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In this paper, we consider two chaotic systems with different orders. First, we consider the case when 
one of them is fractional order (master system) and another one is integer order (slave system). 
Second, we consider the case when both of them are fractional order but the orders are different. 
Using a fractional synchronization scheme in the presence of discrepancy between initial conditions 
of these systems for both cases the trajectories of the slave system are forced to track the master 
system trajectories. The effectiveness of the proposed technique is verified by numerical simulations 
for Chen systems. 
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1. INTRODUCTION 

Chaos theory, as a new branch of physics, has provided us a new way of viewing the universe and is an 
important tool to understand the world we live in. To avoid troubles arising from unusual behaviors of a 
chaotic system, chaos control has gained increasing attention in recent years. An important objective of a 
chaos controller is to suppress the chaotic oscillations completely or reduce them to the regular oscillations 
[1]. Many control techniques such as open-loop control methods, adaptive control methods, and fuzzy 
control methods have been implemented in the control of chaotic systems [2]. The subject of fractional 
calculus has gained considerable popularity and importance during the past three decades or so, due mainly 
to its demonstrated applications in numerous seemingly diverse and widespread fields of science and 
engineering [3–5]. Moreover, fractional order dynamic systems have been studied in the design and practice 
of control systems [6]. Studies have shown that a fractional order controller can provide better performances 
than an integer order one and lead to more robust control performance [7]. 

In this work we consider two chaotic Chen systems. One of them with incommensurate fractional order 
is selected as master system and the other one is selected as slave system. As will be shown in the following 
Sections of this paper, using a simple fractional synchronization scheme we force the slave trajectories to 
track the master trajectories. 

This paper is organized as follows. Some backgrounds form fractional calculus is presented in Section 2. 
In Section 3 we give a fractional synchronization algorithm for synchronizing the well-known Chen systems. 
Numerical simulations are presented in Section 4 to illustrate the ability of the proposed method. Finally, the 
conclusions are given in Section 5. 

2. PRELIMINARIES FROM FRACTIONAL CALCULUS 

In this subsection some mathematical backgrounds are presented.  

Definition 1 [8]. The fractional order integral operator of a Lebesgue integrable function )(tx is 
defined as follows: 
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Definition 2 [9].The left fractional order derivative operator in the sense of Riemann-Liouville (LRL) 
is defined as follows in which +∈<<− Zmqm 1 : 
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Remark 1 [10]. For fractional derivative and integral RL operators we have: { }( ) ( )q q
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Definition 3 [3]. The left fractional order derivative operator in the sense of Caputo is defined as 
follows: 

( ) 1 ( )1( ) : ( ) ( ) ( )d .
( )

t
q m qC RL m m q m

a t a t
a

D x t D D x t t s x s s
m q

− − − −= = −
Γ − ∫  (3)

Remark 2 [10]. For fractional Caputo derivative operator we have: 0 0qC
tD c = , 

0 0 0 0( ) ( ) ( ), 0 1q q q qC RL
t t t tD D x t D D x t x t q− −= = < < . 

THEOREM 1 [6]. The commensurate order system: 0 0( ) ( ), (0)qC
tD x t Ax t x x= =

 
with 0 1, nq x< ≤ ∈ℜ  

and n nA ×∈ℜ  is asymptotically stable if and only if arg ( )
2

q πλ >
 
is satisfied for all eigenvalues λ  of A . 

Also, this system is stable if and only if arg ( )
2

q π
λ ≥  is satisfied for all eigenvalues λ  of A  with those 

critical eigenvalues satisfying arg ( )
2

q πλ =
 
have geometric multiplicity of one. 

THEOREM 2 [11]. Consider the linear fractional order system: 0 0( ) ( ), (0)qC
tD x t Ax t x x= =  with 

nx∈ℜ  and n nA ×∈ℜ  and ( )1 2 , 0 1T
n iq q q q q= < ≤ . Also , gcd( , ) 1i

i i i
i

n
q n d

d
= = . Let M be the lowest 

common multiple of the denominators id ’s. The zero solution of the system is globally asymptotically stable 
in the Lyapunov sense if all roots λ ’s of the equation ( )( ) det ( ) 0iMqdiag A∆ λ = λ − =  satisfy 

arg ( )
2M
π

λ > . 

