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This paper obtains the soliton solutions of the Ito integro-differential equation. The /G G′  method will 
be used to carry out the solutions of this equation and then the solitary wave ansatz method will be 
used to obtain a 1-soliton solution of this equation. Finally, the invariance and multiplier approach 
will be applied to recover a few of the conserved quantities of this equation. 
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1. INTRODUCTION 

The study of nonlinear evolution equation (NLEE) has been going on for the past few decades [1-6]. 
During this time, there has been a measurable progress that has been made. There are lots of equations that 
have been integrated. There are various methods of integrability that has been developed so far. In addition 
to NLEEs, there has been a growing interest in the nonlinear integro-differential evolution equations. Some 
of these commonly studied integro-differential evolution equations are the Ito equation, the generalized 
shallow water wave equation and many others. There are various analytical methods of solving these NLEEs 
that has also been developed in the past couple of decades. Some of these methods are exp-function method, 
Fan's F -method, Riccati's equation method, Adomian decomposition method and many others. In this paper, 
the /'G G  method will be developed to solve the Ito equation. Also, the solitary wave ansatz method will 
integrate the Ito equation. Finally, the conserved quantities for the Ito equation will be computed using the 
invariance and multiplier approach based on the well known result that the Euler-Lagrange operator 
annihilates the total divergence. 

2. THE ′/G G  METHOD 

In this section, the ' /G G  method will be described and applied to obtain traveling wave solution of the 
Ito equation. This equation is studied in (1+1) dimensions as well as (1+2) dimensions. therefore, this work 
will be done in two following subsections. 

2.1. (1+1) Dimensions 

The (1+1)-dimensional form of the generalized Ito integro-differential equation that is going to be 
studied in this subsection is given by  

( )2 d = 0
x

tt xxxt x t xt xx tq q a q q qq aq q x
−∞

′+ + + + ∫  (1)
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Here, in (1), q  is the dependent variable while x  and t  are the independent variables. The coefficient a  is 
constant. The eq. (1) can reduced to 

( )2 = 0,ttx xxxxt xx xt x xxt xxx tv v a v v v v v v+ + + +  (2)

with using the potential = xq v .The eq. (2) is converted to the ODE 

( )2 4 ( ) 3 3 32 = 0vc eu ce u a ce u u ce u u ce u u′′′ ′′ ′′ ′ ′′′ ′′′ ′− + − − −  (3)

or equivalently 

( )3 ( ) 2 2( ) = 0,vcu e u ae u′′′ ′− −  (4)

by the wave variables   = ( ), =v u ex ctξ ξ − , where primes denote the derivatives with respect to ,ξ  and 
ce,  are real constants to be determined later. 

The eq. (4) is then integrated twice. This converts it to  

( )3 ' 2 2( ) = 0cu e u ae u′′′ ′− − , (5)

In ' /G G  method, the solution ( )u ξ  of equation (5) is considered in the finite series form  

=0

( )( ) = ( ) ,
( )

N
i

i
i

Gu A
G
′ ξ

ξ
ξ∑  (6)

where iA  are positive integers with 0NA ≠  that will be determined. N  is a positive integer that can be 
accomplished by balancing the linear term of highest order derivative with the highest order nonlinear term 
in equation (5). Here balancing u ′′′  with 2( )u′  gives = 1N . Therefore, we can write the solution of equation 
(5) in the form of  

0 1 1
( )( ) = ( ), 0.
( )

Gu A A A
G
′ ξ

ξ + ≠
ξ

 (7)

The function ( )G ξ  in (6) is the solution of the auxiliary linear ordinary differential equation  

( ) ( ) ( ) = 0,G G G′′ ′ξ + λ ξ + µ ξ  (8)

where λ  and µ  are real constants to be determined. By using (8) and the general solution of (6), we can find 
,u u′ ′′′  and 2( )u ′  as polynomials of ' /G G . Substituting the general solution of (8) together with ,u u′ ′′′  

and 2( )u′  as polynomials of ' /G G  into equation (5) yield algebraic equations involving powers of ' /G G . 
Equating the coefficients of each power of ' /G G  to zero gives a system of algebraic equations for 

