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Many physical phenomena described by non-linear partial differential equations have soliton 
solutions that have, in turn, Gaussian representations. Using this fact, we carried out a wavelet 
analysis and obtained a better approximation for solution of the Korteweg-de Vries equation. 
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1. INTRODUCTION  

Multi-resolution analysis uses wavelet functions as basis with an objective to specify the signal as a 
collection of its successive approximations [1–13]. The term wavelet was first coined by Grossman and 
Morlet [9]. The major breakthrough occurred due to D. Gabor [8], who introduced the Windowed Fourier 
Transform for the local spectral analysis of radar signals that actually laid pathway for use of wavelets from 
electrical engineering to mathematical physics. Wavelet transform (WT) with a wide window for low 
frequency signals and a narrow window for high frequency signals was introduced and formalized later by 
Grossman and Morlet, Daubechies [7] and many others. Recently, WT has been emerged as the most 
effective tool for signal processing and image analysis especially when the signals are random and comprised 
of fluctuations of different scales [11], or in problems involving singular potentials in quantum mechanics, in 
discussions concerning q-algebras, and even in nuclear structure studies [10].  

Wavelets are used to analyze soliton solutions arising from nonlinear partial differential equations 
(NPDE) which display very strong interaction between the initial conditions and the dynamics and involve 
multiple scales [10], being able to produce self-similar or fractal-like patterns. Since the soliton-like 
solutions have infinite extent, it requires rather appropriate compactly supported basis functions to 
investigate such structures than the traditional nonlinear tools (inverse scattering, group symmetry, 
functional transforms). Such structures/patterns generally have a finite space-time extension and a multi-
scale structure. The wavelet functions have a space-dependent scale that makes it as a powerful tool for 
analyzing multi-scale phenomena. This motivated us to employ the wavelet methods to analyze wavelet like 
soliton solutions of NPDEs such as Non-linear Schrodinger Equation (NLS), Sine-Gordon equation (SG), 
Korteweg-de Vries equation (KdV) [2–4]. However, in this work, we have confined our discussion to the 
most celebrated KdV equation that appears in the study of waves in shallow water in the fluid dynamics. 

The paper is organized as follows. After the preliminary remarks and the genesis of the problem in the 
first introductory section, mathematical pre-requisites relevantly required in the present work are given in  
Sec. 2, the features of the KdV equation and its solution in Sec. 2.2, followed by mathematical analysis 
demonstrating the application of wavelet-Galerkin and wavelet-Petrokov-Galerkin methods in approximating 
the soliton solution in Sec. 2.3, experimental data processing in Sec. 3, and the conclusions in the last 
section.  
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2. MATHEMATICAL PRE-REQUISITES  

2.1. Wavelet Transform 

 The classical wavelet transform, also called as Continuous Wavelet transform (CWT), is a 
decomposition of a function, ( )f x , with respect to a basic wavelet ( )xΨ , given by the convolution of a 
function with a scaled and translated version of  ( )xΨ  
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where  ., .< >  is the inner product.        
The functions, f and Ψ  are square integrable functions and Ψ  satisfies the admissibility condition: 
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ω∫ . C Ψ  is called admissibility constant. The subscript ‘*’ denotes complex 

conjugation, a is the scale parameter, a > 0, b is the translation parameter. The term 1/ a  is the energy 

conservative term that keeps energy of the scaled mother wavelet equal to the energy of the original wavelet. 
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function ( )f x  can be recovered by the reconstruction formula called Inverse Transform: 
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where the admissibility constant, 0C Ψ >  [12]. Although, this admissibility condition puts on us the 
constraints in the choice of analyzing basic wavelet, it still leaves a considerable degree of freedom because, 
in one dimensional case, the admissibility condition means the vanishing behavior of the Fourier image of 
the analyzing wavelet ˆ ( )Ψ ω  in the neighborhood of 0ω=  and this requirement can be redundantly satisfied 

if ˆ ( ) 0Ψ ω = ; implying thereby vanishing zero moment, ( )d 0t tΨ =∫ . 