3. FRACTIONAL SYNCHRONIZATION TECHNIQUE 

Consider the 3-D autonomous system ( )x f x= . Let Q  be equilibrium of the system: * * *
1 2 3: ( , , )Q x x x . 

Q  is called a saddle point if the eigenvalues of the Jacobian matrix fJ
x
∂

=
∂

 evaluated at Q  are a  and 

b jc± , where 0ab <  and 0c ≠ . The saddle point Q  is called a saddle point of index 1 if 0a >  and 0b < , 
and it is called a saddle point of index 2 if 0a <  and 0b > . It is known that scrolls in a chaotic attractor are 
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generated only around the saddle points of index 2 in chaotic systems of Shil’nikov type. Moreover, saddle 
points of index 1 are responsible only for connecting scrolls [12]. 

Assume that the 3-D chaotic system 0 ( )qC
tD x f x=  displays a chaotic attractor. As was told for every 

scroll existing in the chaotic attractor, this system has a saddle point of index 2 encircled by its respective 
scroll. Suppose that Ω is the set of equilibrium points of the system surrounded by scrolls. We know that 
system 0 ( )qC

tD x f x=  with ( )1 2 3, , Tq q q q= and system ( )x f x= have the same equilibrium points. Hence, a 

necessary condition for fractional order system 0 ( )qC
tD x f x=  to exhibit the chaotic attractor similar to its 

integer order counterpart is instability of the equilibrium points in Ω. Otherwise, one of these equilibrium 
points becomes asymptotically stable and attracts the nearby trajectories. This necessary condition is 

mathematically equivalent to [13]: { }min arg ( ) 0
2 iiM
π

− λ ≥ , where iλ ’s are roots of  

( )( )31 2det 0, .MqMq Mq
Qdiag J Qλ λ λ − = ∀ ∈Ω  (4)

 Consider the master-slave synchronization scheme of two autonomous different fractional order 
chaotic systems: 

Master : ( ) ( )

Slave : ( ) ( ) ,

qC
a t

qC
a t

D x t f x

D y t g y u

=

= +  (5)

where q is the fractional order, , nx y R∈  represent the states of the drive and response systems, respectively, 
: , :n n n nf R R g R R→ → are the vector fields of the drive and response systems, respectively. The aim is to 

choose a suitable control function ( )1 2, , , T
nu u u u= such that the states of the drive and response 

systems are synchronized, i.e. lim ( ) ( ) 0
t

y t x t
→∞

− = . In what follows we proceed to design a new 

synchronization scheme for two chaotic systems which are different in order and initial conditions. 

Case I. Consider the following chaotic incommensurate fractional order system as the master system: 

0 1 2 3( ) ( , , ),iqC
t i it D x t f x x x=  (6)

with the initial conditions ( ) ( ) 3
1 0 2 0 3 0 10 20 30( ), ( ), ( ) , ,x t x t x t x x x= ∈ℜ , and , 1, 2,3if i = are nonlinear 

functions. Also suppose that the structure of the slave system is as follows: 

1 2 3( , , ) ,i i iy f y y y u= +  (7)

with the initial conditions ( ) ( ) 3
1 0 2 0 3 0 10 20 30( ), ( ), ( ) , ,y t y t y t y y y= ∈ℜ , and , 1, 2,3iu i =  are the control 

signals. Note that in spite of discrepancy between initial conditions and difference between orders of the 
systems, we want to synchronize the systems. Now if we consider the controller structure as follows: 

0
( ), 1, 2,3,iqC

i i i t itu v y D y t i= + − =  (8)

then the slave system (7) reduces to: 

0 1 2 3( ) ( , , ) , 1, 2,3.iqC
t i i it D y t f y y y v i= + =  (9)

Defining errors as: , 1, 2,3i i ie y x i= − = by subtracting (6) from (9) we have: 

0 1 2 3 1 2 3( ) ( , , ) ( , , ) , 1, 2,3.iqC
t i i i it D e t f y y y f x x x v i= − + =  (10)

Based on active control methodology choosing: 

