A SHORT PROOF FOR THE CHARACTERIZATION BY ORDER AND DEGREE PATTERN OF $PGL(2,q)$ AND $L_2(q)$

Ali MAHMOUDIFAR1, Behrooz KHOSRAVI1,2

1 Amirkabir University of Technology (Tehran Polytechnic), Faculty of Math. and Computer Sci., 424, Hafez Ave., Tehran 15914, Iran,
2 Institute for Research in Fundamental Sciences (IPM), School of Mathematics, P.O.Box:19395-5746, Tehran, Iran
E-mail: khosravbibbb@yahoo.com

The degree pattern of a finite group G is denoted by $D(G)$. In [14] and [19] the characterization of $L_2(q)$ and $PGL(2,q)$ by their orders and their degree patterns are proved. In this paper we give a very short proof for the main results of these papers.

Key words: projective special linear group, projective general linear group, degree pattern, prime graph.

1. INTRODUCTION

Let N and P denote the set of natural numbers and the set of prime numbers, respectively. If $n \in N$, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. The set $\pi(|G|)$ is denoted by $\pi(G)$. Also the set of orders of the elements of G is denoted by $\pi_e(G)$. Obviously, $\pi_e(G)$ is closed and partially ordered by divisibility, hence it is uniquely determined by $\mu(G)$, the subset of its maximal elements. The prime graph of G is a graph whose vertex set is $\pi(G)$ and two distinct primes p and q are joined by an edge (we write $p \sim q$) if and only if G contains an element of order pq. The prime graph of G is denoted by $\Gamma(G)$. Denote by $t(G)$ the numbers of connected components of $\Gamma(G)$ and by $\pi_i(G)$, where $i = 1, 2, \ldots, t(G)$, the connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then always we assume that $2 \in \pi_1$ and $\pi_2, \ldots, \pi_{t(G)}$ are called the odd component(s) of $\Gamma(G)$.

Let $\pi(G) = \{p_1, p_2, \ldots, p_m\}$ and $p_1 < p_2 < \cdots < p_m$. The degree pattern of G is denoted by $D(G)$ and defined as follows: $D(G) = (\deg(p_1), \deg(p_2), \ldots, \deg(p_m))$, where $\deg(p_i)$ is the degree of vertex p_i in $\Gamma(G)$. A group G is called OD-characterizable if G is uniquely determined by $|G|$ and $D(G)$.

It is proved that sporadic simple groups and their automorphism groups except $Aut(J_4)$ and $Aut(McL)$, the alternating groups A_p, A_{p+1}, A_{p+2} and the symmetric groups S_p and S_{p+1}, where $p \in P$ are OD-characterizable [7]. In [14], it is proved that all finite simple groups with exactly four prime divisors are OD-characterizable, except A_{10}. Also in [16, 17] finite groups with the same order and degree pattern as an almost simple group related to $L_2(49)$ or $U_3(5)$ are determined. Recently in [18] and [13] it is proved that every special linear group $L_2(q)$ and every projective general linear groups $PGL(2,q)$ are OD-characterizable. In fact, in this paper we give a very simple proof for these results. More results can be found in [1, 5, 6, 8, 9, 10, 15, 19, 20]. All further unexplained notations are standard and can be found in [2].

If $p \in P$ and $k, n \in N$, then $p^k \| n$ means that $p^k \mid n$ and $p^{k+1} \nmid n$.
2. PRELIMINARY RESULTS

The next lemma summarizes the structural properties of a Frobenius group and a 2-Frobenius group [2, 3]:

Lemma 2.1. (a) Let G be a Frobenius group with Frobenius kernel K and Frobenius complement H. Then $t(G) = 2$, $\pi(K)$ and $\pi(H)$ are the components of $\Gamma(G)$.

(b) Let G be a 2-Frobenius group, i.e., G has a normal series $1 \leq H \leq K \leq G$, such that K and G/H are Frobenius groups with kernels H and K/H, respectively. If G has even order, then

(i) $t(G) = 2$, $\pi_1 = \pi(G/K) \cup \pi(H)$ and $\pi_2 = \pi(K/H)$;

(ii) G/K and K/H are cyclic, $|G/K|$ divides $|\text{Aut}(K/H)|$ and $(|G/K|, |K/H|) = 1$;

(iii) H is a nilpotent group and G is a solvable group.