, , ,iA eλ µ  and c . Then, solving this system by Maple gives 

3 2
1

6= , = ( 4 ),eA c e
a

λ − µ  (9)

where e  and µ  are the arbitrary constants. Next, depending on the sign of the discriminant 2= 4∆ λ − µ , the 
three types of the following traveling wave solutions of the equation (4) are obtained. 
When 2= 4 > 0∆ λ − µ , the hyperbolic function traveling wave solution is  

0
6( ) := ( ( ))

2
eu A h

a
−λ

ξ + + γ ξ  (10)

or equivalently        
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2 26( ) := ( )(1 ( )),eq h h
a
γ

ξ ξ − ξ  (11)

where  
2

3 24
= , = ( 4 ) ,

2
ex e t

λ − µ
γ ξ − λ − µ     1 2

2 1

sinh( ) cosh( )
( ) = ,

sinh( ) cosh( )
c c

h
c c

γξ + γξ
ξ

γξ + γξ
  and 0A  is an arbitrary 

constant. In (10) 21, cc  are arbitrary constants. If them are taken as special values, the various known results 

in the literature can be rediscovered, for instance, setting 2 1= 0, = 1, = 1, = 2c c e a  and 0
6=
2

A − λ
α + , 

then the solution of (2) can be written as   1 ( ) := tanh ( )
2
cv c x ct

 
ξ α + − 

  
 that it is the solution (41) in [6]. 

Setting 1 2= 0, = 1, = 1, = 2c c e a  and 0
6=
2

A − λ
α + , then the solution of (2) can be written as 

2 ( ) := coth ( ) .
2
cv c x ct

 
ξ α + − 

  
 

From (5) we can extract other exact solutions of Eq. (5) reported earlier. When 2= 4 = 0∆ λ − µ , the 
rational function traveling wave solution is  

0
6( ) := ( ( ))

2
eu A h

a
−λ

ξ + + ξ  (12)

or equivalently 
2

26( ) := ( ),eq h
a

−
ξ ξ  (13)

where  1

2 1
= , ( ) = ,

c
ex h

c c
ξ ξ

+ ξ
  and 0A  is an arbitrary constant.  

Finally, when 2= 4 < 0∆ λ − µ , the trigonometric function traveling wave solution is 

0
6( ) := ( ( ))

2
eu A h

a
−λ

ξ + + γ ξ  (14)

or equivalently 
2 2

26( ) := (1 ( ))eq h
a

− γ
ξ + ξ , (15)

where 
2

3 24
= , = (4 ) ,

2
ex e t

µ − λ
γ ξ + µ − λ  1 2

2 1

sin( ) cos( )
( ) = ,

sin( ) cos( )
c c

h
c c
− γξ + γξ

ξ
γξ + γξ

 and 0A  is an arbitrary 

constant. 

2.2. (1+2) Dimensions 

The (1+2)-dimensional form of the generalized Ito integro-differential equation that is going to be 
studied in this subsection is given by [5] 

( )2 = 0.
x

tt xxxt x t xt xx t yt xtq q a q q qq aq q dx bq dq
−∞

′+ + + + + +∫  (16)

Here, in (16), q  is the dependent variable while yx,  and t  are the independent variables. The coefficients 
,a b  and d  are constants. The eq. (16) can reduced to  
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( )2 = 0,ttx xxxxt xx xt x xxt xxx t xyt xxtv v a v v v v v v bv dv+ + + + + +  (17)

with using the potential. 
The eq. (17) is converted to the ODE  

( )2 4 ( ) 3 3 32vc eu ce u a ce u u ce u u ce u u′′′ ′′ ′′ ′ ′′′ ′′′ ′− + − − − 0=2ucdeucbef ′′′−′′′−  (18)

or equivalently    

( )3 ( ) 2 2( ) ( ) = 0,vc bf de u e u ae u′′′ ′− − − −  (19)

by the wave variables  = ( ), =v u ex fy ctξ ξ + − , where primes denote the derivatives with respect to ,ξ  and 
,e f  and c  are real constants to be determined later. The eq. (19) is then integrated twice. This converts it 

into  

( )3 ' 2 2( ) ( ) = 0.c bf de u e u ae u′′′ ′− − − −  (20)