1 2 3 1 2 3 1 2 3( , , ) ( , , ) , 1, 2,3i i i i i iv f x x x f y y y a e b e c e i= − + + + =  (11)
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Therefore (10) reduces to: 

1

0

2

0

3

0

1 1 1 1 2 1 3

2 2 1 2 2 2 3

3 3 1 3 2 3 3

( )

( )

( ) .

qC
tt

qC
tt

qC
tt

D e t a e b e c e

D e t a e b e c e

D e t a e b e c e

 = + +
 = + +


= + +

 (12)

Now by choosing appropriate constants , , , 1, 2, 3i i ia b c i = , we can design a stabilizing controller for 
our synchronization goal. Note that for checking the stability of (12) we must use THEOREM 2. The details 
of design procedure can be seen in the numerical simulations in the next section. 

Case II. Using similar methodology we can synchronize two fractional order chaotic systems. Indeed if 
the master system is selected as (6) and the slave systems is as follows: 

1 2 3( , , ) ,i

o

qC
t i i it D y f y y y u′ = +  (13)

with the initial conditions ( ) ( ) 3
1 0 2 0 3 0 10 20 30( ), ( ), ( ) , ,y t y t y t y y y= ∈ℜ , and , 1, 2,3iu i =  are the control 

signals. Now if we consider the controller structure as follows: 

0
( ),i i

o

q qC C
i i t i t it tu v D y D y t′= + −  (14)

then the slave system (13) reduces to: 

0 1 2 3( ) ( , , ) .iqC
t i i it D y t f y y y v= +  (15)

Now continuing the argument given above we can design an appropriate controller for synchronizing (6) and 
(13).  

4. NUMERICAL SIMULATION 

Consider integer order Chen system [14]: 

1 2 1

2 1 1 3 2

3 1 2 3

35( )
7 28 .

3

x x x
x x x x x
x x x x

−   
   = − − +   
   −   

 (16)

Numerical simulations of system (16) are brought in Fig. 1. Now let’s consider the fractional order 
version of Chen system with incommensurate orders as follows: 

1

0

2

0

3

0

1
2 1

2 1 1 3 2

1 2 3
3

35( )
7 28 .

3

qC
tt

qC
tt

qC
tt

D x x x
D x x x x x

x x xD x

  −  
   = − − +    −   

 

 (17)

The equilibria of (16) and (17) are the same: 1 2 3: (0, 0,0), : (7.94,7.94, 21), : ( 7.94, 7.94, 21)Q Q Q − − . 

Computing the Jacobian matrix for (16) and (17) at the equilibrium point * * *
1 2 3: ( , , )Q x x x : 

* *
3 1

* *
2 1

35 35 0
7 28 .

3
J x x

x x

− 
 = − − − 
 − 

 (18)
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Now for each equilibrium points, we determine associated eigenvalues: 

( )1 1 2 3

2 1 2 3

3 1 2 3

( , , ) 30.86, 23.66, 3

( , , ) ( 18.43, 4.21 14.88, 4.21 14.88)

( , , ) ( 18.43, 4.21 14.88, 4.21 14.88).

j j

j j

Λ = λ λ λ = − −
′ ′ ′Λ = λ λ λ = − + −
″ ″ ″Λ = λ λ λ = − + −

 (19)

As can be seen from the eigenvalues, 2Q  and 3Q  are saddle point of type 2 and 1Q  is a saddle point of type 
1. So if there is chaos in (17), we have 2-scroll in the phase space. Numerical simulations for (17) in which 
the order is ( ) ( )1 2 3, , 0.8,1,0.9q q q =  are depicted in Fig. 2 which shows chaos. 

 
Fig. 1 – Numerical results of Chen system (16). 

