WEAK AMENABILITY OF TENSOR PRODUCT OF BANACH ALGEBRAS

Taher YAZDANPANAH

Persian Gulf University, Department of Mathematics, Boushehr, 75168, Iran E-mail: yazdanpanah@pgu.ac.ir

Let \mathcal{A} and \mathcal{B} be Banach algebras. We show that when \mathcal{B} is commutative or character space of \mathcal{B} is nonempty and $\mathcal{A} \otimes \mathcal{B}$ is weakly amenable, then \mathcal{A} is weakly amenable too.

Key words: Banach algebra, weak amenability, tensor product.

1. INTRODUCTION

Let \mathcal{X} be a Banach space. We denote the dual space of \mathcal{X} by \mathcal{X}^* ; the action of $x^* \in \mathcal{X}^*$ on element $x \in \mathcal{X}$ is written as $\langle x, x^* \rangle$. Let \mathcal{A} be a Banach algebra and let \mathcal{X} be a Banach \mathcal{A} -bimodule. Then \mathcal{X}^* is also a Banach \mathcal{A} -bimodule with the following module actions

$$< x, x^* a > = < ax, x^* >, < x, ax^* > = < xa, x^* > (x \in \mathcal{X}),$$

for all $a \in \mathcal{A}$ and $x^* \in \mathcal{X}^*$. The space \mathcal{X}^* with these actions is the dual module of \mathcal{X} . Let \mathcal{A} be a Banach algebra and \mathcal{X} be a Banach \mathcal{A} -bimodule. A bounded linear map D from \mathcal{A} into \mathcal{X} is a derivation if

$$D(ab) = a \cdot D(b) + D(a) \cdot b$$
,

for all $a, b \in A$.

For each $x \in \mathcal{X}$, the mapping $\delta_x : \mathcal{A} \to \mathcal{X}$ defined by $\delta_x(a) = a \cdot x - x \cdot a$ is a derivation. Derivations of this form are called inner derivations. The cohomology space $\mathcal{H}^1(\mathcal{A}, \mathcal{X})$ is the quotient of the space of derivations by the inner derivations, and triviality of this space is important. In particular, Banach algebra \mathcal{A} is contractible if for every Banach \mathcal{A} -bimodule \mathcal{X} , $\mathcal{H}^1(\mathcal{A}, \mathcal{X}) = \{0\}$, amenable if for every Banach \mathcal{A} -bimodule \mathcal{X} , $\mathcal{H}^1(\mathcal{A}, \mathcal{X}^*) = \{0\}$, and weakly amenable if $\mathcal{H}^1(\mathcal{A}, \mathcal{A}^*) = \{0\}$ [1, 4, 5, 7, 8, 9].

Let \mathcal{A} be a Banach algebra. Then the projective tensor product $\mathcal{A}^{\bigotimes}\mathcal{A}$ is a Banach \mathcal{A} -bimodule, where the module actions are specified by

$$a \cdot (b \otimes c) = ab \otimes c$$
 and $(b \otimes c) \cdot a = b \otimes ca$,

for all $a,b,c\in\mathcal{A}$. We define the multiplication map $\pi\colon\mathcal{A}^{igotimes}\mathcal{A}\to\mathcal{A}$ by

$$\pi(a \otimes b) = ab \quad (a, b \in \mathcal{A}).$$

Then π becomes a bounded \mathcal{A} -bimodule homomorphism. The Banach algebra \mathcal{A} is said to be biprojective if π has a bounded right inverse which is an \mathcal{A} -bimodule homomorphism, i.e. there is a bounded \mathcal{A} -bimodule homomorphism $\rho \colon \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ such that $\pi \rho = I_{\mathcal{A}}$. A-Banach algebra \mathcal{A} is contractible if and only if it is unital and biprojective. The dual map $\phi *$ is also a \mathcal{A} -bimodule homomorphism. A Banach algebra \mathcal{A} is said to be biflat if π^* has a left inverse as a bounded \mathcal{A} -bimodule homomorphism. It is easy to see that a biprhojective Banach algebra is biflat. A Banach algebra \mathcal{A} is amenable if and only if it is biflat and has a bounded approximate identity. Every biflat Banach algebra is weakly amenable [6].