Here balancing u′′′  with 2( )u′  gives = 1N . Therefore, we can write the solution of equation (20) in the 
form of  

0 1 1
( )( ) = ( ), 0.
( )

Gu A A A
G
′ ξ

ξ + ≠
ξ

 (21)

The function ( )G ξ  in (21) is the solution of the auxiliary linear ordinary differential equation (20). 

Substituting the general solution of (20) together with ,u u′ ′′′  and 2( )u ′  as polynomials of ' /G G  into 
equation (21) yield algebraic equations involving powers of ' /G G . Equating the coefficients of each power 
of ' /G G  to zero gives a system of algebraic equations for , , , ,iA e fλ µ  and c . Then, solving this system 
by Maple gives  

3 2
1

6= , = ( 4 ),eA c bf de e
a

+ + λ − µ  (22)

where fe,  and µ  are the arbitrary constants. Next, depending on the sign of the discriminant 

µλ 4= 2 −∆ , the three types of the following traveling wave solutions of the equation (20) are obtained. 

When 0>4= 2 µλ −∆ , the hyperbolic function traveling wave solution is  

0
6( ) := ( ( ))

2
eu A h

a
−λ

ξ + + γ ξ  (23)

or equivalently  
2 26( ) := ( )(1 ( )),eq h h
a
γ

ξ ξ − ξ  (24)

where   ( )3 2= ( 4 ) ,ex fy bf de e tξ + − + + λ − µ  
2

1 2

2 1

4sinh( ) cosh( )
( ) = , = ,

sinh( ) cosh( ) 2
c c

h
c c

λ − µγξ + γξ
ξ γ

γξ + γξ
 and 0A  

is an arbitrary constant. In (23) 21, cc  are arbitrary constants. If them are taken as special values, the various 
known results in the literature can be rediscovered, for instance, setting 

2
2 1= 0, = 1, = 1, = 2, = 1, = ( 4 )c c e a f c b d+ + λ − µ  and 0

6=
2

A − λ
α + , then the solution (17) can be 
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written as 1
( )

( ) := ( ) tanh ( )
2

c b d
v c b d x y ct

 − +
ξ α + − + + − 

  
 , that it is the solution (73) in [6]. Setting 

2
1 2= 0, = 1, = 1, = 2, = 1, = ( 4 )c c e a f c b d+ + λ − µ  and 0

6=
2

A − λ
α + , then the solution of (17) can be 

written as  2
( )

( ) := ( ) coth ( )
2

c b d
v c b d x y ct

 − +
ξ α + − + + − 

  
. 

From (20) we can rediscover some other exact solutions of eq. (16). When 2= 4 = 0∆ λ − µ , the 
rational function traveling wave solution is  

0
6( ) := ( ( ))

2
eu A h

a
−λ

ξ + + ξ  (25)

or equivalently 
2

26( ) := ( )eq h
a

−
ξ ξ , (26)

where  1

2 1
= , ( ) = ,

c
ex fy h

c c
ξ + ξ

+ ξ
  and 0A  is an arbitrary constant. Finally, when 2= 4 < 0∆ λ − µ , the 

trigonometric function traveling wave solution is    

0
6( ) := ( ( ))

2
eu A h

a
−λ

ξ + + γ ξ  (27)

or equivalently  
2 2

26( ) := (1 ( )),eq h
a

− γ
ξ + ξ  (28)

where   ( )3 2= (4 ) ,ex fy bf de e tξ + − + − µ − λ    
2

1 2

2 1

4sin( ) cos( )
( ) = , = ,

sin( ) cos( ) 2
c c

h
c c

µ − λ− γξ + γξ
ξ γ

γξ + γξ
 

and 0A  is an arbitrary constant. 