Let us consider the following master-slave synchronization scheme: 

1

0

2

0

3

0

1
2 1

2 1 1 3 2

1 2 3
3

35( )
master system : 7 28 ,

3

qC
tt

qC
tt

qC
tt

D x x x
D x x x x x

x x xD x

  −  
   = − − +    −   

 

 (20)

with order ( ) ( )1 2 3, , 0.8,1,0.9q q q =  which exhibit chaos according to the simulations and satisfying the 

necessary condition obtained above and initial conditions ( ) ( ) 3
1 0 2 0 3 0 10 20 30( ), ( ), ( ) , ,x t x t x t x x x= ∈ℜ , and: 

1 2 1 1

2 1 1 3 2 2

3 1 2 3 3

35( )
slave system : 7 28 ,

3

y y y u
y y y y y u
y y y y u

− +   
   = − − + +   
   − +   

 (21)

with initial conditions ( ) ( ) 3
1 0 2 0 3 0 10 20 30( ), ( ), ( ) , ,y t y t y t y y y= ∈ℜ .  
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Fig. 2 – Numerical results for fractional order Chen system (17)  
when the order of master system is ( ) ( )1 2 3, , 0.8, 1, 0.9q q q = . 

Choosing: 

0
( ).iqC

i i i t itu v y D y t= + −  (22)

Thus (21) reduces to: 

1
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3

1
2 1 1

2 1 1 3 2 2

1 2 3 3
3

( ) 35( )
( ) 7 28 .

3( )

o

o

o

qC
tt
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tt

qC
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  − +  
   = − − + +    − +   
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 (23)

Subtracting (20) form (23) and considering errors , 1, 2,3i i ie y x i= − =  

1

2

3

1
2 1 1

2 1 1 3 1 3 2 2

1 2 1 2 3 3
3

( ) 35( )
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   = − − + + +    − − +   
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 (24)

Selecting: 

1 1 2

2 1 3 1 3 1 2 3

3 1 2 1 2 1 1 2 2 3 3

35 34
7 28 .

( 3)

v e e
v y y x x e e e

v x x y y k e k e k e

= −
 = − + − +
 = − − − − −

 (25)

Then (24) reduces to: 
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3

1
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2 3

1 1 2 2 3 3
3
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k e k e k eD e t

 
  
   =     − − −   

 

 (26)
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Thus by choosing appropriate 1 2 3, ,  k k k  we can stabilize the error vector. If we choose 

1 2 348, 44, and  12k k k= = = , we see that the eigenvalues of (26) are: –2, –4, and –6. Let’s determine the 
stability of (26) for these ki’s. According to THEOREM 2 we constitute ( )∆ λ  for (26) as follows: 

9 8 7

0 1 0
( ) det ( , , ) 0 0 1 0.

48 44 12
diag
  
  ∆ λ = λ λ λ − =  

  − − −  
 (27)

After expanding one can write: 24 17 912 44 48 0λ + λ + λ + = . Solving this equation for λ , we see that 

( )min arg( ) 0.3196ii
λ =  which is greater than 0.1571

2M
π

= . Therefore based on THEOREM 2, we 

conclude the stability of (26). Fig. 3 shows the numerical results for this synchronization scheme in which 
the controller is turn on at t = 4s. 

 
Fig. 3 – Numerical results for fractional synchronization between (20) and (21)  

when order of (20) is ( ) ( )1 2 3, , 0.8, 1, 0.9q q q = . 

In Fig. 4. we illustrate our fractional synchronization method for two fractional Chen systems; master 
system is the same as (17) with order ( ) ( )1 2 3, , 0.8,1,0.9q q q =  which exhibit chaos and initial conditions 

( ) ( ) 3
1 0 2 0 3 0 10 20 30( ), ( ), ( ) , ,x t x t x t x x x= ∈ℜ  and slave system is as follows: 
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35( )
7 28 ,

3
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x x xD x

  −  
   = − − +    −   

 

 (28)

with orders ( ) ( )1 2 3, , 0.6,1, 0.7q q q = . Note that system (28) is not chaotic.  

5. CONCLUSIONS 

In this paper we proposed a simple active synchronization method that synchronizes two different 
chaotic systems. The differences are the initial conditions and orders. The master system was considered a 
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fractional order and the slave system was taken both an integer order and fractional order. In two separate 
steps we designed an active controller capable to force the trajectories of the slave system to track the master 
trajectories. Analytical and numerical investigations clarified the effectiveness of the proposed method. 

 
Fig. 4 – Numerical results for fractional synchronization between (20) and (28)  

when order of (28) is ( ) ( )1 2 3, , 0.6, 1, 0.7q q q = . 
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