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Based on a model for correlated noises that uses analogies with epidemic spreading, I introduce the 
concept of epidemic filtering and an epidemic filtering algorithm that makes guesses on the 
contaminated signal samples and cleans only those samples. A preliminary analysis of the 
performances of the filters is presented and discussed. 
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1. EPIDEMIC MODEL FOR NOISE 

Recently, epidemic algorithms, mimicking the spreading of epidemics, were introduced for modeling 
communication processes [1], networks of sensors [2, 3], searches in databases for correspondences and  
disparities in images [4, 5], computer infection transmission [6-8], image search and annotation [9]. In this 
paper, a model for noise contamination of signals and a preliminary “epidemic filter” for such signals are 
proposed. The filtering procedure was outlined in [10, 11]. The signal model corresponds to noises that are 
impulsive and correlated. Such noises occur for example in audio and ultrasound signals, where impulsive 
bursts of noise occur due to movements of the objects and people on the scene, to wind, to flowing water, to 
fire, or to other similar causes. The filter presented herein is for one-dimensional (1D) signals; extensions to 
2D signals are straightforward. 

In the epidemic model of the noisy signals proposed, the samples of the signal compose the population. 
The epidemic model follows the standard epidemic SIR model [12, 13] that uses three states (S = susceptible, 
I = Infected, R = recovered). All samples are equally susceptible to infection except those already “cured” by 
filtering, when the filtering is applied between the epochs of contamination with noise (case not addressed in 
this paper). The equal susceptibility means that every sample has the same probability of being infected, 
under the same conditions. In other words, in the models discussed, the probabilities are not related to the 
samples.  

In the model, while all samples are equally susceptible to infection, the noise, which stands for the 
infection, is a correlated process in the sense that samples close to an infected one have greater probability of 
being noisy (infected). The contamination process in the vicinity of an infected element in the population 
creates a correlation between neighboring samples. Examples of natural noises that are highly correlated are 
the pink noise, which has a 1/ f  spectrum, and the red noise, which has a 21/ f  spectrum. Similarly to these 
natural processes, the probability of contamination in the neighborhood is related to the ratio of low 
frequency to high frequency content of the noise. When the noise is high frequency, like the salt and pepper 
noise, the probability of infecting the neighbors tend to zero, while in a noise with high content of low 
frequency, as in burst noise, the probability is high. Notice that we address noise models where the noise is 
created by non-independent time events. 

Another parameter describing the noise model is the “age /stage” of the infection, measured in epochs 
(or time since inception, in a continuous model). For a given probability, the age shows the number of 
potential propagations of the infection from the initially infected samples to the adjacent neighbors and the 
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other neighbors in determined vicinity. Notice that higher is the low frequency content, higher is the age of 
infection, for a given contamination probability, because more samples will be infected in a longer time, thus 
summing up to larger noise impulses. Therefore, the noise seen as an epidemic process has three main 
information pieces: the initially infected population, the probability of infection between neighbors, and the 
age of the infection (the last reflecting the infection propagation steps, epochs). 

The above model creates only binary noises, in the sense that a sample is either infected or not infected. 
To account for various levels of noise, we must assume that the infected samples have specific probabilities 
to show various levels of infection. So, a complete model is characterized by the probabilities to get infected 
samples with a specified level, ( )p j , where j  is a level of infection. In our models, ( )p j  represents a 
uniform distribution, with ( )p j  distributions are identical for all noise samples. Thus, the noise model is 
based on non-independent, identically distributed (non-i.i.d) process. 

We may assume that the initially infected sub-population is composed by the samples that are 
somehow distant (outliers) in their vicinity. That property will serve to identify these samples. Once the 
initially infected samples are detected, further infected samples are determined probabilistically by 
identifying (selecting) neighbors with a probability p  for the first epoch. For the second epoch, we 
determine again in the vicinity of the infected samples at step 1 what samples are infected, including the 
samples that are not adjacent to the originally infected samples. The infection process described continues 
until the age of the infection in the population, that is, a predetermined number of epochs. 