3. THE ANSATZ METHOD 

Ito equation is a generalization of the bilinear Korteweg-de Vries (KdV) equation. It is sometimes 
referred to as the extension of the NLEE of KdV or modified KdV (mKdV) type to higher order. This 
equation is studied in (1+1) dimensions as well as (1+2) dimensions. This study will therefore be split in the 
following two subsections. 

3.1 (1+1) Dimensions 

The dimensionless form of the Ito equation in 1+1 dimensions is given by [5]  

( ) d = 0
x

tt xxxt x t xt xx tq q a q q qq bq q x
−∞

′+ + + + ∫ . (29)

Here in (29) a  and b  are all constants. In this section, the search will be for 1-soliton solution to (29). The 
technique that will be used to carry out the calculations is the solitary wave ansatz method. Therefore, the 
starting ansatz for the 1-soliton solution to (29) is taken as 
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( , ) = sech pq x t A τ , (30)

where  

= ( ).B x vtτ −  (31)

Here in (30), A  is the amplitude of the soliton while B  is the inverse width of the soliton. Also, v  is the 
velocity of the soliton while the value of the unknown exponent p  will be determined while deriving the 
solution to the Ito equation. Substituting (30) into (29) yields  

2 2 2 2 2 2sech ( 1) sech –p pp v AB p p v AB +τ − + τ  

( )4 4 2 4 2sech 2 ( 1) 2 2 sech –p pp vAB p p p p vAB +− τ + + + + τ
4 2 2 2 2 2( 1)( 2)( 3) sech ( 1) sech –p pp p p p vAB ap p vA B+ +− + + + τ + + τ

2 2 2 2 2 2 2 2 22 sech sech –p pap vA B ap vA B +− τ + τ  
2 2 2 2 2 2 2 2sech ( 1) sech = 0.p pbvp A B bvp p A B +− τ + + τ  

(32)

From (38) equating the exponents 2 p  and 2p +  gives  

= 2.p  (33)

It needs to be noted that the same value of p  is obtained when the exponents 2 2p +  and 4p +  are equated 
with each other. Now, from (32) setting the coefficients of the linearly independent functions sech p j+ τ  for 

= 0, 2, 4j  to zero yields  

2= 4 ,v B  (34)

224= ,
2

BA
a b+

 (35)

260= .
5 3

BA
a b+

 (36)

Now, equating the two values of A  from (35) and (36) yields the condition 0=b . In such case, both 
expressions (35) and (36) reduce to  

212= .BA
a

 (37)

Therefore the 1-soliton solution to Ito equation is given by  
2( , ) = sech [ ( )]q x t A B x vt− , (38)

where the amplitude-width relation is given by (37) and the velocity of the soliton is given by (44). 

3.2. (1+2) Dimensions 

The dimensionless form of the Ito equation in (1+2) dimensions is given by [5]  

( ) = 0.
x

tt xxxt x t xt xx t yt xtq q a q q qq bq q dx cq dq
−∞

′+ + + + + +∫  (39)

Here, a , b , c  and d  are all constants. In order to seek 1-soliton solution to (39) the starting ansatz is still 
given by (30), where in this case  

1 2= .B x B y vtτ + −  (40)
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Here in (40), A  represents the amplitude of the soliton, while 1B  and 2B  represents the inverse width in the 
x - and y -directions respectively. Finally, v  represents the velocity of the soliton and the exponent p , 
which is unknown at this point, will be determined in terms of n  during the course of derivation of the 
soliton solution. Substituting (30) into (39) again yields  

2 2 2 2sech ( 1) sechp pp v A p p v A +τ − + τ ( )4 3 2 3 2
1 1sech 2 ( 1) 2 2 sech –p pp vAB p p p p vAB +− τ + + + + τ

4 2 2 2
1 1( 1)( 2)( 3) sech ( 1) sech –p pp p p p vAB ap p vA B+ +− + + + τ + + τ