Therefore, any function with compact support which satisfies above requirement can be successfully 
used as a basic wavelet. We may note that, as an example, the derivatives of Gaussian 2exp( )x−  can be 
chosen as basic wavelet. Furthermore, with the substitution, ( )f x  as the inverse Fourier Transform, 

1 ˆ( ) exp(i ) ( )d
2

f x x f

∞

−∞

= ω ω ω
π ∫  in the definition of wavelet transform (1), we immediately get 
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This is a spectral representation of WT, which is useful for evaluating the transform integral in a more 
convenient way. 

The Dual of the Wavelet. For the wavelets 1Ψ  and 2Ψ  satisfying the mutual admissibility condition, 

1 20 < Ψ Ψ < ∞ , the wavelet decomposition of 2 ( )f L R∈  is given by 
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where 
1

( , )[ ]W f a b fΨ  is the wavelet transform of f with respect to 1Ψ , then 2Ψ  is called the wavelet dual 

of 1Ψ  and 
1 2, 1 2
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ω

= Ψ ω Ψ ω
ω∫ . 

Discretized form of wavelet transforms. Wavelet analysis is particularly based on the property of self-
similarity and used to process fractal like patterns. The direct evaluation of the convolution in the integral 
transform on the lattice size of m × n, where m is the number of scales and n is the number of sampling 
points, is somewhat computationally involved. The convenient way for numerical implementation of WT is 
to use its discretized version, called Discrete Wavelet Transform (DWT). Depending on the discretization 
either of the transform domain parameters-scale and translation variables or of the independent variable of 
the function to be transformed, we have corresponding versions of DWT and could be used either depending 
on the requirement. In each case, DWT yields a countable set of coefficients in the transform domain that 
corresponds to points on a two dimensional grid or lattice m × n of discrete points in the scale-translation 
domain. With a and b as scale and translation parameters, taking scale a: 0

ma a=  and the translation b: 

0 0
mb nb a= , where 0a  and 0b  are the discrete scale and translation step sizes, respectively, the DWT is 

given by [12],  
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Unlike the CWT, the DWT is defined for positive scale values, 0 0a > . For fast numerical algorithms, 

we take 0 2a = . Here, the factor 01 ma  preserves the unit energy property as referred earlier. Restricting 
the calculations on a discrete sub-lattice in the evaluation of DWT, the bi-parametric family of the wavelets 

0 0 0( , )m mU a nb a Ψ  becomes the discrete set, ( )/ 2
, 0 0 0( ) m m

m n x a a x nb− −Ψ = Ψ − , labeled by two integers 
Znm ∈, . 
Under the condition 0 1a = , the reconstruction of ( )f x  is given by 
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where k is the constant that depends upon the redundancy of the basic wavelet and the lattice combination 
which is ignored in many applications, and ,m nΨ  is wavelet dual of ,m nΨ . The objective of numerical 
implementation is to find a function ( )xΨ  such that the set of wavelet coefficients , , .m n f< Ψ >  determines 

the function 2 ( )f L R∈  in unique way and provides a numerically stable reconstruction. 

2.2. Korteweg-de Vries Equation 

The generalized Korteweg–de Vries equation (gKdV) with time-dependent damping and dispersion [5], 
is given as 

 ( ) ( ) 0.n
t x xxxq q q a t q b t q+ + + =  (6) 

This equation arises in various physical situations including the study of coastal waves in ocean, liquid 
drops and bubbles and also in the context of atmospheric blocking phenomenon and in particular in the issue 
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of dipole blocking. The first term of the equation is the evolution term, the second term represents the 
nonlinear term, while the third term is the linear damping with a time-dependent coefficient ( )a t  and the 
fourth term is the dispersion term with time-dependent coefficient ( )b t . In equation (6), ,a b R∈  while 
n Z +∈ . 

The solitary wave solution to (6) is given as [5], 

 
[ ]

( )( , )
cosh ( )( ( ) )p

A tq x t
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=
−

. (7) 

where A represents the amplitude of the soliton, while B is the inverse width of the soliton and v represents 
the velocity of the soliton. Since damping and dispersion terms have time-dependent coefficients, in general, 
without loss of generality, we can write, ( ), ( )A A T B B t= = and ( )v v t= . Thus, for 2 /p n= , the solitary 
wave solution (7) takes the form 
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when 1n = ,   

 [ ]2( , ) sec ( ) .q x t A h B x vt= −  (9) 

 The same can also be written as 

 ( , ) ( ) with .q x t q s s x vt= = −  (10) 