Once the probably infected samples are determined, they are cured by replacing them with the average 
of the non-infected samples in a specified window, or with their median etc. We thus obtain median 
epidemic filters, epidemic average filters (subsequently denoted by EA) etc. These filters are as good as the 
corresponding epidemic model of the noise is. 

Two models of noise are used in this paper for comparing the filtering results. The first type of noise is 
an impulsive noise, with no correlation. The second one is a correlated noise. Subsequently, t  stands for the 
time variable, which is a discrete variable in the simulations, 2 ( )r t  denotes a random variable with uniform 
distribution and average 2r , 1 ( ),r t  is a random variable unrelated to 2 ( )r t , 0 ( )s t  denotes a deterministic 
signal, and 0( ) ( ) ( )s t s t n t= +  is the noisy signal, where ( )n t  is defined as 

1

2 2 1

0, if ( ) 0.4
( )

0.3 ( ( ) ), if ( ) 0.4
r t

n t
r t r r t

>
=  ⋅ − ≤

. 

In simulations, both 1r  and 2r  are uniformly distributed between 0 and 1. The successive samples of the 
noise ( )n t  are not correlated.  

In case that the noise in a sample is not zero, the sample is named infected. A state variable is assigned 
to the samples, denoted by ( )nS s , where ns  is the sample; the state variable take two values, non-infected 
and infected, the last one denoted by ( )nS s I= .  

The model for the correlated noise is generated by a simple correlation procedure. First, the procedure 
uses a random variable uniformly distributed in ]1,0[  and compares its value to 0.4. Then, the difference 
between the average of the samples in a window and the average of the current and precedent samples is 
compared with the standard deviation in the window. When 1| ( ) / 2 | 0.3 ( )W W

n n n ns s s STDV s−+ − > ⋅ , the 
previous sample, 1ns − , is assumed infected, that is noise is assumed in that sample. Either one of the two 
conditions is satisfied, a uniform noise with peak-to-peak amplitude of 0.3 and zero average is added to the 
sample. The corresponding formula is: 

1 1 20.3 ( ) 0.15 if | ( ) / 2 | 0.3 ( ) ( ) 0.4
( )

0 else

W W
n n n nr t s s s STDV s or r t

n t −⋅ − + − > ⋅ >
= 


 

where the window has five samples and is centered on the current sample. 
Thus, the probability that the current sample is contaminated when the neighboring ones are not is 0.4 

in the simulations. The values of the noise in the infected samples are 0.3 peak-to-peak and have uniform 
distribution. Notice that this manner of defining the noise also takes into account the signal, which is a not 
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typical procedure in noise simulation. However, this procedure of noise generation has the characteristics of 
processes where noise is both correlated with itself and with the signal. Also note that when the noise is 
small in the previous sample (compared to the average of the signal in the window), it has lower chance to 
propagate in the subsequent sample.  

2. THE EPIDEMIC FILTERS 

The filtering algorithm has three stages. In the first one, the most probable noisy samples are 
determined and marked as initially infected. The second stage consists in running an epidemic model that 
determines the samples that probably are noisy and related to the previously detected noisy samples due to 
the infection propagation (standing for the correlation in the noise). Thus, in the first and the second stages, 
the algorithm performs a guess of the noisy samples, based on an epidemic model of the noise. Notice that 
the epidemic model of the noise is assumed to be correct and a priori known. In the third stage of the 
algorithm, a standard filtering procedure is applied only in windows centered on the samples that were 
marked as noisy in the previous two stages.  

Subsequently, the propagation of the infection during the epidemic epochs is described by the 
probabilities of infection at various epochs of the current sample, due to infected neighbors. The infection 
propagation mimics the correlation of the noise.  

The algorithm is as follows: 
 

For samples from the first to the last 
Determine the probable initial infection, that is, determine the highly probable “infected” samples of the signal. 
Noisy samples related to the ones previously found to be noisy are determined by simulation of an epidemic 

propagation as follows: 
For the first epoch of infection, if there are contaminated neighbors of the current sample, then it becomes 

contaminated with probability 1ep . A sample once contaminated remains contaminated. 
In the subsequent epochs, if the current sample has neighbors that are contaminated from the previous epochs 

or initially contaminated, then it becomes contaminated with a probability ekp , where k is the number of the 
epoch. All infected samples are marked with state I. 