2 2 2 2 2 2 2
1 12 sech sechp pap vA B ap vA B +− τ + τ 2 2 2 2 2 2

1 1sech ( 1) sech –p pbvp A B bvp p A B +− τ + + τ
2 2

2 2sech ( 1) sechp pcvp AB cvp p AB +− τ + + τ 2 2
1 1sech ( 1) sech = 0p pdvp AB dvp p AB +− τ + + τ  

(41)

Similiarly as in the previous sub-section, the same value of p  as in (33) is yielded. Proceeding as in 
the (1+1) dimensional case, equation (39) gives  

3
2 1 1= 4 ,v cB dB B+ +  (42)

2
124

= ,
2

B
A

a b+
 (42)

2
160

= .
5 3

B
A

a b+
 (44)

Now, equating the two values of A  from (43) and (44) yields to the condition 0=b  as in the previous 
subsection. In such case, both expressions (43) and (44) reduce to 

2
112

= .
B

A
a

 (45)

Finally, the 1-soliton solution to (39) is given by  

( )2
1 2( , , ) = sechq x y t A B x B y vt+ − , (46)

where the amplitude A  is related to the width 1B  of the soliton as given by (45) and the velocity of the 
soliton is given by (42). 

4. CONSERVATION LAWS 

In the following subsection, more conserved quantities are derived using the multiplier approach. For 
this, we resort to the invariance and multiplier approach based on the well known result that the Euler-
Lagrange operator annihilates a total divergence. That is, if ( , ).t xT T  is a conserved vector corresponding to 
conservation law [1]  

= 0,t x
t xD T D T+  (47)

along the solutions of the differential equation in question, then 

[ ] = 0,t x
q t xE D T D T+  (48)

where qE  is the appropriate Euler-Lagrange operators. Moreover, if there exists a nontrivial differential 
function Q , called a ‘multiplier’, such that   

.(equation) = t x
t xQ D T D T+  (49)

for some conserved vector, then 
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[ .(equation)] = 0,qE Q  (50)

from which a knowledge of each multiplier Q  leads to a conserved vector via a Homotopy operator. The 
elaborate and tedious calculations reveal that a number of multipliers and, hence, nontrivial conservation 
laws (and densities/conserved quantities) are available. 

4.1. (1+1) Dimensions 

In this case, following (2), the Euler operator is vE  and multipliers obtained are  

1 2 3 4= , = , = , = ( ),Q v Q x Q xt Q g t  

where ( )g t  is an arbitrary function including the case = 1Q . We note that there are no derivative dependent 
multipliers upto third order. The corresponding conserved densities are, respectively, via the homotopy 
operator  

1 3 21= ( 30 10 60 9 6 (5 3 )
90t t x x xt xx x xx xxxT v v av vv v v avv v− − + + + − 210 18 ),xxx xxxxav v vv+ +  (51)

2 21= ( 10 5 20 5 15 6
30t t x xt xx x xx xxxT v av xv avv axv v v− − + − + − 5 6 ),xxx xxxxaxvv xv+ +  (52)

3 21= ( 10 10 5 20 15 6
30t t x x xt x xx xxxT tv xv atv txv atxv v tv− − − + + − 5 (4 ) 6 ),xx xxx xxxxv atv atxv txv+ − + +  (53)

4 1= ( 10 (20 15 5 6 )).
30t x xt x xx xxx xxxxT g v g v av v avv v′− + + + +  (54)

The Lie point symmetry algebra has basis  

1 2 3 4= , = , = , = 3 .x t v x t vX X X X x t v∂ ∂ ∂ ∂ + ∂ − ∂  (55)

Hence, the respective conserved quantities are  
2 3

1 608d = ,
105t

A BT x
∞

−∞∫  (56)

2d = 0,tT x
∞

−∞∫  (57)

3 2d = ,t
AT x

B
∞

−∞∫  (58)

4d = 0.tT x
∞

−∞∫  (59)

These conserved quatities are all computed using the 1-soliton solution that is given by (46). 