2.3. Mathematical analysis 

Most often the signals have a Gaussian form and display self-similar fractal like patterns. It is reported 
that the soliton-like solution, ( , ) ( )u x t u s=  with s x v t= −  has expansion in a Gaussian family of 
wavelets ( )( ) Q ss NeΨ = , where ( )Q s  is a polynomial and N, the normalization constant [10]. In particular, if 

we choose 
2

( ) i
2

sQ s s= − − , we obtain a very particular wavelet with the support mainly confined in the (−1, 

1) interval, namely 
2

1/ 4( ) exp i
2

ss s 
Ψ = − − π 

 
. We shall use this fact in the development of procedure for 

approximating the soliton solution through wavelet decomposition and in the further application of 
experimental data processing. We consider the most celebrated gKdV equation obtained from (6) with 1n =  

 0.t x xxxq qq q q+ + µ + ν =  (11) 

The equation (11) can be written in differential operator form as 

 ˆ( ( , )) 0L q x t =  where 
3

3
L̂ q q

t x x
∂ ∂ ∂

≡ + + µ + ν
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. (12) 

In general, the stable solutions of the nonlinear-dispersive equations are dependent of the initial 
conditions, through their conservation laws. Consequently, they can generate a large class of patterns, shaped 
by the balance between nonlinear interaction and dispersion, among which the most interesting examples are 
solitons, breathers and kinks. 

To apply the wavelet method or more appropriately, the wavelet-Galerkin method, the solution is 
decomposed with respect to the wavelet basis as  

 , ,,
( ) ( , ) ( ) ( ),j k j kj k

q s q x t C t x= + Ψ∑  (13) 
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where , ( )j kC t  are the time dependent wavelet coefficients and , ( )j k xΨ  is an admissible function/basic 

wavelet to be taken as / 2
, ( ) ( )j j

j k x h h x k− −Ψ = Ψ − .   
This is a discrete expansion or wavelet decomposition of soliton solution ( )q s  in terms of integer 

translations ( )k of Ψ  which provides the analysis of localization, and in terms of dyadic dilations ( )jh  of 
Ψ , which provides the description of different scales. 

Substituting the decomposition (13) into (12), it yields the system of equations 

 , ,,
ˆ( ) ( ) 0.j k j kj k

C t L xΨ =∑  (14) 

By scalar multiplication ,d l mxΨ∫ , where ,l mΨ  is dual wavelet, we obtain the orthogonal system of 

compactly supported wavelets , ,
ˆd ( )lj

l m j kmk x L xΩ ≡ Ψ Ψ∫ . 

The system of equations (14) becomes  

 ,,
0.lj

j kmkj k
CΩ =∑  (15) 

This is a system of ordinary differential equations in the wavelet coefficients ,j kC . For the orthogonal 

Daubechies wavelets with compact support, only the matrix elements lj
mkΩ  with the basic functions of the 

same scale l j=  are different from zero. Thus, (15) provides a sparse structure of non-linear system suitable 
for numerical implementation. The main component of the wavelet-Galerkin solution is the evaluation of the 
matrix elements lj

mkΩ  of the differential operators in wavelet basis, ,j kΨ . For this purpose, the analytically 
determined wavelets such as Mexican hat or Morlet wavelets are employed. For practical purposes, we can 
use the normalized Mexican hat wavelet, which is self dual, as the basic wavelet.  

The wavelet–Galerkin scheme for equation (11) consists of substitution of discrete wavelet 
decomposition of the solution , ,,

( , ) ( ) ( )j k j kj k
q x t C t x= Ψ∑  into (11), followed by the projection of the 

result onto orthogonal basis of ,l mΨ ,  

 
3

, , , , , , , ,3

d dd ( )[ ( ) ] ( ) 0.
d dl m j k s r s r j k j k j k j kx x C C x C C C x
x x
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For the orthogonal Daubechies wavelets with compact support, this gives a system of nonlinear 
ordinary differential equations with unknown wavelet coefficients ,j kC  depending on time t only 

 . , , ,1, 0,lsj lj lj
l m j k j k j kmrk mk mkC C C C− Ω + µΩ + νΩ =  (17) 

where the matrix elements are 
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The direct integration in the matrix elements is numerically unstable for the irregularity of the basic 
function ( )xΨ . However, they can be evaluated analytically. When all coefficients of (18) are known, the 
system of ordinary differential equations (17) can be solved numerically by an implicit or explicit method. 

