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This paper presents aspects concerning the implementation of an adaptive Gravitational Search 
Algorithm (GSA) in the optimal tuning of fuzzy controllers. Takagi-Sugeno-Kang proportional-
integral fuzzy controllers (TSK PI-FCs) are designed and tuned for a class of nonlinear servo systems. 
The adaptive GSA is based on five stages to solve the optimization problems with objective functions 
which depend on output sensitivity functions. TSK PI-FCs with a reduced process parametric 
sensitivity are thus offered. A set of illustrative experiments is given to validate the fuzzy controller 
tuning in a laboratory servo system application. 
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1. INTRODUCTION 

Fuzzy control has successfully been used in many applications [1–8] as a convenient and relatively 
easily understandable nonlinear control strategy for processes with nonlinear or ill-defined models. The 
systematic design and tuning of fuzzy controllers can employ stability, robustness, sensitivity analysis and 
optimization. Some recent approaches to the optimal tuning of fuzzy controllers based on evolutionary 
algorithms include genetic algorithms [9–11], Particle Swarm Optimization (PSO) [9, 12–14], Ant Colony 
Optimization [13, 15–17], Simulated Annealing [18–21], and Gravitational Search Algorithms [22–25]. 

Building upon authors’ results on adaptive evolutionary algorithms [26, 27], an adaptive Gravitational 
Search Algorithm (GSA) has been proposed in [28]. The adaptive GSA consists of five stages as in the 
structure of adaptive staged PSO algorithms [29], and it exploits the modification of the parameters with 
beneficial effects on the search process, viz. it uses two depreciation laws of the gravitational constant and it 
adapts a parameter in the weighted sum of all forces exerted from the other agents to the iteration index. 

This paper offers implementation details and experimental results concerning a new application of the 
adaptive GSA suggested in [28] to the optimal tuning of the parameters of Takagi-Sugeno-Kang 
proportional-integral fuzzy controllers (TSK PI-FCs). The presentation is focused on a class of nonlinear 
servo systems which consist of second-order models with an integral component in the linear part plus a 
saturation and dead zone static nonlinearity. The adaptive GSA solves optimization problems which aim the 
minimization of objective functions which depend on the output sensitivity functions. The output sensitivity 
functions are derived from the sensitivity models with respect to the parametric variations of the process. 
Therefore the tuning of TSK PI-FCs which exhibit both control system performance enhancement and a 
reduced process parametric sensitivity is proposed. 

The paper is organized as follows: the adaptive GSA is discussed in the next Section. Section 3 
presents an adaptive GSA-based tuning approach for TSK PI-FCs for the considered class of nonlinear servo 
systems. A case study which deals with the TSK PI-FC tuning meant for the position control of a laboratory 
direct current (DC) servo system is treated in Section 4. A set of experimental results is included. Some 
concluding remarks are highlighted in Section 5. 
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2. ADAPTIVE GRAVITATIONAL SEARCH ALGORITHM 

The operating mechanism of the standard GSA [30, 31] is centred on the movement of agents (i.e. 
particles), based on Newtonian law of motion and an alternate version of gravitational law [32]. The 
depreciation of the gravitational constant with the advance of GSA’s iterations is modelled by one of the 
following two laws: 

 )/ (1)( 0max gkkkg −ψ= , (1)

 )/ exp()( max0 kkgkg ζ−= , (2)

where )(kg  is the gravitational constant at the current iteration index k, )0(0 gg = , the parameters 0>ψ  and 
0>ζ  influence GSA’s convergence and search accuracy, and maxk  is the maximum number of iterations. 

Considering N agents and a q-dimensional search space, the position of thi  agent is the vector 
T

1 , 1 ,qd q
i i i ix x x i N = ∈ = X  (3)

where d
ix  is the position of thi  agent in thd  dimension, qd ...1= , and T indicates the matrix transposition. 

The total force )(kF d
i  acting on thi  agent in thd  dimension is 

∑
≠=

σ=
N

ijj

d
ijj

d
i kFkF

,1
)()( , (4)

where jσ , 10 ≤σ≤ j , is a random generated number and )(kF d
ij  is the force acting on thi  agent from thj  

agent: 

])(/[)]()()[()()()( ε+−= krkxkxkmkmkgkF ij
d
i

d
jAjPi

d
ij , (5)

)(kmPi  is the active gravitational mass of thi  agent, )(kmAj  is the passive gravitational mass of thj  agent, 

