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In this paper, we propose an approach that permits to compute a tracking trajectory control law of 
continuous nonlinear systems. This approach is based on the study of stability of motion of a given 
process, by the second method of Lyapunov and using the Lyapunov candidate function to follow a 
given instruction. We treat also some cases where this control law does not function directly. 

Key words:  Control, stability, non linear systems, Lyapunov candidate function, tracking trajectory. 

1. INTRODUCTION 

The control of the evolution of non linear systems is very important, taking into account the complexity 
of computation they generate.  

According to [5], a control of continuous nonlinear systems with good performances in term of 
tracking trajectory was proposed in 1992 using the flatness property but this approach needs to determine the 
flat output which is very often difficult. An other solution consists to use a sliding mode control [9]. 

In this work we propose an approach that permits to compute the tracking trajectory control of a 
process whose evolution is described by its state equation. 

This control is realized from available information concerning the process and its desired evolution [3]. 
Let consider the following equation of evolution of the system: 
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where [ [0,∈τ = +∞t  represents the time; 
           ∈ nx   the state vector of the process; 
           ∈ lu the control law; 
           ∈ my  the output of the process, with  l m≥ and in general we have l m= . 

The proposed approach is based on the stability of motion and the use of the second Lyapunov method 
[7, 8, 10]. 

The tentative Lyapunov function is expressed on the quadratic form 
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where ( )cy t denotes the desired evolution of the output y(t). The objective is to find a control law u(x,t,yc(t)) 

that makes d ( , )
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 negative given the constraints on u and the dynamic of the desired output acceptable by 

the system. 
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2. COMPUTATION OF THE TRACKING CONTROL LAW FOR NONLINEAR PROCESS 

Let us consider the process whose evolution is described by the state equation 

{ ( ) ( , ) ( , ) ( )
( ) ( , )

= +
=

x t f x t G x t u t
y t h x t       (1)

and the candidate Lyapunov function [1, 2, 6] 
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it comes by derivation  
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The tracking of the trajectory defined by ( )cy t  needs to have 
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where ( ( ) ( ) )Ψ −cy t y t  is a definite positive function of ( ) ( )−cy t y t . Under the condition ( , )xH G x t  
invertible, this propriety can be obtained by choosing the control law: 
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The choice of  
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It comes:  

[ ]1( ) ( ( , )) ( ) ( , ) ( ( ) ( ))x c x cu t H G x t y t H f x t y t y t−= − − α − , (10)

Example of simulation 

To implement this method of non linear system control, we consider the following second order system 
(S), defined by its state equation: 
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We choose the desired trajectory to follow:    

( ) sin( )sin( )=cy t at bt , (12)

where : 0.1, = 0.2 and 1a  b == α . It comes out 

[ ]2 11 ,1= + +xH x x , (13)

2
1 1 2( , ) 2 ( 1)( 1) 2= + + + +xH G x t x x x , (14)
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and the use of the control law defined in relation (5) leads to a good tracking of the desired trajectory as it 
appears on Fig. 1 
 

 
Fig. 1 – Evolution of the system for trajectory tracking yc. 

We can see on Fig. 1 that the system tracks perfectly the trajectory yc.  

3. CASE WHERE (HX(X,T)G(X,T)) IS NOT INVERTIBLE 

Let (S) a state system defined in a canonical controllable form 
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We found that for the case where 0 1 1( ) ( )−= nh x b  b   b  and where 1 0− =nb , the term ( , )xH G x t  is non 
invertible, that’s to say  that, for example, in the case of a linear system  of order n for which  the numerator 
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degree is less than ( 1)−n , it is necessary to introduce integrations which modify the original control [4]. 
Indeed, if the evolution of our system is defined by the relation: 
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1
( ) ' ( )

0 0
( ) ( )

n n
i i

i i
i i

a y t b v t
−

= =
=∑ ∑ . (20)

Hence the controllable canonical form of the equivalent system: 
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with '
1 0− ≠nb . 

From this system, we calculate the control v(t) by the method presented previously, then we deduce the 
initial control u(t) and we replace in (S). 

Examples of simulation 

In order to illustrate this approach, for the examples, we have chosen the case of linear systems. 

3.1. Example 1 

We consider the second order system (S) defined by (17): 
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Let us pose '
0 1= β +βu v v  where v verifies: 
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We consider a desired evolution described as: 1 2( ) sin( ) sin( )cy t r t r t=  
According to the relation (5) of the proposed control in (3.1) we write (10): 

[ ]1( ) ( ( , )) ( ) ( , ) ( )x c xv t H G x t y t H f x t q x−= − +  

as (11): 
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( ) ( )= −α −cq x y y , 

so: 
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By choosing the computing parameters as: 
0 10.2 0.1 and 0.66 ;  a   a   ; α = = =  0 10.5 and 0.5   ;β = β =  

1 20.1 and 0.3 r   r= =  It comes '
0 12 and 0.1'b   b= =  

The simulation result is shown in Fig. 2, where it shows that the system can track reasonably the 
desired trajectory. 

 

 

Fig. 2 – Output evolution by tracking the desired trajectory cy using integrations of the original control.  

3.2. Example 2: Case of a very oscillating system with an instable zero: 

We consider the same system (S), with : 

0 1 0 1 1 20.1 0.1 and 0.2 1 and 1 0.1 and 0.3  ;  a   a   ;      ;  r   rα = = = β = β = − = = . It comes '
0 12 and 1= ='b   b . 
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 Fig. 3 – Output evolution by tracking the desired trajectory cy using integrations of the original control,  

for the system with an instable zero. 

3.3. Example 3: Case of a very oscillating unstable system 

Let consider the second order system (S) defined by (17), where 0 10.1 and 0.3= = −a   a . It is clear 
that the system is instable. The choice of '

0 1= β +βu v v  leads to (21): 
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We consider a desired evolution described as:  1 2( ) sin( ) sin( )cy t r t r t= , where 0 110; 0.5 and 0.5;    α = β = β = . 
It comes '

0 11 and 5'b   b= = . 
 

 
Fig. 4 – Output evolution by tracking of the desired trajectory cy using integrations of the original control. 
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4. CONCLUSION 

In this work we have presented a new approach that permits to compute a tracking trajectory control of 
continuous non linear systems. This approach is based on the use of Lyapunov candidate function which 
enables us to compute the stabilizing control. Illustrating examples have been given to show the robustness 
of the proposed approach. 

For the case when the direct application of the method is not possible, we have proposed a modified 
approach to find a solution. 

Three different examples have been presented to show the efficiency of this approach. The first one 
treats a stable system that tracks the given trajectory. The second example is a case of a very oscillating 
system with an instable zero, that we can stabilize on the trajectory and finally for the third example, a very 
oscillating unstable system and we can see that it reach perfectly the desired trajectory. 
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