In the simplest case, we have  

 , , , , , ,1,( ) ( ) [ ( ) ( ) ( )]lsj lj lj
l m l m j k r s j k j kmrk mk mkC t C t C t C t C C t+ τ = + τ Ω + µΩ + νΩ ,  

where τ  is a time step of integration. 
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The evaluation of the matrix elements of all differential operators is provided by the knowledge of 
connection coefficients-the matrix elements of those operators in the basis of wavelet scaling function ( )xϕ , 

1 1

1 1

( ... ) ( )( )
... d ....n n

n n

d d dd
k k k kxΛ = ϕ ϕ∫ , where the superscripts of the parentheses stand for the order of differentiation. 

All the terms with the wavelet basic function Ψ  are evaluated by the substitution ( ) 2 (2 1)nx g xΨ = ϕ −∑ . 
The general method of evaluation of connection coefficients is presented by Beylkin [1]. 

Alternative scheme of evaluating the system of differential equations is provided by modified method, 
known as Wavelet-Petrokov-Galerkin (WPG) method where the basic difference from the wavelet-Galerkin 
method is that of using the different functions as test and admissible wavelets [11]. To apply WPG method, 
we make the substitution / 2

, ( ) ( )j j
j k x h h x k− −Ψ = Ψ −  in the expression (16) to write 
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Introducing the change of variable, jy h x k−= − , the expression (19) becomes 
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Ψ
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 and d ( ) d ( )( ) ( 1) d .
d d
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y y

α β
β Ψ Ψ −
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 The unknown coefficients ,j kC  are determined from the system of ordinary differential equations 
written in matrix form:  

 d 0
d

TLC C MC NC TC
t

+ + + = , (21) 

where ,j kC C= , ( , ) ( )L l k a l k= − , 3 / 2( , , ) ( , )jM l k s h b l k l s−= − − , / 2( , ) ( )jN l k h a l k−= µ − , and 
3( , ) ( )jT l k h c l k−= ν − . 

Note that the unknown coefficients are only the time dependent. By trapezoidal rule, 
1d

d

n nC C C
t t

+ −
=

∆
, 

where 1n nt t t+∆ = −  is the time interval. 
The equation (21) becomes 

 
1

0.
n n

TC CL C MC NC TC
t

+ −
+ + + = ∆ 

 (22) 

Now setting ( ) TG C C MC NC TC= + + , we have from (22)  

 ( )
1

1 ( ) ( ) 0.
2

n n
n n G C G CL C C t

+
+ +
− + ∆ =  (23) 

This algebraic equation can be finally solved by Newton’s iterative method using the recursive 

construct 1 ( ) , 0,1, 2,...
'( )

n
n n

n

f UU U n
f U

+ = − = The solution thus obtained by approximation process can be 

eventually compared with some exact solution obtained from (9), [ ]2( , ) sec ( )q x t A h B x vt= − , for specific 
values of the amplitude A, the inverse width B and the velocity v of the soliton computed at different 
positions depending on time t. This provides the alternative method for determining the soliton solution of 
KdV and like. 
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3. EXPERIMENTAL DATA PROCESSING  

In experimental data processing, the central problem in either one dimensional or multi-dimensional set 
up is the separation of two or more signals from a noisy background. Most often these signals have a 
Gaussian form which itself is a wavelet. Therefore, the wavelet analysis provides robust method in the 
presence of noise especially if taken as wavelet image of the Gaussian 2exp( / 2)x− with vanishing momenta 

wavelets 2d exp( / 2)
d

n

n x
x

−  known analytically, and the values of wavelet coefficients can be used to determine 

the amplitude and dispersion of the original signal (the soliton in this case), which has Gaussian 
representation. The central idea here is to assume the Gaussian distribution representing the soliton solution 
as the best fit for the experimental data and take the wavelet image of this Gaussian wavelet with appropriate 
analytically tested function as analyzing wavelet.  
 We assume that Gaussian function is the ‘best fit’ to describe the experimental data set to be processed 
as testing wavelet function. Then, the problem of fitting the distribution of Gaussian sources is to find the 
parameter set 1( , , )k m M

k k kN x =σ that minimizes the difference 

 
2

exp 21 2
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( , , ) ( ) exp .