For samples from the third to the last -2 (in a window of 5 samples) 
If state of current sample = I, apply the average filter to it. 

 
The detection of the samples assumed initially contaminated is performed by definition as follows. In a 

discrete time process, a sample is chosen to be initially contaminated when  

| | 0.5 ( )W W
n n ns s STDV s− > ⋅ , 

where W
ns  represents the average of the samples of the noisy signal in a window of W  samples centered on 

the current sample, ns , and )( W
nsSTDV  is the standard deviation of the samples in the same window. 

Two slightly different epidemiologic models were tested and the results are compared in this paper. 
First model of contamination. From the point of view of the time-dependent signal, the first 

contamination process is a non-causal one, as a sample can get contaminated by the noise in a future, not-
yet-extant sample. The first contamination model is as follows. After the initial epoch, a sample becomes 
contaminated according to the rule: a non-initially contaminated sample is assumed contaminated with a 
probability 1ep  in the first epoch of the contamination process if at least one of the samples in the window is 
contaminated,  

( )( )1
2 1 1 2 1( ( ) ) | ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )e in in in in

n n n n n ep S s I S s I S s I S s I S s I p− − + += = ∨ = ∨ = ∨ = = . 

The notations are as follows: 1( )in
nS s I− =  means that the state of the initial sample at time moment 1n −  is I 

(infected) etc. The vertical bar | denotes the condition in the conditional probability. Subsequently, logical 
conditions ∨  (OR) are used without parentheses between the clauses. 
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The contamination in the second epoch is similarly determined by 2
2 2( ( ) | )e

n ep S s I C p= = , where the 
condition 2C  is 

1 1
2 2 1 1 2 2 1

1 1
1 2

( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )
( ( ) ) ( ( ) ).

in in in in e e
n n n n n n

e e
n n

C S s I S s I S s I S s I S s I S s I
S s I S s I

− − + + − −

+ +

= = ∨ = ∨ = ∨ = ∨ = ∨ = ∨

∨ = ∨ =
 

The above condition could be written in a more compact manner using the Polish notation as 
1 1 1 1

2 2 1 1 2 2 1 1 2( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))in in in in e e e e
n n n n n n n nC S s S s S s S s S s S s S s S s I− − + + − − + += ∨ = . 

Similarly, the contamination during the third epoch is conditioned by the infected neighbors with a 
probability 3

3 3( ( ) | )e
n ep S s I C p= =  ,where the condition 3C  is 

2 2 2 2
3 2 2 1 1 2( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ).e e e e

n n n nC C S s I S s I S s I S s I− − + += ∨ = ∨ = ∨ = ∨ =  

The second epidemic model. The samples after the first epoch become infected with the conditional 
probability ( )1

1 2 1( ( ) ) | ( ( ) ) ( ( ) )e in in
n n n ep S s I S s I S s I p− −= = ∨ = = , that is, taking into account only neighboring 

samples from he past of the signal.  
Samples after the second epoch are contaminated with the probability conditioned by the state of the 

samples that appear in time before the current sample, that is, by samples with indices 1 2,n n− − , 

( )( )2 1 1
1 2 1 2 2( ) | ( ( ) ) ( ( ) ) ( ( ) ) ( ( )e in in e e

n n n n n ep S s I S s I S s I S s I S s I p− − − −= = ∨ = ∨ = ∨ = = . Samples after the third 

epoch are contaminated with the probability 

( )( )3 1 1 2 2
1 2 1 2 1 2 3( ) | ( ), ( ), ( ), ( ), ( ), ( )e in in e e e e

n n n n n n n ep S s I S s S s S s S s S s S s I p− − − − − −= ∨ = = . 

Summarizing, in all epochs, the current sample becomes infected with the corresponding probability 
when at least one of its neighbors in the past of the signal is infected. In the simulations reported in the next 
section, the conditional probabilities are all equal, 1 2 3 0.3e e ep p p= = = . 

