

.,ˆ1,ˆ,....,3,2,)( nmppppq
dL

SdSpL
iLL

q =≤≤==
=

 

6. Construct the matrix  

.

...
............

...

...

ˆ

21

22221

11211





















=

q
mn

q
m

q
m

q
n

qq

q
n

qq

i

LLL

LLL
LLL

L  

7. The next 1+iL  is calculated by the relation  

,)(

,ˆ,...,2,1,ˆ
1ˆˆˆ1ˆ

1

ipipiipip
i

iii

LLLL

piLLL
−+++++

+

−+=

=−=

β

γ
 

where ,i iγ β  are calculated by the "Golden section" method. 
8. Taking small real number ε check up the condition 

ε<−+ pp LL ˆ21ˆ2 , 

where ⋅  is a matrix norm. If the condition is satisfied the procedure stops, otherwise choose another ,p̂  

take 2ˆ2 +pL  as iL  and go to step 3. 

4. HIGH ACCURACY ALGORITHM FOR THE SOLUTION OF THE ALGEBRAIC LYAPUNOV 
EQUATIONS 

 The equations (6), (7) are the algebraic Lyapunov equations on the set K [14]. As one can see both 
proposed above algorithms require solving of these equations. For their solution there exist various 
computing algorithms, as well as, method of infinite series [12], Schur’s method, matrix sign-function 



5 High-accuracy algorithms to the solution of the optimal output feedback problem for the linear systems  211

method. From these the matrix sign function method is the most comprehensible for use of Symbolic 
Toolbox procedures of package Matlab. Therefore, we shall use further this method for the solution of the 
Lyapunov equation. Here we describe this method. 

Let’s the matrix algebraic Lyapunov equation be given 

,CAXAX =′+  (15)

and it is required to find a symmetric matrix X on the set of Hurwitz matrices A  (any square matrix) and C  
(any negatively defined symmetric matrix).  

It is known that, if A  is Hurwitz matrix, then the solution of the equation (15) exists. Here we give the 
algorithm from [12] for the solution the equation (15) with the help of matrix sign function. Matrix sign 
function sign A of the matrix A  is determined as follows [14] 

( )1
1 0

1sign lim , , .
2i i i ii

A A A A A A A−
+→∞

= = + =  

Here is the algorithm from [12] to the solution of the equation (15).   

Algorithm 3. 1. Take 0 0';A A C C= = . Suppose n  iterations have been done. 

2. Calculate 

  1i i i i iA A A+ = α + β , where 1
1

1 det
i

n
iA

α =
+

, 

1i iβ = −α , n -dimension of the matrix A , 
' 1 1

1 ( )i i i i i i iC C A C A− −
+ = α + β ; 

3. If 1 1
1, then
2i iA E X C+ ++ < ε = −  and the procedure is stopped. Otherwise take 11 , ++ == iiii CCAA  

and go to step 2. Here ε  is a given constant.  
This algorithm is easily realized in package Matlab by use of procedures Symbolic Toolbox.  

 Note that, there exist various algorithms to calculate the inverse matrix [15]. For the purpose and to 
calculate the determinant of the matrix we use the procedures inv.m and det.m of the Matlab package 
Symbolic Toolbox. The procedure alyap.m is developed on the base of offered algorithm that is also 
realizable by Symbolic Toolbox Matlab. 

Thus the following algorithm for the solution of the problem (1–4) may be offered. 

Algorithm 4. 1. The matrices RCQGF ,,,,  are given. 

 2. Use algorithms 2 and 3 for choice the initial approach 0K . 
 3. By chosen 0K  using the algorithms 1 and 3 calculate the sought solution NK , where KK N → , 
by ∞→N . 
All calculations are done by the Symbolic Toolbox Matlab.  

The example below illustrates this result. 

Example 1. The initial data of this example are taken from [8, 16]. In this case the matrices 
DNGF ,,, indeed are  

















−−
−=
















−−=

0016.00300.0
0047.00410.0
00

;
0041.0564.28
0113.02851.79
010

GF ; .

1.00
01.0
00
00

;

000
000
001
100



















=



















= DN  

Appearing in (3) matrices Q  and R  are taken as  
., '' DDRNNQ ==  

Then the observable vector is 
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Cxxy =







= ,

001
100

. 

