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This paper studies the 5th order KdV equation with dual-power law nonlinearity. The non-topological 
as well as the singular soliton solution is obtained. Additionally the cnoidal wave solution is obtained 
for two values of the power law parameter. Finally, the Painleve analysis of the equation is also discussed. 
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1. INTRODUCTION 

There has been an overwhelming amount of research that has been going on in theory of nonlinear 
evolution equations (NLEEs). These NLEEs appear in various areas of scientific research, namely in Applied 
Mathematics, Theoretical and Applied Physics, Nonlinear Dynamics, Mathematical Biology, Mathematical 
Engineering as well as several other areas. One of the essential targets, in this area of research, is to carry out 
an integration of these NLEEs to extract several interesting solutions. These solutions will be very useful in 
various practial applications.  

There are several tools that have been developed in the past couple of decades to integrate these 
NLEEs [1-20]. Some of these tools are the Adomian decomposition method, semi-inverse variational 
principle, homotopy perturbation method, exp-function method, simplest equation method, /G G′ -expansion 
method and several others. These techniques of integration reveals several interesting and important 
solutions to various NLEEs. Some of these solutions are cnoidal waves, snoidal waves, shock waves, solitons 
and solitary waves, compactons, covatons, pekons, cuspons, stumpons, just to name a few.  

This paper will focus on a particular NLEE, namely the 5th order Korteweg-de Vries (KdV) equation 
with dual-power law nonlinearity. The cnoidal waves and non-topological solitary waves solutions will be 
extracted for this NLEE, namely the 5th order KdV equation with dual-power law nonlineartity. 

2. MATHEMATICAL ANALYSIS 

Let us consider the equation [7]  
2( ) = 0,n n

t x xxx xxxxxq aq bq q cq kq+ + + +  (1)

where = ( , )q q x t  is the unknown function and a , b , c , k  and > 0n  are constants with > 0ab . Without 
loss of generality we may suppose that = = 1a b . Indeed, the scaling  

1/

2
( , ) = ( , ), where = and = .

na bq x t Q x t
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  ξ τ ξ τ 
 

 (2)
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gives us Equation (1) in the form 
3 5

2
6 10

( ) = 0.n n b c b kQ Q Q Q Q Q
a aτ ξ ξξξ ξξξξξ+ + + +  (3)

In what follows, we will study following equation 

2( ) = 0.n nq q q q cq kqt x xxx xxxxx+ + + +  (4)

Let 
2/ 2/( , ) = ( ( )) = ( ), where = ( ).n nq x t u B x vt u B x vt− ζ ζ −  (5)

Replacing (5) into (4) and simplifying we obtain following nonlinear ode : 

( ) ( )
( )( )

( ) ( )
( )

4 3 2 3 4 4 3 2 5

2 3 2 (4) 2 3

2 2 2 2 2 2 2 2

4 4 (5) 2 4 4 8 4 6

20 3 11 12 4 ( ) 4 6 25 35 20 4 ( )

( 2) 5 3 10

2 3 2 15 ( ) 10 ( )

= 0.

' '' '

'' ' '' '''

'' ' ''' ' '

''' ' ' '

B kn n n n u u u B k n n n n u

B n n B ku cu u B ku u u

B n n n B k u B ku u c u u u

n B ku B cu vu u n u u n u u

− − + − + − + − + −

− − + + +

+ − + + + +

+ + − + +

 (6)

2.1. Singular Solitons 

We seek solutions to Equation (6) in the form 

( ) = csch( ).u Aζ ζ  (7)

 Inserting ansatz (7) into (6) and after some algebra, we obtain following algebraic equation in the 
unknown = log( )z ζ  : 
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 Equating to zero the coefficients of the different powers of z  gives following algebraic system : 

( ) ( ) ( )
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 Solving it with the aid of either Mathematica or Maple we obtain solutions. These are : 
2 2 2
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( ) ( ) ( ) ( )3 4 2 2= ( 2 2) 3 2 2 1 1 2 .R k n n n n n n n− + + + + + +  (12)

2.2 Non-Topological Solitons 

 The same procedure is valid for the ansatz 

( ) = sech( ).u Aζ ζ  (13)

In this case the corresponding system is 
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and the solutions are 
2 2 2
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3. CNOIDAL WAVES 

Equation (1) admits cnoidal wave solutions in the special cases = 1n , = 2n , 1=
2

n  and 2= .
3

n  

3.1. Case I: = 1n  

Equation (1)  takes the form 
2( ) = 0.t x xxx xxxxxq q q q cq kq+ + + +  (18)

After the traveling wave transformation (5) the corresponding nonlinear equation (6) converts to 
3 5 4 2 (4) 2 4 (5) 2( ) 10 (3 5 ) ( ) = 0.' '' ''' '' ' ''' 'u u u B ku u cu B ku B u B ku B cu vu u+ + + + + + −  (19)

We seek solutions to Equation (19) in the cnoidal wave form  

= ( ) = cn( , ).u u A mζ ζ  (20)