An approximate diagonal for Banach algebra \mathcal{A} is a bounded net $\{m_{\alpha}\}$ in $\mathcal{A} \otimes \mathcal{A}$ such that

$$\lim_{\alpha} a \cdot m_{\alpha} - m_{\alpha} \cdot a = 0 \text{ and } \lim_{\alpha} \pi(m_{\alpha}) \cdot a = a$$

for each $a \in A$.

A virtual diagonal for \mathcal{A} is an element M of $(\mathcal{A} \otimes \mathcal{B})^{**}$ such that

$$M \cdot a = a \cdot M$$
 and $\pi^{**}(M) \cdot a = \hat{a}$

for each $a \in A$. It is well known that Banach algebra A is amenable if and only if A has an approximate diagonal if and only if A has a virtual diagonal [3].

Let \mathcal{A} and \mathcal{B} be Banach algebras. Then the space $\mathcal{A}^{\bigotimes}\mathcal{B}$ becomes a Banach algebra with the multiplication given by

$$(a_1 \otimes b_1) \cdot (a_2 \otimes b_2) = a_1 a_2 \otimes b_1 b_2 \quad (a_1, a_2 \in \mathcal{A}, \ b_1, b_2 \in \mathcal{B}).$$

A Banach algebra \mathcal{A} is said to be essential if \mathcal{A}^2 is dense in \mathcal{A} , where

$$A^2 = lin\{a \cdot b : a, b \in A\}.$$

2. MAIN RESULTS

THEOREM 2.1. Let \mathcal{A} and \mathcal{B} be Banach algebras. If $\mathcal{A} \mathbin{\widehat{\otimes}} \mathcal{B}$ is weakly amenable, then \mathcal{A} and \mathcal{B} are essential.

Proof. Suppose that \mathcal{A} is not essential. By Hahn-Banach theorem there is a non-zero $a^* \in \mathcal{A}^*$ such that $\langle aa', a^* \rangle = 0$ for each $a, a' \in \mathcal{A}$. Let b^* is a non-zero element of \mathcal{B}^* . The map $a^* \otimes b^*$ is a bounded linear functional on $\mathcal{A} \ \otimes \mathcal{B}$ such that $\langle a \otimes b, a^* \otimes b^* \rangle = \langle a, a^* \rangle \langle b, b^* \rangle$. The map $D: (\mathcal{A} \ \otimes \mathcal{B}) \to (\mathcal{A} \ \otimes \mathcal{B})^*$ defined by

$$D(m) = \langle m, a^* \otimes b^* \rangle a^* \otimes b^*$$

is a bounded linear map and for $a, a' \in A$ and $b, b' \in B$ we have

$$D(a \otimes b \cdot a' \otimes b') = \langle aa' \otimes bb', a^* \otimes b^* \rangle = \langle aa', a^* \rangle \langle bb', b^* \rangle a^* \otimes b^* = 0,$$

on the other hand,

$$a \otimes b \cdot D(a' \otimes b') + D(a \otimes b) \cdot a' \otimes b' =$$

$$= \langle a' \otimes b', a^* \otimes b^* \rangle a \otimes b \cdot a^* \otimes b^* + \langle a \otimes b, a^* \otimes b^* \rangle a^* \otimes b^* \cdot a' \otimes b' =$$

$$= \langle a' \otimes b', a^* \otimes b^* \rangle a a^* \otimes b b^* + \langle a \otimes b, a^* \otimes b^* \rangle a^* a' \otimes b^* b' = 0.$$

Hence D is a derivation, so there is ϕ in $(\mathcal{A} \otimes \mathcal{B})^*$ such that $D = \delta_{\phi}$. For each $a \in \mathcal{A}$ and $b \in \mathcal{B}$ we have

$$0 = \langle a \otimes b, a \otimes b \cdot \phi - \phi \cdot a \otimes b \rangle$$

= $\langle a \otimes b, D(a \otimes b) \rangle = (\langle a, a^* \rangle \langle b, b^* \rangle)^2$.