By using [12, Theorem A] we have the following result:

Lemma 2.2. Let G be a finite group with $t(G) \geq 2$. Then one of the following holds:

(a) G is a Frobenius or 2-Frobenius group;

(b) there exists a nonabelian simple group S such that $S \leq G/N \leq \text{Aut}(S)$ for some nilpotent normal π_1-subgroup N of G and G/S is a π_1-group.

3. MAIN RESULTS

Throughout this section let $p \in P$, $n \in N$ and $q = p^n$.

Theorem 3.1. Let p be an odd prime and $\varepsilon = 1$ or 2. If G is a finite group such that $|G| = q(q^2 - 1)/\varepsilon$ and $\text{deg}(p) = 0$ in $\Gamma(G)$, then $L_2(q) \leq G \leq \text{Aut}(L_2(q))$.

Proof. We can easily see that if $|G| = 12$ or 24 and $\text{deg}(3) = 0$ in $\Gamma(G)$, then $G \cong A_4$ or S_4, respectively. Also by using GAP we obtain that if $q = 5$, then $G \cong A_5$ or S_5, as required. Therefore let $q > 5$. First we show that G is not a Frobenius or 2-Frobenius group.

Step 1. If G is a Frobenius group with kernel K and complement C, then by Lemma 2.1, $\pi(K)$ and $\pi(C)$ are the connected components of $\Gamma(G)$. Since $\text{deg}(p) = 0$ in $\Gamma(G)$, $\pi(K) = \{p\}$ or $\pi(C) = \{p\}$. If $\pi(K) = \{p\}$, then $|K| = q$ and $|C| = (q^2 - 1)/\varepsilon$. We know that $|K| \equiv 1(\text{mod}|C|)$, which is impossible. If $\pi(C) = \{p\}$, then $|C| = q$ and $|K| = (q^2 - 1)/\varepsilon$. Hence $(q^2 - 1)/\varepsilon \equiv 1(\text{mod} q)$, which is a contradiction, since $q > 5$. Therefore, G is not a Frobenius group. Now let G be a 2-Frobenius group with normal series $1 \leq H \leq K \leq G$, such that G/H and K are Frobenius groups with kernels K/H and H, respectively. By using Lemma 2.1, $|K/H| = q$ and $|H||G/K| = (q^2 - 1)/\varepsilon$, since $\text{deg}(p) = 0$ in $\Gamma(G)$ and p is an odd prime number. Also by Lemma 2.1, we have $|G/K|(p - 1)$, which is a divisor of $q - 1$. Therefore, $q - 1 = m|G/K|$, for some $m \geq 1$ and so $|H| = (q + 1)m/\varepsilon$. We know that $|H| \equiv 1(\text{mod}|K/H|)$. So $(q + 1)m/\varepsilon \equiv 1(\text{mod} q)$. Then $m \equiv \varepsilon(\text{mod} q)$ and so $m = \varepsilon$, since $1 \leq m \leq q$. Hence $|H| = q + 1$ and so $|G/K| = (q - 1)/\varepsilon$. Also $|G/K|(p - 1)$ and $(p - 1)|(q - 1)$, which implies that $q = p$. Therefore, $|H| = p + 1$ and $|K| = p(p + 1)$. Since K is a solvable group, if t is an odd prime divisor of $p + 1$, then K has a $\{p, t\}$-Hall subgroup, say T. Let $s \in N$ and $t^s|(p + 1)$. Then $|T| = pt^s$ and if n_t is the numbers of Sylow t-subgroups of T, then $n_t = 1$ or p. If $n_t = p$, then
1 + tr = p, for some r > 0, which is a contradiction, since t \| (p + 1) and t is odd. We note that
\(t^i \equiv 1 \pmod{p} \), where \(1 \leq i \leq s \), since \(p + 1 \) is even and so \(p > t^s \). Therefore \(n_p = 1 \), where \(n_p \) is the numbers of Sylow \(p \)-subgroups of \(T \). Hence by using Sylow Theorem it follows that \(T \) is a nilpotent subgroup of \(K \) and so \(p \sim t \) in \(\Gamma(G) \), which is a contradiction, since \(\deg(p) = 0 \) in \(\Gamma(G) \). Therefore,
\(H \) is a \(\{2\} \)-group, i.e., there exists a natural number \(\alpha \) such that \(|H| = p + 1 = 2^\alpha \) (\(\alpha \geq 3 \), since by assumption \(p = q > 5 \)). Let \(P \) be a Sylow \(p \)-subgroup of \(G \). Since \(\Phi(H) \lneq G \), if \(\Phi(H) = \{1\} \), then \(|\Phi(H)| = 1 \pmod{p} \).