22

mM k km
k

kk

N x x
F N x f x

=

 −
σ = − − σπσ  

∑  (24) 

Applying wavelet transform to (24) with some analytically tested basic wavelet, say, Mexican hat or 
Morlet wavelet, one can precisely locate the position of the sources m

kx . 
Let us start with the wavelet image of a single Gaussian representing the soliton, located, without loss 

of generality, at 0mx = . 

 
2

22
( , ) exp

22
gauss

kk

N xq x t
 

= − σπσ  
 for all t in space time coordinates ( , )x t .  (25) 

We need the wavelet images of the Gaussian with different vanishing momenta wavelets as analyzing 
wavelet, where the first m family of vanishing momenta wavelets [6] of basic wavelets Ψ , satisfies the 
condition d ( ) 0, , 0 ,mxx x m m n nΨ = ∀ ≤ < ∈∫ . 

The wavelet images of the Gaussian with vanishing momenta wavelet are therefore given by 

 1( , )[ ] ( )d .
ng gauss n gauss

x bW a b q g q x x
aa
− =  

 ∫  (26) 

The integrals in (26) can be evaluated using the Fourier representation (3), 

 ( ) 1/ 2
gauss

1W , q = exp(i ) ( ) ( )d ,
2 gaussa b a kb g ak q k k

∞

Ψ
−∞

   π ∫  (27) 

where 2( ) 2 (i ) exp( / 2)n
ng k k k= π − . 

Instead of evaluating integrals for each n separately, we can evaluate it once for the Morlet wavelet 

 2( , ) 2 exp(i / 2)ng k k kτ = π τ −  (28) 

and then take the nth derivative of g  with respect to the formal parameter τ  at 0τ =  to obtain the wavelet 
image of ng  family, 

 
0

d( ) ( , )
dn ng k g k

τ=

 = τ τ 
 (29) 
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τ=

 
 τ 

. (30) 

Substituting (28) instead of ( )ng k  into (29) and taking into account the Fourier image of Gaussian (25)      
2 2

( ) exp
2gauss

k
q k N

 σ
= − 

 
, we arrive at 

   
22

2 2 2 2
2 2

( )( , )[ ] d exp i ( ) ( ) exp ,
2 2 2( )ng gauss

b aa kW a b q N k k b a a N a a
a

   − τ
= − τ − + σ = − + σ  π + σ   ∫  (31) 

for the wavelet image of a single Gaussian with respect to the analyzing wavelet, vanishing momenta 
wavelet ng  in instant case. To find the distribution parameters for the case of single Gaussian source, we use 
the coefficients of its 2g  decomposition. Equation (30) for 2n = , for example, leads to 

 
2

3 / 2 2 2

2 2 2 2 2 2
( , )[ ] 1 exp .

2( )g gauss
a b bW a b q Na

a a a
   = − −   + σ + σ + σ     

 (32) 

Taking the derivative a∂ ∂  of equation (32) at the central point 0b = , we find the extremum of the 2g  
coefficient at a scale 5ma = σ . 

The value of the wavelet coefficient at the extremal point is therefore 

 
2

3 / 2
5 / 4 3 / 2 5( , 0)[ ] 5 6 .

6g m gauss
m

N NW a q
a

−  = =  
σ  

 (33) 

Thus, performing the convolution (1) or for numerical implementation (4) with 
/ 2

,( ) ( ) ( )j j
n j kg x x h h x k− −≡ Ψ = Ψ − , and finding the maximum of the 2g  wavelet coefficient, we obtain the 

dispersion and amplitude of the original distribution gaussq  such that , , ,gauss j k j k gaussjk
q q= Ψ < Ψ >∑ . 

4. CONCLUSIONS  

Multi-resolution analysis employs wavelets as basis. Wavelet analysis is based on the property of self-
similarity that makes wavelet as an effective tool to process fractal like patterns represented by signals that 
have Gaussian forms. Several non-linear partial differential equations describing various physical 
phenomena have wavelet like soliton solutions, which in turn, have Gaussian representations exhibiting self-
similar fractal like patterns. As a result, wavelet methods are quite effective for approximating and analyzing 
such soliton solutions. Moreover, Gaussian representation of wavelet like solitons can be fruitfully used in 
experimental data processing.  
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