This is a contradiction. Similarly \mathcal{B} is essential.

THEOREM 2.2. Let \mathcal{A} and \mathcal{B} be Banach algebras. Suppose that \mathcal{B} is commutative and $\mathcal{A}^{\bigotimes}\mathcal{B}$ is weakly amenable, then \mathcal{A} is weakly amenable.

Proof. Let b^* be a non-zero element of \mathcal{B}^* . By Theorem 2.1., there are $c,d\in\mathcal{B}$ such that $< cd,b^*>=1$. Now let $d:\mathcal{A}\to\mathcal{A}^*$ be a derivation. Consider the map $D:(\mathcal{A} \boxtimes \mathcal{B})\to (\mathcal{A} \boxtimes \mathcal{B})^*$ defined by $< a'\otimes b', D(a\otimes b)>=< a',d(a)>< b',bb^*>$. The map D is a bounded linear map and for each $a',a_1,a_2\in\mathcal{A}$ and $b',b_1,b_2\in\mathcal{B}$ we have

$$< a' \otimes b', D(a_1 \otimes b_1 \cdot a_2 \otimes b_2) > = < a'd(a_1a_2) > < b', b_1b_2b^* >$$

= $< a'a_1, d(a_2) > < b'b_1, b_2b^* > + < a_2a', d(a_1) > + < b_2b', b_1b^* >$
= $< a' \otimes b', a_1 \otimes b_1D(a_2 \otimes b_2) > + < a' \otimes b', D(a_1 \otimes b_1)a_2 \otimes b_2 >.$

Therefore *D* is a derivation and so there is ϕ in $(\mathcal{A} \otimes \mathcal{B})^*$ such that $D = \delta_{\phi}$.

We define a^* on \mathcal{A} by $a^*(a) = \phi(a \otimes cd)$ for all $a \in \mathcal{A}$. The map a^* is a bounded linear functional and for each $a, a' \in \mathcal{A}$ we have

$$\langle a', d(a) = \langle a', d(a) \rangle \langle c, db^* \rangle =$$

= $\langle a' \otimes c, D(a \otimes d) \rangle = \langle a' \otimes c, a \otimes d \cdot \phi - \phi \cdot a \otimes d \rangle =$
= $\langle (a'a - aa') \otimes cd, \phi \rangle = \langle a'a - aa', a^* \rangle = \langle a', \delta_{a^*}(a) \rangle.$

Therefore *d* is an inner derivation.

THEOREM 2.3. Let \mathcal{A} and \mathcal{B} be commutative Banach algebras. Then $\mathcal{A}^{\bigotimes}\mathcal{B}$ is weakly amenable if and only \mathcal{A} and \mathcal{B} are weakly amenable.

Proof. Suppose that $\mathcal{A} \otimes \mathcal{B}$ is weakly amenable. By Theorem 2.2., \mathcal{A} and \mathcal{B} are weakly amenable. Conversely let \mathcal{A} and \mathcal{B} are weakly amenable. By [3, Theorem 2.8.71] $\mathcal{A} \otimes \mathcal{B}$ is weakly amenable.

We recall that a character ϕ on Banach algebra \mathcal{B} is a non-zero linear functional on \mathcal{B} such that $\phi(bb') = \phi(b)\phi(b')$ for all $b,b' \in \mathcal{B}$. We write $\Phi_{\mathcal{B}}$ for the set of all characters on \mathcal{B} . It is well known that $\Phi_{\mathcal{B}} \subseteq \mathcal{B}^*$ [2, 16.3].