Since \(|\Phi(H)| \neq p + 1 \), \(\Phi(H) \cap C_G(P) = \{1\} \), which is a contradiction, since \(\deg(p) = 0 \) in \(\Gamma(G) \).

Hence \(\Phi(H) = \{1\} \) and so \(H \) is an elementary abelian \(2 \)-group. Let \(F = GF(2^\alpha) \) and so \(H \) is the additive group of \(F \). Also \(|P| = p = 2^\alpha - 1 \) and so \(P \) is the multiplicative group of \(F \). Now \(G / K \) acts by conjugation on \(H \) and similarly \(G / K \) acts by conjugation on \(P \) and this action is faithful. Then \(G / K \) keeps the structure of the field \(F \) and so \(G / K \) is isomorphic to a subgroup of the automorphism group of \(F \). Hence \(|G / K| = 2^{2\alpha} - 2 \leq |Aut(F)| = \alpha \), which is impossible, since \(\alpha \geq 3 \). Therefore, \(G \) is not a 2-Frobenius group.

Step 2. By Lemma 2.2, there exists a nonabelian simple group \(S \) such that \(S \leq G / N \leq Aut(S) \) where \(N \) is a nilpotent subgroup of \(G \). Also by Lemma 2.2, since \(G / S \) is a \(\pi_1 \)-group and \(\deg(p) = 0 \) in \(\Gamma(G) \), we conclude that \(\{p\} \) is an odd component of \(\Gamma(S) \) and \(|S| = qm \), where \(m \mid (q^2 - 1) \). All of the nonabelian simple groups with at least two connected components are given in [11, Tables 1a, 2b and 2c]. Now we must consider each possibility separately. For convenience we omit the details of the proof and only state a few of them. We remark that in these tables, \(p' \in P \setminus \{2\} \), \(q' \) is a prime power and \(n' \in N \).

Case 1. Let \(S = A_{n'} \), where \(6 < n' = p' \), \(p'+1 \) or \(p'+2 \); \(n' \) or \(n' - 2 \) is not prime. By using [11, Table 1a], we have \(p' = q \), since the odd component of \(\Gamma(A_{n'}) \) is \(\{p'\} \). As we mentioned above we have \((p'-1)|p^{n-1} - 1 \), which is a contradiction, since in this case \(p' \geq 7 \).

Case 2. Let \(S = A_{n'} \), where \(6 < n' = p' \), \(p' - 2 \) are primes. By using [11, Table 2b], we have \(p' = q \) or \(p' - 2 = q \), since the odd component of \(\Gamma(A_{n'}) \) are \(\{p'\} \) and \(\{p' - 2\} \). Then we must have \(\alpha(p'-1)(p'-3)! \) divides \(p'^2 - 1 \) or \((p' - 2)^2 - 1 \), where \(\alpha = p' \) if \(p' - 2 = q \) and \(\alpha = p' - 2 \) if \(p' = q \), which is a contradiction.

Case 3. Let \(S = A_{p-1}(q') \), where \((p',q') \neq (3,2),(3,4) \). We know that \(m \mid q^2 - 1 \), where \(|S| = qm \). By using [11, Table 1a], we have

\[
q = (q^{-p'} - 1) / (q' - 1)(p'q' - 1).
\]

We can easily see that \(q^2 - 1 < q^{2p'} \), which is a contradiction, since \(q^{(p'-1)/2} \mid (q^2 - 1) \) and \(q^{(p'-1)/2} \geq q^{2p'} \).

Case 4. Let \(S = G_2(q') \) be a Chevalley group, where \(q' \equiv 0 \pmod{3} \). By using [11, Table 2b], we have \(q^2 - q' + 1 = q \) or \(q^2 + q' + 1 = q \), since the odd components of \(\Gamma(S) \) are \(\pi(q^2 - q' + 1) \) or \(\pi(q^2 + q' + 1) \). Let \(q^2 + \beta q' + 1 = q \), where \(\beta = 1 \) or \(-1 \). Then \(q^{\beta} \mid (q^2 - 1) = ((q^2 + \beta q' + 1)^2 - 1) \). We can easily see that \((q^2 \pm q' + 1)^2 - 1 < q^d \), which is a contradiction.
Similarly, we can prove that S is not isomorphic to all other simple groups in Tables in [11], except $A_4(q')$.