Solving this problem by Matlab using the procedure Symbolic Toolbox by the help of Algorithm 2 the 
coefficient of the optimal regulator and minimal value of the corresponding functional are obtained as  

.86183.47,
228100.2528700.0

8565.71828.7
=







 −
= JK  

Using the Algorithm1 the following values are obtained 

.989114.45,
113614.0052946.0
29845.0421582.6

=







−

= AA JK  

Gradient of the functional for the given case is calculated as    

A
1.135114e-029J

K
∂

=
∂

. 

The equations (6), (7) which contain K , are solved with accuracy of order 5.3311e-029 in [16].  In [8] 
the coefficient of the optimal regulator is calculated as  

.
2921.05232.0
3049.14448.2









−−
−−

=GK  

Corresponding minimum value of the functional is  1632.56=GJ  and the gradient is 
0

0.3172J
K
∂

=
∂

. 

Such essential deviations of the minimum values of the functional and gradients demonstrates efficiency [16] 
of the offered here algorithms.  

Example 2. Let’s take 

[ ].10;
0

;1;
00
01

;
0

0
11 =







==








=








−

= CGRQ
a

F
aa

 

Results of the solution of this problem for various values of a  solved by usual Matlab and Symbolic 
Toolbox are given in Table 1. 

Table 1 

Comparison table  

λ - eigenvalue of the closed-loop system K – coefficient of the optimal 
regulator 

 
   a  

Usual calculations Symbolic calculations Usual 
calculations 

Symbolic 
calculations 

1 –0.408±0.92i –0.408±0.92i –0.8165 –0.8165 

10-5 –0.0007e+4;  
–5198e+4 

–0.0000e+4;   –1.5180e+4 –0.152 –0.1518012 

10-9 --- –1.1450231e-6; –895449.0643 --- –0.689549e-2 

10-15 --- –0.1319;  –7.5838 --- –0.39022e-24 

10-24 --- –1.490186e-8; –1.11346e+8 --- –0.11134e-15 

10-25 --- --- --- --- 

Here “---” means that the condition of the asymptotical stability is not satisfied.  
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Solution of the discrete analogue of the problem (1)-(4) is reduced to the solution of the discrete 
algebraic Lyapunov equation. From existing methods for the solution of the discrete algebraic Lyapunov 
equation the method of infinite series is more easily realizable in the package Matlab by use of procedures 
Symbolic Toolbox. Let’s describe this method [12]. 

Consider discrete algebraic Lyapunov equation 

.RSS =ΨΨ′−  (16)

It is required to find a symmetric matrix S on the set of matrices Ψ  (any square matrix) and R  (any 
symmetric matrix). Here the following statement is valid: if eigenvalues of the matrix Ψ are inside of unit 
circle, then 

....)()( 22 +ΨΨ′+ΨΨ′+= RRRY  (17)

Series (17) converges to the solution of the equation (16). Partial sums of this series are calculated by 
the following iterative formulas 

,0 RY =    ,)( 22
1

k
k

k
kk YYY ΨΨ′+=+   .)( 11

2

1

−−

=

ΨΨ′=∑ ii
k

i
k RY   

All steps of this scheme may be easily solved with the help of symbolic arithmetic. Another method is 
to reduce the equation (16) with the help of Cayley transformation 

;))(( 1−Ψ+−Ψ= EEA 11 )()(2 −− +Ψ+Ψ′= EREC  

to the continuous algebraic Lyapunov equation (14), that then may be solved by the sign-function method. 
Let us illustrate this by the following example. 

Example 3. In [9] the matrices RQC ,,,, ΓΨ  are taken as 

.
100
001

;
10
01

;
1000
0100
0010

;
10
00
01

;
300
11.00
012









=








=
















=
















=Γ
















−=Ψ CRQ  

In this case solving the discrete problem it is obtained 









−
−−

=
5728350876761.28820006658209.0

16653793427247.078877427768804.1
F . 

The minimal value of the functional is 88632804654669.78=J . 
Solving this problem in package Matlab by use of procedures Symbolic Toolbox we obtain the 

optimality condition as 

024-597191068e1.1.728742=
∂
∂
K
J . 

Corresponding equations by the obtained K  are solved with accuracy 1.7423е-023. 
In [9] for the same problem is obtained 









−
−−

=
9.200082.0

137.09.1
K , 344866.79=J  

Comparison of these two results demonstrates that the offered here algorithms improve the results of the 
work [9]. 

5. CONCLUSION 

In the work high accuracy algorithms are offered for the solution of the optimal regulator output problem 
both in the stationary and periodic cases that allows one to obtain solutions with necessary accuracy.   
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