0>ε  is a relatively small constant, and )(krij  is the Euclidian distance between thi  and thj  agents: 
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The acceleration )(ka d
i  of thi  agent at the iteration index k in thd  dimension is 
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where )(tmIi  is the inertia mass related to thi  agent. The expressions of agent’s masses are 
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where )(kfi  is the fitness value of thi  agent, and the terms )(kb  (corresponding to the best agent) and )(kw  
(corresponding to the worst agent) are obtained as 
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where iρ , 10 ≤ρ≤ i , is a uniform random variable. 
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The five stages of the adaptive GSA are presented in Fig. 1. The exploration (stage II) is conducted for 
the first 15% iterations, i.e., runs, in the search process using the depreciation law (1) of the gravitational 
constant. The explanation (stage III) is conducted for the next 45% iterations using the depreciation law (2). 
The last gravitational constant value of previous stage is used as initial value for this stage, and ε  is reduced 
starting with the preset value 00 >ε  in terms of the law 

)85.0/()( maxmax0 kkk −ε=ε . (11)

The elaboration (stage IV) is conducted for the next 40% runs with the reduced value of ε  according to (11); 
the worst fitness and position values are reset to the best values after each iteration. The evaluation (stage V) 
applies the tuned parameters to the TSK PI-FC in the real-world process, and experiments are conducted to 
evaluate the fuzzy control system behaviour. The other stages are backed up by simulations using accurate 
fuzzy control system models because of the large number of algorithm’s runs. 
 

 
Fig. 1 – Flowchart of adaptive GSA. 

3. TUNING APPROACH FOR TAKAGI-SUGENO-KANG PI-FUZZY CONTROLLERS 

The optimization problem solved by the adaptive GSA presented in the previous section is defined as 
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where *ρ  is the optimal value of the parameter vector ρ  of TSK PI-FC, ρD  is the feasible domain of ρ , 
)(ρI  is the objective function whose minimization leads to TSK PI-FCs with a reduced process parametric 

sensitivity, e is the control error, σ  is the output sensitivity function, γ  is the weighting parameter, t, t∈ , 
is the discrete time argument, and the variables e and σ  also depend on ρ . 
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The process belongs to servo systems modelled by the following discrete-time state-space models 
which consist of second-order linear systems with an integral component plus a saturation and dead zone 
static nonlinearity: 
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where u is the control signal, i.e. a pulse width modulated duty cycle, dinp is the disturbance input, y is the 
controlled output, m is the output of the nonlinearity with the parameters muk ,  au , bu , 0, >muk , ba uu <<0 , 

)()(1, ttxP α=  is the first state variable that represents the (angular) position, )()(2, ttxP ω=  is the second state 
variable that represents the (angular) speed, and sT  is the sampling period. The following simplified model 
of the process is expressed as the transfer function )(sP  and used in the controller design and tuning: 

)]1(/[)( sTsksP P Σ+= , (14)

where Pk  is the process gain, 1, PmuP kkk = , and ΣT  is the small time constant. 
The models (13) and (14) can be employed as simplified process models in servo systems in many 

applications [33–42] accepting that the parameters Pk  and ΣT  depend on the operating point. Therefore the 
sensitivity analysis with respect to the parametric variations of these two parameters and the design and 
tuning of controllers with a reduced parametric sensitivity are justified. 

As shown in [43] in the linear case and in [44, 45] in the fuzzy case, PI controllers and PI-fuzzy 
controllers can cope with the process (14) in the framework of two-degree-of-freedom (2-DOF) control 
system structures presented in Fig. 2 in the fuzzy case, where F is the reference input filter, P is the process, r 
is the reference input, and 1r  is the filtered reference input. The Two Inputs-Single Output fuzzy controller 
(TISO-FC) block pointed out in Fig. 2 operates on the basis of the weighted average defuzzification method 
and of the SUM and PROD operators in the inference engine. 

 
Fig. 2 – Structure of fuzzy control system and input membership functions. 

The complete rule base of TSK PI-FC is expressed as nine rules which can be reduced to only two: 
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where the parameter η , 10 ≤η< , aims the alleviation of the overshoot of the fuzzy control system when 
)(te  and )(te∆  have the same signs. The expression in the consequent of rule 1 is the incremental discrete-

time form (by Tustin’s method) of the continuous-time linear PI controller with the transfer function 

icCiCic TkksTkssTksC =+=+=   )],/(11[/)1()( , (16)
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where ck  is the controller gain, iT  is the integral time constant, and the discrete-time parameters are 

)2/(2  ),2/( sissicP TTTTTkK −=µ−= . (17)

The TSK PI-FC with the rule base given in (15) exhibits like a bumpless interpolator between two 
separately designed PI controllers. The PI tuning conditions specific to the Extended Symmetrical Optimum 
(ESO) method are [43] 

ΣΣ β=ββ= TTkTk iPc    ),   /(1 2 , (18)

and the transfer function of the linear F is 
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where β , 201 ≤β< , is the single design parameter. 
The adaptive GSA-based tuning approach for TSK PI-FCs consists of the following steps: 

• Set the sampling period sT  according to the requirements of quasi-continuous digital control, 
derive the sensitivity models [21, 22, 28], and set the weighting parameter γ  in (12) to meet 
the performance specifications of the fuzzy control systems. 