Case 5. Let $S = A_4(q')$. If q' is even and $q' > 2$, then by [11, Table 2b], the odd components of $\Gamma(S)$ are $\pi(q' - 1)$ or $\pi(q' + 1)$. If $\pi(q' - 1) = \{p\}$, then $q' - 1 = q$ and so $(q' + 1) \mid ((q' - 1)^2 - 1)$, which is impossible. If $\pi(q' + 1) = \{p\}$, then $q' + 1 = q$ and so $(q' - 1) \mid ((q' + 1)^2 - 1)$. So we have $q' = 4$ and $q = 5$, which is impossible, since $q > 5$. Hence q' is not even.

Therefore $3 < q' \equiv \varepsilon \pmod{4}$, where $\varepsilon = 1$ or -1. By [11, Table 2b], the odd components of $\Gamma(S)$ are $\pi(q')$ and $\pi((q' + \varepsilon)/2)$. If $\pi((q' + \varepsilon)/2) = \{p\}$, then $(q' + \varepsilon)/2 = q$ and so $q' \mid (((q' + \varepsilon)/2)^2 - 1)$, which is a contradiction, since $q' = 3$. So we conclude that $\pi(q') = \{p\}$ and $q' = q$. Therefore we have $S = A_4(q) = L_2(q)$.

This argument shows that $L_2(q) \leq G/N \leq Aut(L_2(q))$ and so $|N| = 1$ or 2. If $|N| = 2$, then we have $N \leq Z(G)$, which is a contradiction since $deg(p) = 0$ in $\Gamma(G)$. Therefore $|N| = 1$ and $L_2(q) \leq G \leq Aut(L_2(q))$. □

COROLLARY 3.2. The finite group $L_2(q)$ is OD-characterizable.

Proof. Let G be a finite group such that $|G| = |L_2(q)|$ and $D(G) = D(L_2(q))$. We know that $|L_2(q)| = q(q^2 - 1)/d$, where $d = (2, q - 1)$. By using [11, Table 2b], we have $deg(p) = 0$ in $\Gamma(L_2(q))$.

In [5, Theorem 1.4] it is proved that if q is even, then $G = L_2(q)$. Therefore, let q be odd. So $|G| = q(q - 1)/2$ and $deg(p) = 0$ in $\Gamma(G)$. By using Theorem 3.1, we have $L_2(q) \leq G \leq Aut(L_2(q))$. On the other hand $|G| = |L_2(q)|$ and so $G = L_2(q)$. □

THEOREM 3.3. The finite group $PGL(2,q)$ is OD-characterizable.

Proof. Let G be a finite group such that $|G| = |PGL(2,q)|$ and $D(G) = D(PGL(2,q))$. If q is even, then $PGL(2,q) = L_2(q)$ and by Corollary 3.2, we have $G = PGL(2,q)$. Therefore, let q be odd. We know that $|PGL(2,q)| = q(q^2 - 1)$ and $\mu(PGL(2,q)) = \{q - 1, p, q + 1\}$. Hence $deg(p) = 0$ and $deg(2) = |\pi(G)| - 2$ in $\Gamma(G)$.

By using Theorem 3.1, we have $L_2(q) \leq G \leq Aut(L_2(q))$. Thus G is an extension of $L_2(q)$ by an involution, since $|G| = 2|L_2(q)|$. We know that $|Out(L_2(p^n))| = 2n$. In fact every element of $Out(L_2(p^n))$ is a product of a field automorphism and a diagonal automorphism. Let $\varphi \in G/L_2(q)$. If φ is a field automorphism of order 2, then φ centralizes $L_2(p)$ and so $2 \sim p$ in $\Gamma(G)$, which is a contradiction. If φ is a field-diagonal automorphism of order 2, then $\Gamma(L_2(q)) = \Gamma(G)$ (see [3]), which is impossible, since in $\Gamma(L_2(q))$ we have $deg(2) < |\pi(L_2(q))| - 2$. Therefore φ is a diagonal automorphism of $L_2(q)$ and so $G = PGL(2,q)$.

ACKNOWLEDGEMENTS

The second author was supported in part by a grant from IPM (89200113).
REFERENCES

Received June 24, 2011