4.2. (1+2) Dimensions 

The condition on Q  for the multidimensional case is based on (17) leading the zeroth order multipliers  

2
1 2 3 4= ( ) 4 ( ), = ( ) , = ( ), = ( , ),Q y v b ax y Q y x Q y bt Q t y′α − α β γ − δ  (60)



9 Solitons and conserved quantities of the Ito equation  223

with corresponding densities  
1 2 2 21 ( 15 120 60 60

360
''

t x t x y x xT b x v a v v ab v v ad v
a

= − − α + α + α + α +

2 3 2 2 240 36 40 72x xx xxx x xxxa v a v a v v a v v+ α − α − α + α +
2 2 23 ( 20 10 20 10 20 10t y x x xt xyb xv bxv dxv axv x v bx v′+ α − − − − + + +

2 2 212 10 15 12 6 )xx xx x xx xxx xxxxv dx v ax v v xv x v+ + + − + 23 (5 (4 2 ) –xx xxxv b d axv ax v′+ α − +
24( 5 2 (10 5 5 5 3 )))),''

xt xy xx x xx xxxxb x a v bv dv av v v− − α + α + + + +  

 

2 1 ( 5 5 (2 ( ))
30t x xx xxxT bx v v b a v xv′ ′= − β + β + β − + +

2( 10 5 10 5 20 10 10t y x x xt xy xxv bv dv av xv bxv dxv+β − − − − + + + 15 6 6 )),x xx xxx xxxxaxv v v xv+ − +  

3 1 (5 5 (2 ( ))
30t x xx xxxT bx v v b a v xv′ ′= γ − γ + γ − 2( 10 5 10 5 20 10t y x x xt xyv bv dv av xv bxv+γ − − − − + + +

10 15 6 6 )),xx x xx xxx xxxxdxv axv v v xv+ + − +  

4 1 ( 5 10 (20 10 10 15 5 6 )).
30t y x t x xt xy xx x xx xxx xxxxT b v v v bv dv av v avv v= − δ − δ + δ + + + + +  

Particular cases of these, for e.g., would be from choosing  

1 2 3= , = , = ( ) ,p p pQ yv Q yx Q y bt x−  

with densities  
1 2 31 ( 30 15 15 10 60

90t t x y x x x xtP v v bv v dv av vv= − − − − + +

2 230 30 30 9 10 18 18 ),xy xx x xx xx xxx x xxx xxxxbvv dvv avv v v av v v v vv+ + + + + − +  

2 21 ( 10 5 5 10 5 20 10
30t t y x x x xt xyP yv byv bxv dyv ayv xyv bxyv= − − − − − + + +  

10 15 6 5 (2 ) 6 ),xx x xx xxx xx xxx xxxxdxyv axyv v yv v b ayv axyv xyv+ + − + − + +  

3 21 (10( ) 5 5 10
30t t y y xP bt y v b tv byv bdtv= − + − + +  

2 2 25 10 5 5 20 20 10x x x x xt xt xybxv dyv abtv ayv btxv xyv b txv+ − + − − + − +  

10 10 10 15 15xy xx xx x xx x xxbxyv bdtxv dxyv abtxv v axyv v+ − + − + +  

6 6 5 ( 2 ( ) ( ) ) 6 6 ).xxx xxx xx xxx xxxx xxxxbtv yv v b a bt y v ax bt y v btxv xyv+ − + − + − + − + − +  

5. CONCLUSIONS 

In this paper, the Ito equation, which is a nonlinear integro-differential evolution equation is studied.  
First the '/G G  method is used to carry out the integration of this equation and its solutions are 

obtained. Subsequently the 1-soliton solution of the Ito equation in 1+1 and 1+2 dimensions are obtained. In 
this context it was proved thatthe soliton solution will exist provided the nonlocal term collapses to zero. 
This 1-soliton solution is then used to compute the non-trivial conserved quantities where the corresponding 
conserved densities are computed using the multiplier approach. 
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