Inserting ansatz (20) into (20) gives following algebraic equation in the variable = sn( , )z mζ  :  
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4 4 4 4 2 2 2 2 2 4 2( 360 ) (12 ( 20 ( 1) 2 ) = 0,+ + − + − − +A B km z B m c B k m A A z C  (21)

2 4 2 2 4 4 2where    = 4 (1 ) 8 (2 13 2) .+ − + + + + −C A A B c m B k m m v  
Equating the coefficients of 4z , 2z  and 0z  to zero and solving the obtained algebraic system gives 

following solutions :  
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We must choose the parameters c , m  and k  adequatelly in order to get a real valued function u . For 
example, let us consider the choice 
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(25)

These numbers are real if  
22 1> 0  and  < < 0  and  > .

5 2
cc k m−  (26)

On the other hand, observe that we obtain a topological soliton in the limit when 1m → , since 

1
cn( , ) = sech( ).lim

m
m

→
ζ ζ  (27)

3.2. Case II: = 2n  

Equation (1)  takes the form 
2 4( ) = 0.t x xxx xxxxxq q q q cq kq+ + + +  (28)

After the traveling wave transformation (5) the corresponding nonlinear equation (6) converts to 
4 2 2 4 (5)( ) = 0.' '''u u v u B cu B u+ − + +  (29)

Integrating equation (29) once with respect to z  gives 
4 (4) 2 5 315 15 3 5 15 = 0,''B ku B cu u u vu+ + + −  (30)

with constant of integration equal to zero. 
We seek solutions to Equation (30) in the cnoidal wave form 

= ( ) = cn( , ).u u A mζ ζ  (31)

Inserting ansatz (31) into (30) gives following algebraic equation in the variable =z sn ( , )mζ :  
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4 4 4 4 2 2 2 2 2 4 23( 120 ) (30 ( 2 (2 5)) 5 6 ) = 0,+ + − + − − +A B km z B m c B k m A A z D  (32)

2 4 2 4 2where   = 5 3 15 15 (4 1) 15 .+ − + + −D A A B c B k m v  
Equating the coefficients of 4z , 2z  and 0z  to zero and solcving the obtained algebraic system gives 

following solutions : 
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We must choose the parameters c , m  and k  adequatelly in order to get a real valued function u . For 
example, let us consider the choice 

2 3 2 2 2 3 2 2

2 2 2 2 2 2

3 ( 2) 30 ( 2) 10 ( 2) 30 ( 2)
= =   and   

30 ( 2) 5 ( 2)
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These numbers are real if  

23> 0  and  < < 0  and  < 2.
10
cc k m−  (37)

4. PAINLEVE ANALYSIS 

The Painleve, as a test for integrability of partial differential equations (PDEs), was proposed by Weiss, 
Tabor and Carnevale in 1983 [17]. It is a generalization of the singular point analysis of ordinary differential 
equations (ODEs), which dates back to the work of S. Kovalevsky in 1888. A PDE is said to possess the 
Painleve property if solutions of the PDE are single-valued in the neighbourhood of non-characteristic, 
movable singularity manifolds. Using the standard Kruskal’s simplified method, we expand the solution q  
about a singular manifold ( , ) = 0x tφ  in an infinite series  

=0
= ,j

j
j

q q
∞

αφ φ∑  (38)

where ( , ) = ( )x t x tφ + ψ , 0 0q ≠  and α  is negative integer determined by balancing the powers of φ  of 
dominant terms in the equation. φ  is a non-characteristic manifold. Coefficients jq  are functions of x  and 

t . There are basically three steps in the Painleve analysis, viz, dominant behaviour analysis, finding the 
resonances, and checking whether arbitrary coefficients enter at the resonance values [17]. 

From the dominant behaviour analysis of equation (1), we get 2=
n

α − , where > 0n . Substituting (38) 

with 2=
n

α −  into (1) leads to  
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( ) ( ) ( ) ( )
1

2

0 4

4 2 3 1 2 2 1
= .

nk n n n n
q

n
 + + + +
−  
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 (39)

Substituting (38) into (1), it is found that resonances occur at  

23 15 40 1622(1 2 ) 4(1 ) 2 2= 1, , , .

n n
n n nj

n n n

− − −
+ ±+ +

−  
(40)

There exist complex resonance points, so we conclude that equation (1) is failed in the Painleve test. 

5. CONCLUSIONS 

This paper studied the 5th order KdV equation with dual-power law nonlinearity. The cnoidal wave 
solution as well as soliton solutions were obtained. The two types of soliton solutions obtained are the non-
topological soliton and the singular solitons. Additionally, the Painleve analysis was carried out where the 
resonance values are also discussed.  

In future, further analysis will be carried out for this equation. While the adiabatic parameter dynamics 
was already obtained [2,7], the quasi-stationary soliton solutions will also be obtained by the aid of multiple 
scale analysis. The semi-inverse variational principle will be applied to integrate the perturbed 5th order 
KdV equation. Such results will be reported in future. 
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