The filter applies the average in an asymmetric window where the past dominates the future, when the 
current sample is infected, that is when the condition  

1 2 3
1 1( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )in e e e

n n n nC S s I S s I S s I S s I− −= = ∨ = ∨ = ∨ =  

is true. The filter action is expressed by  

*

2 1 1

false
( ) / 4 true

n
n

n n n n

s C
s

s s s s C− − +

== 
+ + + =
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The result of the epidemic average (EA) filter described above is compared to the average filter with 
symmetrical window centered on the current sample in the next section.  

3. RESULTS 

The two epidemic filters described above were run for several signals with several noise types, several 
contents, and with several parameters of the algorithm. Examples of results are provided subsequently. In the 
first part of this section I exemplify results obtained with non-correlated noise, while in the second part of 
this section the case of filtering correlated noise is shown. The signal used in tests is the arbitrary signal with 
non-harmonic components, 0 ( ) 3 sin( / 5) 0.4 sin( /17)s t t t= + + ⋅ .  

In all the results exemplified, the filtering was performed with the following parameters: number of 
epochs 3eN = ; the probability of contamination of the neighbors was between 0.1 and 0.4; initially 
contaminated samples are detected by the condition that the difference of the current sample and the average 
in a window of 5 samples centered on the current sample is larger than 0.3 0.5σ σ . In all figures showing 
filtering results, the upper trace is the filtered signal with epidemic (average-type) filter, while the lower 
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trace is unfiltered signal. Noise in the signal has the peak amplitude 0.15 or 0.2 (peak to peak 0.4). The 
filtered version of the signal is shifted in all figures for convenience. Figures 1, 2, and 3 exemplify the results 
obtained with the epidemic filter for non-correlated noise. 

 

   
Fig. 1 – First epidemic filter, non-correlated noise, 3eN = ; contamination p = 0.1; initially 0.5 sigma, peak 0.2, average filter; – two 

examples of noise contamination. Negative impulses (0, –1) mark the samples actually contaminated by noise; positive impulses 
mark the samples predicted by the epidemic algorithm. The lower analog trace is the noisy signal. The upper trace is the filtered 

signal (shifted up for visibility). 

  
Fig. 2 – Same, but with probability of contamination =p 0.2 (see legend to Fig. 1) – two examples of noise contamination  

(shown case not in among those reported in Table 2). 

   

Fig. 3 – Same, but with probability of contamination =p 0.3 (see legend to Fig. 1) – two examples of noise contamination. 

Notice the differences in the samples that are truly affected by noise and those “guessed” by the 
described epidemic filtering algorithm. Many samples that the algorithm guesses are wrongly guessed, while 
many truly noisy samples are not detected. These errors are specific to the algorithm and constitute the most 
serious limitation of the proposed filters.  

Table 1 

The error produced by the averaging epidemic filter on signals with non-correlated noises (19 runs) 

Total error in signal Epidemic average  filter – total error Standard average filter– total error 
0.6976 0.6649 0.3193 

 
The MSE of the filters, compared to the MSE for a standard average filter with the same window, are 

given in Table 1. Notice that the results produced by the EA filter are significantly weaker on average than 
those for the average filter. Moreover, in some cases, the results are poorer than the initial signal, as the MSE 
error after the EA filter is higher than the MSE in the input noisy signal. 

 
Epidemic predictive filtering for correlated noise. Samples of the simulation results are 

subsequently presented with details on the simulation parameters, for correlated noises. Figure 4 shows that 
for correlated noise, the results of the EA filtering can be poorer than the results obtained with the simple 
average filter. However, in this case, sometimes better results can be produced by the EA filter as shown in 
Fig. 5. 
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Fig. 4 – A case when the EA filter behaves significantly poorer than the average filter. Results obtained: MSE = 0.268  

for the EA filter, MSE = 0.220 for the standard averaging filter; MSE in the original signal was 0.4219.  
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Fig. 5 – Results obtained in two favorable cases. Left: MSE = 0.2538 for the EA filter, MSE = 0.2846 for the standard averaging 

filter; MSE in the original signal was 0.3077. Right: MSE = 0.3166 for the EA filter, MSE = 0.3195 for the standard averaging filter; 
MSE in the original signal was 0.3996  

