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Let A and B be Banach algebras. We show that when B is commutative or character space of B is 
nonempty and A B is weakly amenable, then A is weakly amenable too.  
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1. INTRODUCTION 

Let X be a Banach space. We denote the dual space of X by *X ; the action of * *x ∈X  on element 
x∈X  is written as *,x x< > .  Let A  be a Banach algebra and let X  be a Banach A-bimodule. Then *X  is 
also a Banach A-bimodule with the  following module  actions 

* * * *, , ,    , ,   ( ),x x a ax x x ax xa x x< >=< > < >=< > ∈X  

for all a∈A  and * *x ∈X . The space *X  with these actions is the dual module of X. Let A  be a Banach 
algebra and X  be a Banach A-bimodule. A bounded linear map D  from A  into X  is a derivation if 

( ) · ( ) ( )· ,D ab a D b D a b= +  
for all ,a b∈A . 

For each x∈X , the mapping :x →δ A X  defined by ( ) · ·x a a x x a= −δ  is a derivation. Derivations of 
this form are called inner derivations. The cohomology space 1 ( , )H A X  is the quotient of the space of 
derivations by the inner derivations, and triviality of this space is important. In particular, Banach algebra A  
is contractible if  for every Banach A-bimodule X , 1 ( , ) {0}=H A X , amenable if  for every Banach  
A-bimodule X , 1 *( , ) {0}=H A X , and weakly amenable if 1 ( , ) {0}∗ =H A A  [1, 4, 5, 7, 8, 9]. 

Let A  be a Banach algebra. Then the projective tensor product A A is a Banach A-bimodule, where 
the module actions are specified by 

·( )    and   ( )·a b c ab c b c a b ca⊗ = ⊗ ⊗ = ⊗ , 

for all , ,a b c∈A . We define the multiplication map π: A A → A by 

( )    ( , ).a b ab a bπ ⊗ = ∈A  

Then π becomes a bounded A-bimodule homomorphism. The Banach algebra A  is said to be 
biprojective if π  has a bounded right inverse which is an A-bimodule homomorphism, i.e. there is a bounded 
A-bimodule homomorphism ρ: A → A A such that π ρ=IA. A-Banach algebra A  is contractible if and 
only if it is unital and biprojective. The dual map φ ∗  is also a A-bimodule homomorphism. A Banach 
algebra A  is said to be biflat if π* has a left inverse as a bounded A-bimodule homomorphism. It is easy to 
see that a biprhojective Banach algebra is biflat. A Banach algebra A  is amenable if and only if it is biflat 
and has a bounded approximate identity. Every biflat Banach algebra is weakly amenable [6]. 
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An approximate diagonal for Banach algebra A  is a bounded net { }mα  in A A such that 

lim · · 0   and   lim ( )·a m m a m a aα α αα α
− = π =  

for each a∈A . 
A virtual diagonal for A is an element M of (A B)** such that 

** ˆ· ·    and   ( )·M a a M M a a= π =  

for each a ∈A . It is well known that Banach algebra A  is amenable if and only if A  has an approximate 
diagonal if and only if A  has a virtual diagonal [3]. 

Let A and B be Banach algebras. Then the space A B becomes a Banach algebra with the 
multiplication given by 

1 1 2 2 1 2 1 2 1 2 1 2( )·( )    ( , , , ).a b a b a a b b a a b b⊗ ⊗ = ⊗ ∈ ∈A B  

A Banach algebra A  is said to be essential if 2A  is dense in A , where 
2 { ·   ;  , }.lin a b a b= ∈A A  

2. MAIN RESULTS 

THEOREM 2.1. Let A  and B  be Banach algebras. If A B is weakly amenable, then A  and B  are 
essential. 

Proof. Suppose that A  is not essential. By Hahn-Banach theorem there is a non-zero * *a ∈A  such 
that *, 0aa a′< >=  for each ,a a′∈A . Let *b  is a non-zero element of *B . The map * *a b⊗  is a bounded 
linear functional on A B such that * * * *, , ,a b a b a a b b< ⊗ ⊗ >=< >< > . The map D: (A B) → (A B)* 
defined by 

* * * *( ) ,D m m a b a b=< ⊗ > ⊗  

is a bounded linear map and for ,a a A′∈  and ,b b B′∈  we have 
* * * * * *( · ) , , , 0,D a b a b aa bb a b aa a bb b a b′ ′ ′ ′ ′ ′⊗ ⊗ =< ⊗ ⊗ >=< >< > ⊗ =  

on the other hand, 

* * * * * * * *

* * * * * * * *

· ( ) ( )·

, · , ·

, , 0.

a b D a b D a b a b

a b a b a b a b a b a b a b a b

a b a b aa bb a b a b a a b b

′ ′ ′ ′⊗ ⊗ + ⊗ ⊗ =

′ ′ ′ ′=< ⊗ ⊗ > ⊗ ⊗ + < ⊗ ⊗ > ⊗ ⊗ =

′ ′ ′ ′=< ⊗ ⊗ > ⊗ + < ⊗ ⊗ > ⊗ =

 

Hence D  is a derivation, so there is φ  in (A B)* such that D φ= δ . For each a∈A  and b∈B  we 
have 

  * * 2

0 , · ·

, ( ) ( , , ) .

a b a b a b

a b D a b a a b b

=< ⊗ ⊗ φ − φ ⊗ >

=< ⊗ ⊗ >= < >< >
 

This is a contradiction. Similarly B  is essential. 