• Apply the adaptive GSA presented in the previous section in order to solve the optimization 
problem (12) and to obtain the optimal value of the parameter vector 

η=ρ=ρβ=ρρρρ= 321321   ,  ,  ,][ e
T Bρ . (20)

The adaptive GSA is mapped onto the optimization problem (12) by the relationships 

( ) ( ),   1... ,   ,   1,...,j if k I j N i N= = = =ρ X ρ , (21)

and the following inequality is inserted to validate the obtained vector solution by the 
guarantee of the convergence of the objective function: 

|)()(||)()(| 0trtrtrty fyff −ε≤− , (22)

where t0 is the initial time moment, tf is the final time moment, and 001.0=ε y  for a 2% 
settling time. Theoretically ∞→ft  as in (12), but tf is finite to capture all system transients. 

• Apply the modal equivalence principle to obtain the parameter eB∆  

)  2/(2 sesee TTBTBB −β=µ= Σ∆ . (23)

4. CASE STUDY AND EXPERIMENTS 

The tuning approach is applied to the tuning of a TSK PI-FC for the angular position control of the 
INTECO DC nonlinear servo system laboratory equipment. The values of process parameters are [23, 24, 
28]: 6956.1211 =Pk , s 9198.0=ΣT , 149.1, =muk , 13.0=au , 1=bu  and 88.1391, == PmuP kkk . The 

sampling period was set to s 01.0=sT  and the weighting parameter was set to 95.1212 =γ  in order to ensure 
a ratio of 0.1 between the first and second terms resulted from the sum in (12). The parameters of the 
adaptive GSA and of the non-adaptive GSA (for the sake of comparison) were set to 20=N , 100max =k , 

30=ζ , 0.010 =ε  and 1000 =g , in order to ensure a good convergence of both algorithms. 
Considering as in [28] the sensitivity reduction with respect to the process parameter ΣT , the domain 

ρD  is }75.025.0|{}4020|{}173|{ ≤η≤η×≤≤×≤β≤β= ee BBDρ . Accepting the dynamic regimes 
characterized by the rad 40=r  step type modification and zero disturbance input, the adaptive GSA leads to 
the parameter values 52585.3=β , 40=eB , 75.0=η , 123503.0=∆eB , to the objective function 52,536.5I =  
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and to the average number of 1899.8 evaluations of the objective function for the best five runs of the 
algorithm. The parameters of the non-adaptive GSA are 57934.3=β , 40=eB , 75.0=η , 121655.0=∆eB , the 
objective function 52,585.6I =  and the average number of 258.4 evaluations in the same conditions. These 
results show that the adaptive GSA leads to an improved optimal value of I compared to the non-adaptive 
GSA. The increased number of evaluations of the objective function carried out by the adaptive GSA 
indicates improved exploration and exploitation capabilities resulting in the overall superior search accuracy. 

The experimental results which correspond to the control systems with the linear PI controller and with 
the fuzzy controller are presented in Fig. 3 and in Fig. 4, respectively. The controllers are also tested against 
a process parametric disturbance, i.e., the approximate 10% increase of ΣT , from s 9198.0  to s 1 . These 
results are presented in Fig. 5 and in Fig. 6 for the linear control system and for the fuzzy control system, 
respectively. The objective function measured for the control system with PI controller is 53,021.3I = , and 
the objective function measured for the fuzzy control system with TSK PI-FC is 53, 096.4I = . 

 

 
Fig. 3 – Real-time experimental results of the control system with PI controller. 

 

Fig. 4 – Real-time experimental results of the fuzzy control system with TSK PI-FC. 

 

Fig. 5 – Real-time experimental results of the control system with PI controller and process with parametric disturbance. 

 
Fig. 6 – Real-time experimental results of the fuzzy control system with TSK PI-FC and process with parametric disturbance. 
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5. CONCLUSIONS 

This paper has discussed aspects concerning the implementation of the adaptive GSA suggested in [28] 
in the optimal tuning of TSK PI-FCs. Figs. 3 to 6 highlight the performance improvement offered by this 
tuning approach in the angular position control of a laboratory servo system application. 

Future research will target the introduction of experiment-based gradient information, the sensitivity 
reduction with respect to the random parameters in the algorithm, and the introduction of fuzzy logic [26, 27, 
46] in the adaptation in order to obtain further performance improvements. 
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