Table 2 

The error produced by the averaging epidemic filter on signals with correlated noises 

Run MSE for the epidemic filter MSE for the average filter MSE of original noisy signal 
1 0.3425 0.2849 0.3021 
2 0.2812 0.2731 0.3172 
3 0.3077 0.2739 0.3164 
4 0.2053 0.1878 0.3372 
5 0.3103 0.2528 0.2811 
6 0.2232 0.2211 0.2347 
7 0.3879 0.3443 0.3757 
8 0.3166 0.3196 0.3996 
9 0.2728 0.2819 0.3175 
10 0.4009 0.3462 0.4416 
11 0.3750 0.2353 0.3828 
12 0.3276 0.2250 0.3525 
13 0.3284 0.3086 0.3239 
14 0.3379 0.2694 0.4537 
15 0.1729 0.2299 0.3276 
16 0.3924 0.3558 0.3344 
17 0.2834 0.2385 0.2591 
18 0.1752 0.2210 0.2942 
19 0.2707 0.2680 0.4154 

Average 0.3006 0.2704 0.3404 
 

The results in Table 2 show that, on average, the epidemic average filter accomplishes weaker results 
than the average filter, as expected; yet, the ratio between the MSE reduction and the number of processed 
samples is superior to the EA filter. Moreover, in some cases, for example 8, 9, 15, and 18, the results are 
better than the ones obtained on the same noisy signals with the average filter. More results, as well as Excel 
files with the implementations of the noise models and of the filters are posted at the Web address that can be 
obtained from the author. 

4. DISCUSSION AND CONCLUSIONS 

Epidemic filters with probabilities of infection tending to 1 and with the number of epochs tending to 
infinity would “guess” that all samples are contaminated and would apply to all samples the standard average 
filtering procedure. This shows that the presented epidemic filters and other similar ones based on other 
standard filtering procedure represent the generalization of the corresponding standard filters. 
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The epidemic filter can be seen as a filter with a decision generator that determines to what samples 
(windows) the related standard filtering should be applied. The decision generator is in fact a statistical 
predictor, the prediction referring to the state (noise contamination) of the current sample. The prediction is 
performed based on the a priori knowledge about the type of noise (that the noise is correlated), on the 
degree of correlation (how long is the lag of correlation) and on the probabilities related to the noise process. 
The epidemic model uses this knowledge to make a guess on which samples are noisy.  

While on average the epidemic filters describe here can not be better than the average filter because 
they only limit the averaging operation to a selected set of samples, they may sometimes produce better results. 

The first noise model presented is not correlated. Epidemic filters as introduced in this paper are 
conceived for correlated noises, being a noise model based type of filter. That explains why the epidemic 
filters produce poor results on signals contaminated with that noise. When a correlated noise is used, the 
epidemic filter performs considerably better, as expected, occasionally outperforming the average filter, 
while performing significantly fewer averaging operations.  

The proposed class of noise models is able to describe temporally or spatially correlated noise. Based 
on the model, simple filters aiming at the cleaning of signals contaminated with “epidemic-like” noise are 
presented. The filters represent versions of the typical average, median, and spreading-based filters. For the 
class of addressed noises, the proposed filters produce results comparable, yet poorer than the classical 
filters, but with fewer operations performed. Thus, the main advantage of the epidemic filters is the reduced 
number of filtering operations; the price paid is the overload due to the epidemic model and decision block. 
When the overload is smaller than the cost of the omitted filtering operations, the epidemic filters may be of 
interest in applications. 

Further work, to be presented in other papers, includes analysis of filtering applied between the epochs 
of contamination with noise, use of weights in the average filter dependent on the probability of noise 
contamination of the samples, and use of other filtering procedures, for example median filtering. An 
obvious further improvement to the presented algorithm would be to use a window with the width dependent 
to the number of infected samples around the central sample in the window, as guessed by the algorithm. It 
seems natural to increase the width of the window when more than one infected sample is guessed in the 
window with the basic width. Extensions to specialized filters, like the ones presented in [14] are also 
envisaged. 
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