THEOREM 2.2. Let A  and B  be Banach algebras. Suppose that B  is commutative and A B is 
weakly amenable, then A  is weakly amenable. 
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Proof. Let *b  be a non-zero element of *B . By Theorem 2.1., there are ,c d ∈B  such that 
*, 1cd b< >= . Now let *:d →A A  be a derivation. Consider the map D: (A B) → (A B)* defined by  

*, ( ) , ( ) , .a b D a b a d a b bb′ ′ ′ ′< ⊗ ⊗ >=< >< >  The map D  is a bounded linear map and for each 

1 2, ,a a a′ ∈A  and 1 2, ,b b b′ ∈B  we have 

*
1 1 2 2 1 2 1 2

* *
1 2 1 2 2 1 2 1

1 1 2 2 1 1 2 2

, ( · ) ( ) ,

, ( ) , , ( ) ,
, ( ) , ( ) .

a b D a b a b a d a a b b b b

a a d a b b b b a a d a b b b b
a b a b D a b a b D a b a b

′ ′ ′ ′< ⊗ ⊗ ⊗ >=< >< >

′ ′ ′ ′=< >< > + < > + < >
′ ′ ′ ′=< ⊗ ⊗ ⊗ > + < ⊗ ⊗ ⊗ >

 

Therefore D is a derivation and so there is φ  in (A B)* such that D φ= δ .  

We define *a  on A by ( ) ( )a a a cd∗ = φ ⊗  for all a∈A . The map *a  is a bounded linear functional 

and for each ,a a′∈A  we have 

*

*

*

, ( ) , ( ) ,
, ( ) , · ·

( ) , , , ( ) .a

a d a a d a c db
a c D a d a c a d a d

a a aa cd a a aa a a a

′ ′< =< >< >=
′ ′=< ⊗ ⊗ >=< ⊗ ⊗ φ − φ ⊗ >=

′ ′ ′ ′ ′=< − ⊗ φ >=< − >=< δ >

 

Therefore d is an inner derivation. 
 

THEOREM 2.3. Let A  and B  be commutative Banach algebras. Then A B is weakly amenable if 
and only A  and B  are weakly amenable. 

Proof. Suppose that A B is weakly amenable. By Theorem 2.2., A  and B  are weakly amenable.  

Conversely let A  and B  are weakly amenable. By [3, Theorem 2.8.71] A B is weakly amenable. 
We recall that a character φ  on Banach algebra B  is a non-zero linear functional on B  such that 

( ) ( ) ( )bb b b′ ′φ = φ φ  for all ,b b′∈B . We write ΦB  for the set of all characters on B . It is well known that 
*Φ ⊆B B  [2, 16.3]. 

 
THEOREM 2.4. Let A  and B  be Banach algebras, and let Φ ≠∅B . If A B is weakly amenable, 

then A  is weakly amenable too. 

Proof.  Let φ∈ΦB . Choose 0b ∈B  such that 0( ) 1bφ = . Now let d: A → A* be a derivation. We 

define D: (A B) → (A  B)* by , ( ) , ( ) ( )a b D a b a d a bb′ ′ ′ ′< ⊗ ⊗ >=< >< φ . The map D  is bounded linear 
map and for each 1 2, ,a a a A′ ∈  and 1 2, ,b b b′ ∈B  we have 

 

1 1 2 2 1 1 2 2

1 1 2 2 2 2 1 1

1 2 2 1 1 2

1 1 2 2

, · ( ) ( )·
, ( ) , ( )

( , ( ) , ( ) ( )
, ( · ) ,

a b a b D a b D a b a b
a a b b D a b a a b b D a b

a a d a a a d a b b b
a b D a b a b

′ ′< ⊗ ⊗ ⊗ + ⊗ ⊗ >
′ ′ ′ ′=< ⊗ ⊗ > + < ⊗ ⊗ >=
′ ′ ′= < > + < > φ =

′ ′=< ⊗ ⊗ ⊗ >

 

and so D is a derivation. Thus there exists ( )∗ψ∈ ⊗A B  such that D ψ= δ . Define a*: A→  by 
* 2

0( ) ( )a a a b= ψ ⊗ . For each ,a a′∈A  we have 

*
2 2
0 0 0 0, ( ) , ( ) ( ) , ( ) ( ) , , ( )aa d a a d a b a b D a b a a aa b a a′ ′ ′ ′ ′ ′< =< > φ =< ⊗ ⊗ >=< − ⊗ ψ >=< δ . 
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Consequently *ad = δ  is an inner derivation. 

Example. Let A  be a Banach algebra and let *0 ( )Ball≠ φ∈ A . Then A  with the product 
· ( )a a a a′ ′= φ  for all ,a a′∈A , becomes a Banach algebra. We denote this algebra with φA . It is easy to see 

that ( ) { }φΦ = φA . Now let B  be a Banach algebra. By Theorem 2.4., if φA   B is weakly amenable, then 
so is B . 
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