Proof. Let $\phi \in \Phi_{\mathcal{B}}$. Choose $b_0 \in \mathcal{B}$ such that $\phi(b_0) = 1$. Now let $d: \mathcal{A} \to \mathcal{A}^*$ be a derivation. We define $D: (\mathcal{A} \boxtimes \mathcal{B}) \to (\mathcal{A} \boxtimes \mathcal{B})^*$ by $\langle a' \otimes b', D(a \otimes b) \rangle = \langle a', d(a) \rangle \langle \phi(bb') \rangle$. The map D is bounded linear map and for each $a', a_1, a_2 \in \mathcal{A}$ and $b', b_1, b_2 \in \mathcal{B}$ we have

$$\begin{split} & < a' \otimes b', a_1 \otimes b_1 \cdot D(a_2 \otimes b_2) + D(a_1 \otimes b_1) \cdot a_2 \otimes b_2 > \\ & = < a'a_1 \otimes b'b_1, D(a_2 \otimes b_2) > + < a_2 a' \otimes b_2 b', D(a_1 \otimes b_1) > = \\ & = (< a'a_1, d(a_2) > + < a_2 a', d(a_1 >) \phi(b'b_1b_2) = \\ & = < a' \otimes b', D(a_1 \otimes b_1 \cdot a_2 \otimes b_2) >, \end{split}$$

and so D is a derivation. Thus there exists $\psi \in (\mathcal{A} \otimes \mathcal{B})^*$ such that $D = \delta_{\psi}$. Define a^* : $\mathcal{A} \to \mathbb{C}$ by $a^*(a) = \psi(a \otimes b_0^2)$. For each $a, a' \in \mathcal{A}$ we have

$$<\!a',d(a)\!=<\!a',d(a)\!>\!\phi(b_0^2)\!=<\!a'\otimes b_0,D(a\otimes b_0)\!>=<\!(a'a-aa')\otimes b_0^2,\psi>=<\!a',\delta_{a^*}(a)$$

Consequently $d = \delta_{a^*}$ is an inner derivation.

Example. Let \mathcal{A} be a Banach algebra and let $0 \neq \phi \in Ball(\mathcal{A}^*)$. Then \mathcal{A} with the product $a \cdot a' = \phi(a)a'$ for all $a, a' \in \mathcal{A}$, becomes a Banach algebra. We denote this algebra with ${}_{\phi}\mathcal{A}$. It is easy to see that $\Phi({}_{\phi}\mathcal{A}) = \{\phi\}$. Now let \mathcal{B} be a Banach algebra. By Theorem 2.4., if ${}_{\phi}\mathcal{A}$ \mathfrak{D} is weakly amenable, then so is \mathcal{B} .

ACKNOWLEDGEMENTS

The author would like to thank the Persian Gulf University Research Council for their financial support.

REFERENCES

- 1. W.G. BADE, JR, P.C. CURTIS, H.G. DALES, *Amenability and weak amenability for Beurling and Lipschitz algebras*, Proc. London Math. Soc. (3), 359–377 (1987).
- 2. F.F. BONSALL, J. DUNCAN, Complete normed algebras, Springer Verlag, New York, 1973.
- 3. H. G. DALES, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, 24, Clarendon Press, Oxford, 2000.
- 4. M. DESPI'C, F. GHAHRAMANI, Weak amenability of group algebras of locally compactgroups, Canadian Bull. Math., 37, 165–167 (1994).
- 5. U. HAAGERUP, All nuclear C*-algebras are amenable, Invent. Math., 74, 305–319 (1983).
- 6. A.Y. HELEMSKII, The Homology of Banach and Topological Algebras, Dordrecht, Netherlands, Kluwer, 1989.
- 7. B. E. JOHNSON, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).
- 8. B.E. JOHNSON, Weak amenability of group algebras, Bull. London Math. Soc, 23, 2, 281–284 (1991).
- 9. V. RUNDE, Lectures on amenability, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002.

Received November 20, 2011